JP3163612B2 - Copper removal electrolysis from chloride bath - Google Patents

Copper removal electrolysis from chloride bath

Info

Publication number
JP3163612B2
JP3163612B2 JP30987895A JP30987895A JP3163612B2 JP 3163612 B2 JP3163612 B2 JP 3163612B2 JP 30987895 A JP30987895 A JP 30987895A JP 30987895 A JP30987895 A JP 30987895A JP 3163612 B2 JP3163612 B2 JP 3163612B2
Authority
JP
Japan
Prior art keywords
copper
nickel
concentration
electrolytic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30987895A
Other languages
Japanese (ja)
Other versions
JPH09125280A (en
Inventor
賢二 竹田
茂喜 松木
和幸 高石
進 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP30987895A priority Critical patent/JP3163612B2/en
Publication of JPH09125280A publication Critical patent/JPH09125280A/en
Application granted granted Critical
Publication of JP3163612B2 publication Critical patent/JP3163612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケルマットを
塩素で浸出して、得られた浸出液から高純度電気ニッケ
ルを高電流効率で製造することができる塩化物浴からの
脱銅電解法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing copper from a chloride bath by which a nickel mat is leached with chlorine and high-purity electric nickel can be produced with high current efficiency from the obtained leachate. It is.

【0002】[0002]

【従来の技術】従来、ニッケルマットから電気ニッケル
を得る方法として、ニッケルマットを銅とニッケルとを
含む溶液中に懸濁させ、塩素を吹き込むことによってニ
ッケルマット中の有価金属を浸出し、得られた浸出液か
らニッケルを電解採取する方法がある。この方法では、
浸出液中に銅が濃縮されるために、何らかの形で銅を系
外に除去しなければならない。その方法の1つとして、
脱銅電解法がある。この脱銅電解法とは、たとえば、チ
タン製の板あるいは網の表面に貴金属酸化物をコーティ
ングして得たアノードをボックス内に設置し、チタン板
やステンレス板を陰極として用い、陰極表面に銅を銅粉
として析出させる方法である。
2. Description of the Related Art Conventionally, as a method for obtaining electric nickel from a nickel mat, a nickel mat is suspended in a solution containing copper and nickel and valuable metals in the nickel mat are leached by blowing chlorine. There is a method of electrowinning nickel from the leachate. in this way,
Because of the concentration of copper in the leachate, some form of copper must be removed out of the system. As one of the methods,
There is a copper removal electrolytic method. This copper-free electrolytic method means, for example, that an anode obtained by coating a surface of a titanium plate or net with a noble metal oxide is placed in a box, a titanium plate or a stainless steel plate is used as a cathode, and a copper Is precipitated as copper powder.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この脱
銅電解の操業方法において、脱銅電解工程へ給液する電
解液は、調整することなく給液するために、電解液中の
ニッケル濃度、銅濃度、pHなどは、成り行き任せとな
っているため、必ずしも良好な操業状態が維持されては
いないものである。すなわち、電解液中の銅濃度が40
g/リットル以上となると脱銅電解系内でCu2+の量
が増加して、これが陰極側で生成した銅粉と不均化反応
Cu+Cu2+=2Cuを起こし、銅粉を再溶解
してしまい、その結果、陰極電流効率が低下してしまう
という問題がある。
However, in this operating method of copper removal electrolysis, the electrolytic solution supplied to the copper removal electrolytic process is supplied without adjustment, so that the nickel concentration in the electrolytic solution, the copper concentration, Since the concentration, pH and the like are determined depending on the situation, a good operating state is not always maintained. That is, when the copper concentration in the electrolytic solution is 40
When the amount is more than g / liter, the amount of Cu 2+ increases in the copper-free electrolytic system, which causes a disproportionation reaction with the copper powder generated on the cathode side, Cu 0 + Cu 2+ = 2Cu + , and re-dissolves the copper powder. As a result, there is a problem that the cathode current efficiency is reduced.

【0004】また、給液する電解液中のニッケル濃度や
銅濃度が高くなると、電解液の粘度が高くなり陽極に使
用している隔膜濾布が目詰まりし、これらにより電解電
圧が高くなる。この電解電圧の上昇は、電解液の温度を
80℃以上とし、塩化ビニル製のアノードボックスの変
形、濾布寿命の低下、その上、アノード表面のコーティ
ング材の剥離などを引き起こすという問題がある。
When the concentration of nickel or copper in the supplied electrolytic solution increases, the viscosity of the electrolytic solution increases, and the filter cloth used for the anode becomes clogged, thereby increasing the electrolytic voltage. This increase in the electrolytic voltage raises the temperature of the electrolytic solution to 80 ° C. or more, and causes problems such as deformation of the vinyl chloride anode box, reduction in the life of the filter cloth, and peeling of the coating material on the anode surface.

【0005】本発明は、陰極電流効率の低下と、電解電
圧の上昇、及び、電解槽内温度が上昇する欠点を解消
し、低コストで安定的に余剰銅を銅粉として除去し得る
方法を提供することを目的とするものである。
The present invention solves the drawbacks of lowering the cathode current efficiency, increasing the electrolysis voltage, and increasing the temperature in the electrolytic cell, and provides a method for stably removing excess copper as copper powder at low cost. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記問題
を解決し、前記目的を達成するために研究を重ねた結
果、電解液中のニッケル濃度、銅濃度、pHなどをそれ
ぞれ特定範囲とすることにより目的を達し得ることを見
出して本発明を完成するに至った。すなわち、本発明
は、銅を含有するニッケルマットを銅とニッケルとを含
有する溶液中に懸濁し、塩素を吹き込んでニッケル・銅
などの有価金属を浸出して得られた塩化物溶液を電解液
として銅を電解採取する方法において、電解槽に給液す
る電解液のニッケル濃度を100〜180g/リット
ル、銅濃度を30〜40g/リットルとし、pHを0〜
2.0とする塩化物浴からの脱銅電解法を特徴とするも
のであり、さらに前記電解液の調整に塩化ニッケル溶
液、塩酸溶液および/または水を用いる塩化物溶液から
の脱銅電解法である。
Means for Solving the Problems The inventors of the present invention have repeatedly studied to solve the above-mentioned problems and achieve the above-mentioned object, and as a result, the nickel concentration, the copper concentration, the pH, etc. in the electrolytic solution have been set to specific ranges, respectively. As a result, the present inventors have found that the object can be achieved, and have completed the present invention. That is, the present invention provides a chloride solution obtained by suspending a nickel mat containing copper in a solution containing copper and nickel, and blowing chlorine to leaching valuable metals such as nickel and copper. In the method of electrolytically collecting copper, the nickel concentration of the electrolytic solution supplied to the electrolytic cell is 100 to 180 g / liter, the copper concentration is 30 to 40 g / liter, and the pH is 0 to 0.
2. A method of removing copper from a chloride solution by using a nickel chloride solution, a hydrochloric acid solution and / or water to adjust the electrolytic solution. It is.

【0007】[0007]

【発明の実施の形態】本発明の方法において、電解槽に
給液する電解液のニッケル濃度を100〜180g/リ
ットルと限定したのは、この範囲よりニッケル濃度が高
くなるとニッケルが塩化ニッケルとして、また電解液中
のカルシウムがセッコウとして析出してくるようになる
からである。なお、セッコウ源としての硫酸根は、ニッ
ケルマットを塩素によって浸出する際に、硫黄が酸化さ
れて生ずるものである。このように塩やセッコウが析出
すると、配管の閉塞が生じたり、アノードボックスの隔
膜の目が詰まったりするようになる。すなわち、配管が
閉塞すれば操業を停止しなければならなくなり、またア
ノードボックスの隔膜の目が詰まると隔膜抵抗が上昇
し、電解電圧が上昇して、従来と同様な電解液温度上昇
による弊害が発生する。さらに、ニッケル濃度がこの範
囲より低くなると、次工程での、たとえば、ニッケル電
解採取工程で水バランスがとれなくなり、廃液として電
解液を系外に排出しなければならなくなり、製造コスト
を高くすることになるからである。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, the nickel concentration of the electrolytic solution supplied to the electrolytic cell is limited to 100 to 180 g / liter. When the nickel concentration is higher than this range, nickel becomes nickel chloride. In addition, calcium in the electrolytic solution comes to precipitate as gypsum. The sulfate group as the gypsum source is generated by oxidizing sulfur when the nickel mat is leached with chlorine. When the salt or gypsum precipitates in this way, the pipes may be blocked, or the diaphragm of the anode box may be clogged. In other words, if the piping is blocked, the operation must be stopped, and if the diaphragm of the anode box is clogged, the diaphragm resistance increases, the electrolytic voltage increases, and the same adverse effects caused by the increase in the electrolytic solution temperature as in the past occur. appear. Furthermore, if the nickel concentration is lower than this range, the water balance cannot be maintained in the next step, for example, the nickel electrowinning step, and the electrolyte must be discharged out of the system as a waste liquid, which increases the production cost. Because it becomes.

【0008】銅濃度が、40g/リットルを超えると、
電解槽内の二価の銅イオンが増加し過ぎ、陰極で生成し
た金属銅が不均化反応によって再溶解してしまい、電流
効率を低下させることになり、一方銅濃度が30g/リ
ットル未満であると、陰極上にニッケルが電着し始め、
系外に排出する銅粉中のニッケル含有量が上昇し、ニッ
ケルの損失が増加するからである。このために電解槽に
給液する電解液の銅濃度は前記範囲とする必要があるも
のである。
When the copper concentration exceeds 40 g / liter,
The amount of divalent copper ions in the electrolytic cell increases too much, and the metallic copper produced at the cathode is redissolved by the disproportionation reaction, resulting in a decrease in current efficiency. On the other hand, when the copper concentration is less than 30 g / liter, Then, nickel began to electrodeposit on the cathode,
This is because the nickel content in the copper powder discharged to the outside of the system increases, and the loss of nickel increases. Therefore, the copper concentration of the electrolytic solution supplied to the electrolytic cell needs to be in the above range.

【0009】さらに、電解液のpHは、pHがあまり高
くなると、陰極へのニッケルの電着量が増加し、銅の回
収効率が低下するので、ニッケルの損失が増加すること
になり、場合によっては、電解液中の鉄が水酸化物とし
て析出し、アノードボックスの隔膜の閉塞が起こり、電
解電圧が上昇するようになる。逆に、pHが低すぎる
と、陰極で析出した金属銅が化学溶解されて、電解効率
が低下することになる。また、pHが0未満になると、
アノードボックスの隔膜やアノード表面のコーティング
の寿命がいちじるしく低下するものである。したがっ
て、pHは、0〜2.0とするものである。
Further, when the pH of the electrolytic solution is too high, the amount of nickel deposited on the cathode increases, and the efficiency of recovering copper decreases, so that the loss of nickel increases. In this method, iron in the electrolytic solution precipitates as hydroxide, and the diaphragm of the anode box is blocked, so that the electrolytic voltage increases. Conversely, if the pH is too low, the metal copper deposited at the cathode will be chemically dissolved and the electrolysis efficiency will be reduced. When the pH is less than 0,
The service life of the coating on the anode box diaphragm and anode surface is significantly reduced. Therefore, the pH is set to 0 to 2.0.

【0010】しかして、このような各範囲とするため
に、塩化ニッケル溶液、塩酸溶液、水のうち少なくとも
1種類を使用して調整するものである。
[0010] However, in order to obtain such ranges, adjustment is performed using at least one of a nickel chloride solution, a hydrochloric acid solution and water.

【0011】[0011]

【実施例】次に、本発明の実施例を述べる。Next, an embodiment of the present invention will be described.

【0012】実施例1:各濃度調整前の脱銅電解液組成
がNi200g/リットル、Cu60g/リットル(C
2+/TCu=0.5)の溶液を塩化ニッケル(Ni
60g/リットル、Cu<0.1g/リットル)溶液で
銅濃度を、下記する表1における実施例1の項に示すよ
うに調整して供給する電解液とした。電解条件は、電流
610A/カソード枚で給液量60ml/A・Hで行っ
た。得られた結果から下記数式1を用いてカソード電流
効率を求めた。これらの結果を表1に示す。
Example 1: Before the concentration adjustment, the composition of the electrolytic solution for removing copper was Ni 200 g / l, Cu 60 g / l (C
u 2+ /TCu=0.5) with nickel chloride (Ni
(60 g / L, Cu <0.1 g / L) The electrolytic solution was supplied by adjusting the copper concentration as shown in the section of Example 1 in Table 1 below. The electrolysis was carried out at a current of 610 A / cathode at a supply rate of 60 ml / A · H. From the obtained results, the cathode current efficiency was calculated using the following equation 1. Table 1 shows the results.

【0013】[0013]

【式1】カソード電流効率(%)=(産出銅粉×銅品位
(%)/(Cu2+電気化学当量×通電時間×通電電
流)
[Formula 1] Cathode current efficiency (%) = (Copper powder produced x Copper grade (%) / (Cu2 + electrochemical equivalent x Energizing time x Energizing current)

【0014】[0014]

【表1】 [Table 1]

【0015】比較例1:実施例1と同様にして銅濃度
を、表1における比較例1の項に示すように調整して電
解液とし、実施例1と同様に操作し、得られた結果を表
1に示す。表1に示す結果から、銅濃度が30〜40g
/リットルの範囲の場合に良好な結果が得られているこ
とがわかる。
Comparative Example 1: The copper concentration was adjusted in the same manner as in Example 1 as shown in the section of Comparative Example 1 in Table 1 to obtain an electrolytic solution, and the operation was performed in the same manner as in Example 1. Are shown in Table 1. From the results shown in Table 1, the copper concentration was 30 to 40 g.
It can be seen that good results were obtained in the case of the range of / l.

【0016】実施例2:ニッケル濃度を180g/リッ
トル一定とし、銅濃度(Cu2+/TCu=0.5)を
下記する表2における実施例2の項に示すように調整し
て電解液とし、電解槽へ給液する電解液温度を50〜5
2℃とした以外は、実施例1と同様に操作し、得られた
結果を表2に示す。
Example 2 The nickel concentration was kept constant at 180 g / liter, and the copper concentration (Cu 2+ /TCu=0.5) was adjusted as shown in the section of Example 2 in Table 2 below to obtain an electrolytic solution. The temperature of the electrolytic solution supplied to the electrolytic cell is 50 to 5
The same operation as in Example 1 was carried out except that the temperature was changed to 2 ° C., and the obtained results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】比較例2:実施例2と同様にニッケル濃度
を180g/リットル一定とし、銅濃度(Cu2+/T
Cu=0.5)を表2における比較例2の項に示すよう
に調整して電解液とし、電解条件を実施例2と同様に操
作し、得られた結果を表2に示す。表2に示す結果から
も銅濃度が30〜40g/リットルの範囲で良好な電流
効率が得られることがわかり、その上、槽内温度もさほ
ど上昇しないこともわかる。
Comparative Example 2: As in Example 2, the nickel concentration was kept constant at 180 g / liter and the copper concentration (Cu 2+ / T
(Cu = 0.5) was adjusted as shown in the section of Comparative Example 2 in Table 2 to obtain an electrolytic solution. The electrolysis conditions were operated in the same manner as in Example 2, and the obtained results are shown in Table 2. From the results shown in Table 2, it can be seen that good current efficiency can be obtained when the copper concentration is in the range of 30 to 40 g / liter, and that the temperature in the bath does not increase so much.

【0019】実施例3:銅濃度(Cu2+/TCu=
0.5)を35g/リットル一定とし、ニッケル濃度を
下記する表3における実施例3の項に示すように調整し
て電解液とし、電解条件を実施例2と同様にし、実施例
1と同様に操作して、得られた結果を表3に示す。
Example 3 Copper concentration (Cu 2+ / TCu =
0.5) was fixed at 35 g / liter, and the nickel concentration was adjusted as shown in the section of Example 3 in Table 3 below to obtain an electrolytic solution. The electrolytic conditions were the same as in Example 2, and the same as in Example 1. Table 3 shows the obtained results.

【0020】比較例3:銅濃度(Cu2+/TCu=
0.5)を35g/リットル一定とし、ニッケル濃度を
表3における比較例3の項に示すように調整して電解液
とし、電解条件を実施例2と同様にし、実施例1と同様
に操作して、得られた結果を表3に示す。
Comparative Example 3: Copper concentration (Cu 2+ / TCu =
0.5) was fixed at 35 g / liter, and the nickel concentration was adjusted as shown in the section of Comparative Example 3 in Table 3 to obtain an electrolytic solution. The electrolytic conditions were the same as in Example 2, and the operation was the same as in Example 1. Table 3 shows the obtained results.

【0021】[0021]

【表3】 [Table 3]

【0022】表3の結果から、ニッケル濃度が本発明の
範囲で良好な電流効率が得られていることがわかる。ま
た、200g/リットルの場合には、二価の銅イオンの
電流効率が低下し、ニッケルの析出が認められ、さらに
電解槽電圧と槽内温度の上昇も認められる。なお、80
g/リットルでも電流効率は良好であるが、ニッケル回
収全体としての水バランスが崩れ、電解液を系外に排出
しなければならないために、ニッケル製造コストが高く
なり、したがって本発明の目的にはそぐわない。
From the results in Table 3, it can be seen that good current efficiency was obtained when the nickel concentration was within the range of the present invention. In addition, in the case of 200 g / liter, the current efficiency of divalent copper ions is reduced, nickel deposition is recognized, and the electrolytic cell voltage and the temperature in the cell are also increased. Note that 80
Although the current efficiency is good even at g / liter, the water balance as a whole of the nickel recovery is lost, and the electrolyte must be discharged out of the system, so that the nickel production cost becomes high. Not fit.

【0023】実施例4:ニッケル濃度を180g/リッ
トルとし、銅濃度(Cu2+/TCu=0.5)を35
g/リットルとし、pHを下記する表4における実施例
4の項に示すように変化させて、電解条件を実施例2と
同様にし、実施例1と同様に操作して、得られた銅粉中
のニッケル品位を求めた。その結果を表4に示す。
EXAMPLE 4 The nickel concentration was 180 g / l and the copper concentration (Cu 2+ /TCu=0.5) was 35
g / liter, and the pH was changed as shown in Example 4 in Table 4 below, the electrolysis conditions were the same as in Example 2, and the operation was the same as in Example 1, to obtain the obtained copper powder. We asked for nickel grades. Table 4 shows the results.

【0024】比較例4:pHを2.2とした以外は、実
施例4と同様に操作し、得られた結果を同様に表4に示
す。
Comparative Example 4: The same operation as in Example 4 was carried out except that the pH was changed to 2.2, and the obtained results are also shown in Table 4.

【0025】[0025]

【表4】 表4の結果から、pHが2を超えると銅粉中のニッケル
品位が急激に上昇し、ニッケルの損失が増加することが
わかる。
[Table 4] From the results in Table 4, it can be seen that when the pH exceeds 2, the nickel quality in the copper powder sharply increases, and the loss of nickel increases.

【0026】[0026]

【発明の効果】本発明は、ニッケル濃度、銅濃度、pH
などを特定範囲として電解操作を行うようにしたので、
アノードボックスの隔膜の目詰まりによる電圧上昇、こ
れに付随する液温の上昇、配管の詰まりなどを防止で
き、高電流効率で脱銅電解操業の維持を可能にし得るな
ど顕著な効果が認められる。
According to the present invention, nickel concentration, copper concentration, pH
Since the electrolytic operation was performed with a specific range such as
A remarkable effect is observed such that voltage rise due to clogging of the diaphragm of the anode box, associated rise in liquid temperature, clogging of pipes, etc. can be prevented, and copper-free electrolytic operation can be maintained with high current efficiency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 進 愛媛県新居浜市西原町3−5−3 住友 金属鉱山別子事業所ニッケル工場内 (56)参考文献 特開 平5−295467(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Susumu Makino 3-5-3 Nishiharacho, Niihama-city, Ehime Prefecture Sumitomo Metal Mining Besshi Works Nickel Works (56) References JP-A-5-295467 (JP, A (58) Fields surveyed (Int. Cl. 7 , DB name) C25C 1/00-7/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅を含有するニッケルマットを銅とニッ
ケルとを含有する溶液中に懸濁し、塩素を吹き込んで有
価金属を浸出して得られた塩化物溶液を電解液として銅
を電解採取する方法において、電解槽に給液する電解液
のニッケル濃度を100〜180g/リットル、銅濃度
を30〜40g/リットルとし、pHを0〜2.0とす
ることを特徴とする塩化物浴からの脱銅電解法。
1. A copper-containing nickel matte is suspended in a solution containing copper and nickel, and chlorine is blown in to leaching valuable metals, and copper is electrolytically collected using a chloride solution obtained as an electrolytic solution. In the method, the electrolytic solution supplied to the electrolytic cell has a nickel concentration of 100 to 180 g / liter, a copper concentration of 30 to 40 g / liter, and a pH of 0 to 2.0. Copper removal electrolytic method.
【請求項2】 前記電解液の調整に塩化ニッケル溶液、
塩酸溶液、水のうち少なくとも1種類を用いることを特
徴とする請求項1記載の塩化物溶液からの脱銅電解法。
2. A nickel chloride solution for adjusting the electrolytic solution,
2. The method for removing copper from a chloride solution according to claim 1, wherein at least one of a hydrochloric acid solution and water is used.
JP30987895A 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath Expired - Lifetime JP3163612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30987895A JP3163612B2 (en) 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30987895A JP3163612B2 (en) 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath

Publications (2)

Publication Number Publication Date
JPH09125280A JPH09125280A (en) 1997-05-13
JP3163612B2 true JP3163612B2 (en) 2001-05-08

Family

ID=17998396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30987895A Expired - Lifetime JP3163612B2 (en) 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath

Country Status (1)

Country Link
JP (1) JP3163612B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297953B1 (en) * 2010-10-01 2013-08-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for electrowinning of cobalt
JP6332523B2 (en) * 2017-05-19 2018-05-30 住友金属鉱山株式会社 Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process

Also Published As

Publication number Publication date
JPH09125280A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
EP2650403A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
JP4298712B2 (en) Method for electrolytic purification of copper
JP2003247089A (en) Method of recovering indium
JP3427879B2 (en) Method for removing copper from copper-containing nickel chloride solution
US4256557A (en) Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes
JPS6327434B2 (en)
JP3163612B2 (en) Copper removal electrolysis from chloride bath
JPH10140257A (en) Wet refining method of nickel by chlorine leaching electrolytic extracting method
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
US4060464A (en) Method for extracting and recovering iron and nickel in metallic form
Yang et al. The separation and electrowinning of bismuth from a bismuth glance concentrate using a membrane cell
JP3243929B2 (en) Adjustment method of copper ion concentration of copper removal electrolytic solution
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
US4115222A (en) Method for electrolytic winning of lead
JP2570076B2 (en) Manufacturing method of high purity nickel
JP3350917B2 (en) Method for selective recovery of antimony and bismuth in electrolytic solution in copper electrorefining
JP2007290937A (en) Method of purifying nickel chloride aqueous solution
JP3875548B2 (en) Electrolyte purification method
JPS6363637B2 (en)
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
US3334034A (en) Electrolytic method for the recovery of nickel and cobalt
JP7067215B2 (en) Cobalt electrowinning method
JPH05295467A (en) Method for removing copper ion from nickel chloride solution
JP7022332B2 (en) Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

EXPY Cancellation because of completion of term