JPH09125280A - Electrolyzing method for removing copper from chloride bath - Google Patents

Electrolyzing method for removing copper from chloride bath

Info

Publication number
JPH09125280A
JPH09125280A JP7309878A JP30987895A JPH09125280A JP H09125280 A JPH09125280 A JP H09125280A JP 7309878 A JP7309878 A JP 7309878A JP 30987895 A JP30987895 A JP 30987895A JP H09125280 A JPH09125280 A JP H09125280A
Authority
JP
Japan
Prior art keywords
copper
nickel
concentration
solution
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7309878A
Other languages
Japanese (ja)
Other versions
JP3163612B2 (en
Inventor
Kenji Takeda
賢二 竹田
Shigeki Matsuki
茂喜 松木
Kazuyuki Takaishi
和幸 高石
Susumu Makino
進 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP30987895A priority Critical patent/JP3163612B2/en
Publication of JPH09125280A publication Critical patent/JPH09125280A/en
Application granted granted Critical
Publication of JP3163612B2 publication Critical patent/JP3163612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method eliminating a defect such as deterioration of a cathode current efficiency, rising of an electrolyzing voltage and rising of a temp. in an electrolytic cell and capable of stably removing a surplus copper as a copper powder at a low cost. SOLUTION: In an electrolytic extracting method of the copper using a chloride soln. obtained by suspending a nickel mat containing the copper in a soln. containing the copper and the nickel and blowing chlorine to leach a valuable metal such as nickel and copper as an electrolyte, a nickel concn. of the electrolyte supplied to the electrolytic cell is kept in 100-180g/l and a copper concn. is kept in 30-40g/l, and pH is kept in 0-2.0. A remarkable, effect such as preventing the rising of the electrolyzing voltage due to a clogging of a diaphragm of an anode box, the rising of a liq. temp. incidental to this clogging, the clogging of a piping, etc., and capable of maintaining a copper removal electrolyzing operation with a high current efficiency is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケルマットを
塩素で浸出して、得られた浸出液から高純度電気ニッケ
ルを高電流効率で製造することができる塩化物浴からの
脱銅電解法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decopperization process from a chloride bath, which is capable of leaching nickel matte with chlorine and producing high-purity electric nickel from the resulting leachate with high current efficiency. Is.

【0002】[0002]

【従来の技術】従来、ニッケルマットから電気ニッケル
を得る方法として、ニッケルマットを銅とニッケルとを
含む溶液中に懸濁させ、塩素を吹き込むことによってニ
ッケルマット中の有価金属を浸出し、得られた浸出液か
らニッケルを電解採取する方法がある。この方法では、
浸出液中に銅が濃縮されるために、何らかの形で銅を系
外に除去しなければならない。その方法の1つとして、
脱銅電解法がある。この脱銅電解法とは、たとえば、チ
タン製の板あるいは網の表面に貴金属酸化物をコーティ
ングして得たアノードをボックス内に設置し、チタン板
やステンレス板を陰極として用い、陰極表面に銅を銅粉
として析出させる方法である。
2. Description of the Related Art Conventionally, as a method for obtaining electric nickel from a nickel mat, a nickel mat is suspended in a solution containing copper and nickel, and chlorine is blown into the nickel mat to leach out valuable metals in the nickel mat. There is a method of electrolytically extracting nickel from the leachate. in this way,
Because of the copper concentration in the leachate, some form of copper must be removed out of the system. As one of the methods,
There is a copper removal electrolytic method. This decopperization electrolysis method is, for example, placing an anode obtained by coating the surface of a titanium plate or mesh with a noble metal oxide in a box, using a titanium plate or a stainless plate as the cathode, and using copper on the cathode surface. Is a method of precipitating as copper powder.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この脱
銅電解の操業方法において、脱銅電解工程へ給液する電
解液は、調整することなく給液するために、電解液中の
ニッケル濃度、銅濃度、pHなどは、成り行き任せとな
っているため、必ずしも良好な操業状態が維持されては
いないものである。すなわち、電解液中の銅濃度が40
g/リットル以上となると脱銅電解系内でCu2+の量
が増加して、これが陰極側で生成した銅粉と不均化反応
Cu+Cu2+=2Cuを起こし、銅粉を再溶解
してしまい、その結果、陰極電流効率が低下してしまう
という問題がある。
However, in this decoppering electrolysis operation method, the electrolytic solution to be supplied to the decoppering electrolysis step has a nickel concentration in the electrolytic solution and copper Since the concentration, pH, etc. are left to the discretion, good operating conditions are not always maintained. That is, the copper concentration in the electrolytic solution is 40
When it is more than g / liter, the amount of Cu 2+ increases in the decoppering electrolytic system, and this causes a disproportionation reaction with the copper powder generated on the cathode side Cu 0 + Cu 2+ = 2Cu + to redissolve the copper powder. As a result, there is a problem that the cathode current efficiency is reduced.

【0004】また、給液する電解液中のニッケル濃度や
銅濃度が高くなると、電解液の粘度が高くなり陽極に使
用している隔膜濾布が目詰まりし、これらにより電解電
圧が高くなる。この電解電圧の上昇は、電解液の温度を
80℃以上とし、塩化ビニル製のアノードボックスの変
形、濾布寿命の低下、その上、アノード表面のコーティ
ング材の剥離などを引き起こすという問題がある。
Further, when the nickel concentration or the copper concentration in the supplied electrolytic solution becomes high, the viscosity of the electrolytic solution becomes high and the diaphragm filter cloth used for the anode is clogged, and these increase the electrolysis voltage. This increase in electrolysis voltage raises the problem that the temperature of the electrolytic solution is set to 80 ° C. or higher and the anode box made of vinyl chloride is deformed, the filter cloth life is shortened, and the coating material on the anode surface is peeled off.

【0005】本発明は、陰極電流効率の低下と、電解電
圧の上昇、及び、電解槽内温度が上昇する欠点を解消
し、低コストで安定的に余剰銅を銅粉として除去し得る
方法を提供することを目的とするものである。
The present invention provides a method for eliminating excess copper as copper powder at low cost in a stable manner by eliminating the drawbacks of lowering the cathode current efficiency, raising the electrolysis voltage, and raising the temperature inside the electrolytic cell. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記問題
を解決し、前記目的を達成するために研究を重ねた結
果、電解液中のニッケル濃度、銅濃度、pHなどをそれ
ぞれ特定範囲とすることにより目的を達し得ることを見
出して本発明を完成するに至った。すなわち、本発明
は、銅を含有するニッケルマットを銅とニッケルとを含
有する溶液中に懸濁し、塩素を吹き込んでニッケル・銅
などの有価金属を浸出して得られた塩化物溶液を電解液
として銅を電解採取する方法において、電解槽に給液す
る電解液のニッケル濃度を100〜180g/リット
ル、銅濃度を30〜40g/リットルとし、pHを0〜
2.0とする塩化物浴からの脱銅電解法を特徴とするも
のであり、さらに前記電解液の調整に塩化ニッケル溶
液、塩酸溶液および/または水を用いる塩化物溶液から
の脱銅電解法である。
Means for Solving the Problems As a result of repeated studies for solving the above problems and achieving the above objects, the present inventors have found that the nickel concentration, copper concentration, pH, etc. in the electrolytic solution fall within specific ranges. The inventors have found that the objective can be achieved by the above, and have completed the present invention. That is, the present invention is a chloride solution obtained by suspending a nickel matte containing copper in a solution containing copper and nickel and leaching valuable metals such as nickel and copper by blowing chlorine to obtain an electrolyte solution. In the method for electrolytically extracting copper as described above, the nickel concentration of the electrolytic solution supplied to the electrolytic cell is 100 to 180 g / liter, the copper concentration is 30 to 40 g / liter, and the pH is 0 to 0.
The method is characterized by a decopperization electrolysis method from a chloride bath of 2.0, and a decopperization electrolysis method from a chloride solution using a nickel chloride solution, a hydrochloric acid solution and / or water for the preparation of the electrolytic solution. Is.

【0007】[0007]

【発明の実施の形態】本発明の方法において、電解槽に
給液する電解液のニッケル濃度を100〜180g/リ
ットルと限定したのは、この範囲よりニッケル濃度が高
くなるとニッケルが塩化ニッケルとして、また電解液中
のカルシウムがセッコウとして析出してくるようになる
からである。なお、セッコウ源としての硫酸根は、ニッ
ケルマットを塩素によって浸出する際に、硫黄が酸化さ
れて生ずるものである。このように塩やセッコウが析出
すると、配管の閉塞が生じたり、アノードボックスの隔
膜の目が詰まったりするようになる。すなわち、配管が
閉塞すれば操業を停止しなければならなくなり、またア
ノードボックスの隔膜の目が詰まると隔膜抵抗が上昇
し、電解電圧が上昇して、従来と同様な電解液温度上昇
による弊害が発生する。さらに、ニッケル濃度がこの範
囲より低くなると、次工程での、たとえば、ニッケル電
解採取工程で水バランスがとれなくなり、廃液として電
解液を系外に排出しなければならなくなり、製造コスト
を高くすることになるからである。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, the nickel concentration of the electrolytic solution to be supplied to the electrolytic cell is limited to 100 to 180 g / liter, because nickel becomes nickel chloride when the nickel concentration is higher than this range. In addition, calcium in the electrolytic solution begins to precipitate as gypsum. The sulfate radical as a gypsum source is generated by oxidizing sulfur when the nickel matte is leached with chlorine. When salt or gypsum is deposited in this way, the piping is clogged or the diaphragm of the anode box is clogged. That is, if the piping is blocked, the operation must be stopped, and if the diaphragm of the anode box is clogged, the diaphragm resistance increases, the electrolysis voltage increases, and the same adverse effects due to the rise in the electrolyte temperature as in the conventional case occur. Occur. Further, if the nickel concentration is lower than this range, the water balance cannot be maintained in the next step, for example, the nickel electrowinning step, and the electrolyte must be discharged out of the system as waste liquid, which increases the manufacturing cost. Because.

【0008】銅濃度が、40g/リットルを超えると、
電解槽内の二価の銅イオンが増加し過ぎ、陰極で生成し
た金属銅が不均化反応によって再溶解してしまい、電流
効率を低下させることになり、一方銅濃度が30g/リ
ットル未満であると、陰極上にニッケルが電着し始め、
系外に排出する銅粉中のニッケル含有量が上昇し、ニッ
ケルの損失が増加するからである。このために電解槽に
給液する電解液の銅濃度は前記範囲とする必要があるも
のである。
When the copper concentration exceeds 40 g / liter,
The amount of divalent copper ions in the electrolytic cell increases too much, and the metallic copper generated at the cathode is redissolved by the disproportionation reaction, which lowers the current efficiency, while the copper concentration is less than 30 g / liter. Then, nickel starts to be electrodeposited on the cathode,
This is because the nickel content in the copper powder discharged outside the system increases and the nickel loss increases. For this reason, the copper concentration of the electrolytic solution supplied to the electrolytic cell must be within the above range.

【0009】さらに、電解液のpHは、pHがあまり高
くなると、陰極へのニッケルの電着量が増加し、銅の回
収効率が低下するので、ニッケルの損失が増加すること
になり、場合によっては、電解液中の鉄が水酸化物とし
て析出し、アノードボックスの隔膜の閉塞が起こり、電
解電圧が上昇するようになる。逆に、pHが低すぎる
と、陰極で析出した金属銅が化学溶解されて、電解効率
が低下することになる。また、pHが0未満になると、
アノードボックスの隔膜やアノード表面のコーティング
の寿命がいちじるしく低下するものである。したがっ
て、pHは、0〜2.0とするものである。
Further, when the pH of the electrolytic solution is too high, the amount of nickel electrodeposited on the cathode increases and the efficiency of copper recovery decreases, resulting in an increase in nickel loss. As a result, iron in the electrolytic solution is deposited as hydroxide, the diaphragm of the anode box is blocked, and the electrolytic voltage rises. On the other hand, if the pH is too low, the metallic copper deposited at the cathode is chemically dissolved, resulting in a decrease in electrolysis efficiency. When the pH is less than 0,
The life of the diaphragm of the anode box and the coating of the anode surface is significantly reduced. Therefore, the pH is set to 0 to 2.0.

【0010】しかして、このような各範囲とするため
に、塩化ニッケル溶液、塩酸溶液、水のうち少なくとも
1種類を使用して調整するものである。
However, in order to obtain each of the above ranges, at least one kind of nickel chloride solution, hydrochloric acid solution and water is used for adjustment.

【0011】[0011]

【実施例】次に、本発明の実施例を述べる。Next, an embodiment of the present invention will be described.

【0012】実施例1:各濃度調整前の脱銅電解液組成
がNi200g/リットル、Cu60g/リットル(C
2+/TCu=0.5)の溶液を塩化ニッケル(Ni
60g/リットル、Cu<0.1g/リットル)溶液で
銅濃度を、下記する表1における実施例1の項に示すよ
うに調整して供給する電解液とした。電解条件は、電流
610A/カソード枚で給液量60ml/A・Hで行っ
た。得られた結果から下記数式1を用いてカソード電流
効率を求めた。これらの結果を表1に示す。
Example 1: The composition of the decoppering electrolyte solution before each concentration adjustment was Ni 200 g / liter, Cu 60 g / liter (C
A solution of u 2+ /TCu=0.5 is added to nickel chloride (Ni
(60 g / liter, Cu <0.1 g / liter) solution was used as an electrolytic solution in which the copper concentration was adjusted as shown in the item of Example 1 in Table 1 below. The electrolysis was carried out at a current of 610 A / cathode sheet and a supply amount of 60 ml / A · H. From the obtained results, the cathode current efficiency was calculated using the following formula 1. Table 1 shows the results.

【0013】[0013]

【式1】カソード電流効率(%)=(産出銅粉×銅品位
(%)/(Cu2+電気化学当量×通電時間×通電電
流)
[Formula 1] Cathode current efficiency (%) = (produced copper powder x copper grade (%) / (Cu 2 + electrochemical equivalent x energizing time x energizing current)

【0014】[0014]

【表1】 [Table 1]

【0015】比較例1:実施例1と同様にして銅濃度
を、表1における比較例1の項に示すように調整して電
解液とし、実施例1と同様に操作し、得られた結果を表
1に示す。表1に示す結果から、銅濃度が30〜40g
/リットルの範囲の場合に良好な結果が得られているこ
とがわかる。
Comparative Example 1: Similar to Example 1, the copper concentration was adjusted as shown in the section of Comparative Example 1 in Table 1 to prepare an electrolytic solution, the same operation as in Example 1 was carried out, and the result was obtained. Is shown in Table 1. From the results shown in Table 1, the copper concentration is 30-40 g
It can be seen that good results were obtained in the range of / liter.

【0016】実施例2:ニッケル濃度を180g/リッ
トル一定とし、銅濃度(Cu2+/TCu=0.5)を
下記する表2における実施例2の項に示すように調整し
て電解液とし、電解槽へ給液する電解液温度を50〜5
2℃とした以外は、実施例1と同様に操作し、得られた
結果を表2に示す。
Example 2 The nickel concentration was kept constant at 180 g / liter, and the copper concentration (Cu 2+ /TCu=0.5) was adjusted as shown in the section of Example 2 in Table 2 below to prepare an electrolytic solution. The temperature of the electrolytic solution supplied to the electrolytic cell is 50 to 5
Table 2 shows the results obtained by the same operation as in Example 1 except that the temperature was 2 ° C.

【0017】[0017]

【表2】 [Table 2]

【0018】比較例2:実施例2と同様にニッケル濃度
を180g/リットル一定とし、銅濃度(Cu2+/T
Cu=0.5)を表2における比較例2の項に示すよう
に調整して電解液とし、電解条件を実施例2と同様に操
作し、得られた結果を表2に示す。表2に示す結果から
も銅濃度が30〜40g/リットルの範囲で良好な電流
効率が得られることがわかり、その上、槽内温度もさほ
ど上昇しないこともわかる。
Comparative Example 2: As in Example 2, the nickel concentration was kept constant at 180 g / liter, and the copper concentration (Cu 2+ / T).
Cu = 0.5) was adjusted as shown in the section of Comparative Example 2 in Table 2 to prepare an electrolytic solution, the electrolysis conditions were the same as in Example 2, and the obtained results are shown in Table 2. It can be seen from the results shown in Table 2 that good current efficiency can be obtained when the copper concentration is in the range of 30 to 40 g / liter, and the temperature in the bath does not rise so much.

【0019】実施例3:銅濃度(Cu2+/TCu=
0.5)を35g/リットル一定とし、ニッケル濃度を
下記する表3における実施例3の項に示すように調整し
て電解液とし、電解条件を実施例2と同様にし、実施例
1と同様に操作して、得られた結果を表3に示す。
Example 3: Copper concentration (Cu 2+ / TCu =
0.5) was kept constant at 35 g / liter, the nickel concentration was adjusted as shown in the section of Example 3 in Table 3 below to prepare an electrolytic solution, and the electrolytic conditions were the same as in Example 2 and the same as in Example 1. The results obtained are shown in Table 3.

【0020】比較例3:銅濃度(Cu2+/TCu=
0.5)を35g/リットル一定とし、ニッケル濃度を
表3における比較例3の項に示すように調整して電解液
とし、電解条件を実施例2と同様にし、実施例1と同様
に操作して、得られた結果を表3に示す。
Comparative Example 3: Copper concentration (Cu 2+ / TCu =
0.5) was kept constant at 35 g / liter, the nickel concentration was adjusted as shown in the section of Comparative Example 3 in Table 3 to prepare an electrolytic solution, the electrolytic conditions were the same as in Example 2, and the same operation as in Example 1 was performed. The obtained results are shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3の結果から、ニッケル濃度が本発明の
範囲で良好な電流効率が得られていることがわかる。ま
た、200g/リットルの場合には、二価の銅イオンの
電流効率が低下し、ニッケルの析出が認められ、さらに
電解槽電圧と槽内温度の上昇も認められる。なお、80
g/リットルでも電流効率は良好であるが、ニッケル回
収全体としての水バランスが崩れ、電解液を系外に排出
しなければならないために、ニッケル製造コストが高く
なり、したがって本発明の目的にはそぐわない。
From the results shown in Table 3, it can be seen that good current efficiency was obtained when the nickel concentration was within the range of the present invention. Further, in the case of 200 g / liter, the current efficiency of divalent copper ions was lowered, nickel deposition was observed, and the electrolytic cell voltage and the temperature inside the cell were also increased. Note that 80
Although the current efficiency is good even at g / liter, the water balance as a whole of nickel recovery is lost and the electrolytic solution has to be discharged out of the system, resulting in a high nickel production cost. It doesn't fit.

【0023】実施例4:ニッケル濃度を180g/リッ
トルとし、銅濃度(Cu2+/TCu=0.5)を35
g/リットルとし、pHを下記する表4における実施例
4の項に示すように変化させて、電解条件を実施例2と
同様にし、実施例1と同様に操作して、得られた銅粉中
のニッケル品位を求めた。その結果を表4に示す。
Example 4: Nickel concentration was 180 g / liter and copper concentration (Cu 2+ /TCu=0.5) was 35.
g / l, the pH was changed as shown in the section of Example 4 in Table 4 below, the electrolysis conditions were the same as in Example 2, and the same operation as in Example 1 was carried out to obtain the copper powder. I asked for the nickel grade inside. Table 4 shows the results.

【0024】比較例4:pHを2.2とした以外は、実
施例4と同様に操作し、得られた結果を同様に表4に示
す。
Comparative Example 4: The same operation as in Example 4 was carried out except that the pH was changed to 2.2, and the obtained results are also shown in Table 4.

【0025】[0025]

【表4】 表4の結果から、pHが2を超えると銅粉中のニッケル
品位が急激に上昇し、ニッケルの損失が増加することが
わかる。
[Table 4] From the results in Table 4, it can be seen that when the pH exceeds 2, the nickel grade in the copper powder sharply rises and the nickel loss increases.

【0026】[0026]

【発明の効果】本発明は、ニッケル濃度、銅濃度、pH
などを特定範囲として電解操作を行うようにしたので、
アノードボックスの隔膜の目詰まりによる電圧上昇、こ
れに付随する液温の上昇、配管の詰まりなどを防止で
き、高電流効率で脱銅電解操業の維持を可能にし得るな
ど顕著な効果が認められる。
INDUSTRIAL APPLICABILITY According to the present invention, nickel concentration, copper concentration, pH
Since I tried to perform electrolysis operation with a specific range such as
It is possible to prevent voltage rise due to clogging of the diaphragm of the anode box, increase of liquid temperature accompanying this, prevention of clogging of pipes, etc., and it is possible to maintain the decoppering electrolytic operation with high current efficiency, which is a remarkable effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 進 愛媛県新居浜市西原町3−5−3 住友金 属鉱山別子事業所ニッケル工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Susumu Makino 3-5-3 Nishihara-cho, Niihama-shi, Ehime Sumitomo Kinzoku Mines Besshi Works Nickel Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅を含有するニッケルマットを銅とニッ
ケルとを含有する溶液中に懸濁し、塩素を吹き込んで有
価金属を浸出して得られた塩化物溶液を電解液として銅
を電解採取する方法において、電解槽に給液する電解液
のニッケル濃度を100〜180g/リットル、銅濃度
を30〜40g/リットルとし、pHを0〜2.0とす
ることを特徴とする塩化物浴からの脱銅電解法。
1. A copper-containing nickel matte is suspended in a solution containing copper and nickel, and chlorine is blown into the solution to leach out a valuable metal to obtain a chloride solution. In the method, a nickel bath having a nickel concentration of 100 to 180 g / liter, a copper concentration of 30 to 40 g / liter, and a pH of 0 to 2.0 is used. Copper removal electrolytic method.
【請求項2】 前記電解液の調整に塩化ニッケル溶液、
塩酸溶液、水のうち少なくとも1種類を用いることを特
徴とする請求項1記載の塩化物溶液からの脱銅電解法。
2. A nickel chloride solution for adjusting the electrolytic solution,
At least one kind of hydrochloric acid solution and water is used, and the decopperization electrolysis method from a chloride solution according to claim 1.
JP30987895A 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath Expired - Lifetime JP3163612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30987895A JP3163612B2 (en) 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30987895A JP3163612B2 (en) 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath

Publications (2)

Publication Number Publication Date
JPH09125280A true JPH09125280A (en) 1997-05-13
JP3163612B2 JP3163612B2 (en) 2001-05-08

Family

ID=17998396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30987895A Expired - Lifetime JP3163612B2 (en) 1995-11-02 1995-11-02 Copper removal electrolysis from chloride bath

Country Status (1)

Country Link
JP (1) JP3163612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297953B1 (en) * 2010-10-01 2013-08-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for electrowinning of cobalt
JP2017155342A (en) * 2017-05-19 2017-09-07 住友金属鉱山株式会社 Method for adjusting copper concentration of chlorine leachate in nickel chlorine leaching process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297953B1 (en) * 2010-10-01 2013-08-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for electrowinning of cobalt
JP2017155342A (en) * 2017-05-19 2017-09-07 住友金属鉱山株式会社 Method for adjusting copper concentration of chlorine leachate in nickel chlorine leaching process

Also Published As

Publication number Publication date
JP3163612B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
EP2650403A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
JP3913725B2 (en) High purity electrolytic copper and manufacturing method thereof
JPS6327434B2 (en)
US3983018A (en) Purification of nickel electrolyte by electrolytic oxidation
Jacobs et al. Improving cathode morphology at a copper electrowinning plant by optimizing Magnafloc 333 and chloride concentrations
JP2008266766A (en) Method for producing sheet-form electrolytic copper from halide solution
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
JP3163612B2 (en) Copper removal electrolysis from chloride bath
JP5471735B2 (en) Method for removing tin and thallium and method for purifying indium
JP2009203487A (en) Metal electrowinning method by diaphragm electrolysis
AU2007202071A1 (en) Method for producing sheet-form electrolytic copper from halide solution
US7658833B2 (en) Method for copper electrowinning in hydrochloric solution
JP2570076B2 (en) Manufacturing method of high purity nickel
JPH07300691A (en) Method for adjusting copper ion concentration in electrolyte for removing copper
US4115222A (en) Method for electrolytic winning of lead
JPH11229172A (en) Method and apparatus for producing high-purity copper
JPH0222489A (en) Method for electrolytically refining high purity copper
JPH05295467A (en) Method for removing copper ion from nickel chloride solution
JPS6363637B2 (en)
JP7022332B2 (en) Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment
JP7067215B2 (en) Cobalt electrowinning method
CN106480473B (en) A kind of method of electrolytic acid copper chloride
JPH0881797A (en) Improved method for electrolytic sampling of heavy metal
Dreisinger et al. Electrochemical Refining
JP2000054040A (en) Impurities removing method for nickel solution

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

EXPY Cancellation because of completion of term