JP2007224400A - Method of recovering electrolytic iron from aqueous ferric chloride solution - Google Patents

Method of recovering electrolytic iron from aqueous ferric chloride solution Download PDF

Info

Publication number
JP2007224400A
JP2007224400A JP2006049920A JP2006049920A JP2007224400A JP 2007224400 A JP2007224400 A JP 2007224400A JP 2006049920 A JP2006049920 A JP 2006049920A JP 2006049920 A JP2006049920 A JP 2006049920A JP 2007224400 A JP2007224400 A JP 2007224400A
Authority
JP
Japan
Prior art keywords
iron
copper
solution
chloride solution
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049920A
Other languages
Japanese (ja)
Inventor
Noriyuki Nagase
範幸 長瀬
Kenji Takeda
賢二 竹田
Koji Ando
孝治 安藤
Takashi Kudo
敬司 工藤
Masaki Imamura
正樹 今村
Original Assignee
Sumitomo Metal Mining Co Ltd
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, 住友金属鉱山株式会社 filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006049920A priority Critical patent/JP2007224400A/en
Publication of JP2007224400A publication Critical patent/JP2007224400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of recovering electrolytic iron through a wet copper refining method comprising a step of subjecting a copper raw material containing a copper sulfide mineral to chlorine leaching, a step of reducing a leachate, a step of obtaining an aqueous ferric chloride solution by subjecting the reduced leachate to solvent extraction and separating and recovering copper, and a step of electrowinning iron from the aqueous ferric chloride solution, wherein an electrodeposit with a smooth surface can be obtained in the step of electrowinning iron from the aqueous ferric chloride solution. <P>SOLUTION: In the step of electrowinning iron from the aqueous ferric chloride solution, a sulfurizing agent is added to the aqueous ferric chloride solution to control its oxidation-reduction potential (Ag/AgCl electrode as reference) to from -400 to -50 mV, and a pH adjuster is added to adjust its pH to 3.0-4.5 to precipitate and separate lead contained in the aqueous ferric chloride solution as a sulfide before performing the electrowinning of iron. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塩化鉄水溶液から電解鉄の回収方法に関し、さらに詳しくは、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、前記塩化鉄水溶液から鉄を電解採取する工程において、平滑な表面状態の電着物を得ることができる電解鉄の回収方法に関する。   The present invention relates to a method for recovering electrolytic iron from an aqueous iron chloride solution. More specifically, the present invention relates to a step of leaching a copper raw material containing a copper sulfide mineral, a step of reducing a leaching product solution, and a step of subjecting the reduction product solution to solvent extraction. In a wet copper smelting method including a step of separating and recovering iron to obtain an aqueous iron chloride solution, and a step of electrolytically collecting iron from the aqueous iron chloride solution, in the step of electrolytically collecting iron from the iron chloride aqueous solution, The present invention relates to a method for recovering electrolytic iron from which a kimono can be obtained.
従来、黄銅鉱を始めとする硫化銅鉱物を含む硫化銅鉱の製錬方法としては、硫化銅鉱物を浮遊選鉱法で濃集した銅精鉱を用いる乾式熔錬法が行われていた。乾式溶錬法による銅製錬は、銅硫化物精鉱を溶錬炉、転炉、精製炉等の一連の乾式製錬の後、得られた粗銅を電解精製する方法であり、大量の鉱石を効率よく処理し銅精鉱中の鉄を溶錬炉、転炉等のスラグ成分として固定化するのに適した方法であるが、その反面、小型設備では反応効率が悪いので、大型設備のために膨大な設備投資が必要であること、また生成する大量のSOガスの回収が不可欠であること等の課題がある。 Conventionally, as a smelting method of copper sulfide ores including copper sulfide minerals including chalcopyrite, a dry smelting method using copper concentrate obtained by concentrating copper sulfide minerals by a flotation method has been performed. Copper smelting by dry smelting is a method in which copper sulfide concentrate is subjected to a series of dry smelting processes such as a smelting furnace, converter and refining furnace, and then the resulting crude copper is electrolytically purified. It is a suitable method for efficiently treating and fixing iron in copper concentrate as a slag component for smelting furnaces, converters, etc. In addition, there is a problem that a huge capital investment is required and that it is essential to recover a large amount of SO 2 gas to be generated.
このような状況下、近年、湿式法による製錬方法が研究されている。従来、湿式法による銅製錬としては、酸化銅鉱物を含有する銅鉱石を用いて、積み上げた鉱石に硫酸を散布して銅を浸出し、該浸出生成液の銅濃度を上げるために溶媒抽出法で処理した後、電解採取する方法が工業的に広く用いられている。しかしながら、銅鉱石の大部分を占める硫化鉱に前記方法を適用した場合、含有鉱物として最も賦存量の多い黄銅鉱では、硫酸による浸出速度が遅く、かつ銅浸出率が低い結果となるという問題があった。   Under such circumstances, in recent years, a smelting method using a wet method has been studied. Conventionally, as copper smelting by wet method, using copper ore containing copper oxide minerals, sulfuric acid is sprayed on the piled ore to leaching copper, and solvent extraction method to increase the copper concentration of the leaching product liquid After the treatment with, the method of electrolytic collection is widely used industrially. However, when the above method is applied to sulfide ore that occupies most of the copper ore, chalcopyrite with the most abundant abundance as a contained mineral has a problem that the leaching rate due to sulfuric acid is slow and the copper leaching rate is low. there were.
近年、この対策として、前記硫化銅鉱の湿式製錬法において、塩素ガス又は塩化物などのハロゲン化物溶液にて銅、鉄等を浸出して、得られた浸出生成液から銅を一価銅電解で回収し、鉄等の不純物元素を中和沈殿する方法が注目されている(例えば、特許文献1参照。)。このような湿式製錬法では、一般に、浸出工程において、銅を高抽出率で得るため酸化還元電位を高い状態に保持して行われる。この条件下では、硫化銅鉱に含まれる鉄も銅とともに溶出される。しかしながら、鉄は中和沈殿として回収され廃棄物処理され、有効利用がなされていなかった。   In recent years, as a countermeasure for this, in the above-mentioned copper sulfide ore hydrometallurgy, copper, iron, etc. are leached with a halide solution such as chlorine gas or chloride, and the copper is monovalently electrolyzed from the obtained leaching product. Attention has been paid to a method of neutralizing and precipitating impurity elements such as iron (see, for example, Patent Document 1). In such a wet smelting method, in general, in the leaching step, copper is obtained with a high extraction rate, and the oxidation-reduction potential is kept high. Under this condition, iron contained in the copper sulfide ore is also eluted together with copper. However, iron was recovered as a neutralized precipitate and treated as waste, and was not effectively used.
この解決策として、硫化銅鉱の湿式製錬法において、黄銅鉱を主鉱物とする硫化銅鉱の塩素浸出して得られる浸出生成液から、鉄を電解鉄として回収する方法(例えば、特許文献2参照。)が開示されている。この方法は、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し、銅を濃縮した逆抽出生成液と鉄を濃縮した抽出残液(塩化鉄水溶液)とを得る工程、該逆抽出生成液中の銅イオンを電解採取する工程、該抽出残液から有価金属を分離回収する工程、及び処理後の抽出残液から鉄を回収する工程を含む一連のプロセスにより、銅とともに鉄及び貴金属等を効率よく分離回収する方法であるが、ここで鉄は電解鉄として電解採取法により回収され、有効に利用されること示され鉄の有効利用からも効果的な方法である。   As a solution to this, a method of recovering iron as electrolytic iron from a leaching product obtained by chlorine leaching of copper sulfide ore containing chalcopyrite as a main mineral in a hydrometallurgical method of copper sulfide ore (see, for example, Patent Document 2) .) Is disclosed. This method includes a step of leaching a copper raw material containing copper sulfide mineral, a step of reducing a leaching product solution, a step of subjecting the reduction product solution to solvent extraction, and a back extraction product solution enriched with copper and an extraction residue enriched with iron. A process of obtaining a liquid (iron chloride aqueous solution), a process of electrolytically collecting copper ions in the back extraction product liquid, a process of separating and recovering valuable metals from the extraction residual liquid, and recovering iron from the extraction residual liquid after processing This is a method for efficiently separating and recovering iron and precious metals together with copper through a series of processes including the step of performing iron, but here it is shown that iron is recovered by electrolytic collection as electrolytic iron and effectively used. It is also an effective method for effective use.
しかしながら、上記硫化銅鉱の湿式製錬法において得られる電解鉄の電着状態は、湿式製錬法の原料、各工程の条件等により不安定であり、場合により、電着表面に割れ、隆起部の生成、不純物の析出、応力剥がれ等が発生し、これらの欠陥のない平滑で表面状態の優れた電着物を安定的に得ることは難しかった。このため、低コストで安定的に電解鉄を回収することができないという課題があった。   However, the electrodeposited state of electrolytic iron obtained in the above-mentioned copper sulfide ore hydrometallurgical process is unstable due to the raw material of the hydrometallurgical process, the conditions of each process, etc. Formation of impurities, precipitation of impurities, stress peeling, etc. occurred, and it was difficult to stably obtain a smooth and excellent electrodeposit having no surface defects. For this reason, the subject that electrolytic iron could not be collect | recovered stably at low cost occurred.
以上の状況から、硫化銅鉱物を含む銅原料の塩素浸出を含む一連の工程からなる湿式製錬法において得られる塩化鉄水溶液から、鉄の電着状態を改善して、表面状態に優れた電着物を得ることができる電解鉄の回収方法が求められていた。   From the above situation, the iron electrodeposition state was improved from the aqueous iron chloride solution obtained in the hydrometallurgical process consisting of a series of processes including chlorine leaching of the copper raw material containing copper sulfide mineral, and the surface condition was improved. There has been a demand for a method of recovering electrolytic iron that can provide a kimono.
特許第2857930号公報(第1〜4頁)Japanese Patent No. 2857930 (pages 1 to 4) 特開2005−60813号公報(第1〜3頁)JP 2005-60813 A (pages 1 to 3)
本発明の目的は、上記の従来技術の問題点に鑑み、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し、銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、前記塩化鉄水溶液から鉄を電解採取する工程において、平滑な表面状態の電着物を得ることができる電解鉄の回収方法を提供することにある。   The object of the present invention is to separate the copper by subjecting the copper raw material containing copper sulfide minerals to chlorine leaching, the step of reducing the leaching product solution, and subjecting the reduction product solution to solvent extraction in view of the above-mentioned problems of the prior art. In a wet copper smelting method including a step of recovering and obtaining an iron chloride aqueous solution and a step of electrolytically collecting iron from the iron chloride aqueous solution, in the step of electrolytically collecting iron from the iron chloride aqueous solution, an electrodeposit having a smooth surface state is obtained. An object of the present invention is to provide a method for recovering electrolytic iron that can be obtained.
本発明者らは、上記目的を達成するために、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し、銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、前記塩化鉄水溶液から平滑な表面状態の電着物を得るため、電解鉄の回収方法について、鋭意研究を重ねた結果、塩化鉄水溶液から鉄を電解採取する工程において、まず、塩化鉄水溶液から特定の条件で微量の鉛を硫化物として沈殿分離した後に鉄を電解採取することにより、平滑な表面状態の電着物を得ることができることを見出し、本発明を完成した。   In order to achieve the above object, the inventors of the present invention include a step of leaching a copper raw material containing a copper sulfide mineral, a step of reducing a leaching product solution, a solvent extraction of the reduction product solution, and separating and recovering copper. In the wet copper smelting method including the step of obtaining an iron chloride aqueous solution and the step of electrolytically collecting iron from the iron chloride aqueous solution, in order to obtain a smooth surface state electrodeposit from the iron chloride aqueous solution, As a result of extensive research, in the process of electrolytically collecting iron from an aqueous iron chloride solution, first, a small amount of lead is precipitated and separated as a sulfide from the aqueous iron chloride solution under specific conditions, and then the iron is electrolytically collected. The inventors have found that an electrodeposit having a surface state can be obtained, and completed the present invention.
すなわち、本発明の第1の発明によれば、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、
前記塩化鉄水溶液から鉄を電解採取する工程の際に、該塩化鉄水溶液に硫化剤を添加し酸化還元電位(Ag/AgCl電極規準)を−400〜−50mVに制御しながら、pH調整剤を添加しpHを3.0〜4.5に調整することにより、該塩化鉄水溶液中に含まれる鉛を硫化物として沈殿分離した後、鉄の電解採取を行なうことを特徴とする電解鉄の回収方法が提供される。
That is, according to the first invention of the present invention, a step of leaching a copper raw material containing a copper sulfide mineral, a step of reducing a leaching product solution, and subjecting the reduction product solution to solvent extraction to separate and recover copper and chlorinate In a wet copper smelting method including a step of obtaining an aqueous iron solution and a step of electrolytically collecting iron from the aqueous iron chloride solution,
In the step of electrolytically collecting iron from the aqueous iron chloride solution, a pH adjusting agent is added while controlling the oxidation-reduction potential (Ag / AgCl electrode standard) to −400 to −50 mV by adding a sulfurizing agent to the aqueous iron chloride solution. Addition and adjustment of pH to 3.0 to 4.5 to precipitate and separate lead contained in the aqueous iron chloride solution as a sulfide, and then perform electrolytic collection of iron A method is provided.
また、本発明の第2の発明によれば、第1の発明において、前記硫化剤は、HSガス、NaSH、又はNaSから選ばれる少なくとも1種であることを特徴とする電解鉄の回収方法が提供される。 According to a second invention of the present invention, in the first invention, the sulfurizing agent is at least one selected from H 2 S gas, NaSH, or Na 2 S. A recovery method is provided.
また、本発明の第3の発明によれば、第1の発明において、前記硫化剤は、HSガス、NaSH、又はNaSから選ばれる少なくとも1種であることを特徴とする電解鉄の回収方法が提供される。 According to a third invention of the present invention, in the first invention, the sulfurizing agent is at least one selected from H 2 S gas, NaSH, or Na 2 S. A recovery method is provided.
また、本発明の第4の発明によれば、第1の発明において、塩化鉄水溶液中の鉛濃度が0.01g/L以下になるように鉛を沈殿分離することを特徴とする電解鉄の回収方法が提供される。   According to a fourth aspect of the present invention, there is provided the electrolytic iron according to the first aspect, wherein the lead is precipitated and separated so that the lead concentration in the aqueous iron chloride solution is 0.01 g / L or less. A collection method is provided.
また、本発明の第5の発明によれば、第1の発明において、前記電解採取の際に、隔膜電解法を用いることを特徴とする電解鉄の回収方法が提供される。   According to a fifth aspect of the present invention, there is provided an electrolytic iron recovery method according to the first aspect, wherein a diaphragm electrolysis method is used for the electrowinning.
本発明の塩化鉄水溶液から電解鉄の回収方法は、硫化銅鉱物を含む銅原料の塩素浸出を含む一連の工程からなる湿式製錬法において得られる塩化鉄水溶液中の鉛を硫化物として沈殿分離した後に鉄を電解採取することにより、表面状態に優れた電着物を得ることができるので、その工業的価値は極めて大きい。これにより、低コストで高効率な電解鉄の回収方法が得られる。   The method for recovering electrolytic iron from an aqueous iron chloride solution according to the present invention includes precipitation separation of lead in an aqueous iron chloride solution obtained as a sulfide in a hydrometallurgical process comprising a series of steps including chlorine leaching of a copper raw material containing a copper sulfide mineral. Then, by electrolytically collecting iron, an electrodeposit having an excellent surface state can be obtained, and its industrial value is extremely high. Thereby, a low-cost and high-efficiency electrolytic iron recovery method can be obtained.
以下、本発明の塩化鉄水溶液から電解鉄の回収方法を詳細に説明する。
本発明の塩化鉄水溶液から電解鉄の回収方法は、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、前記塩化鉄水溶液から鉄を電解採取する工程の際に、該塩化鉄水溶液に硫化剤を添加し酸化還元電位(Ag/AgCl電極規準)を−400〜−50mVに制御しながら、pH調整剤を添加しpHを3.0〜4.5に調整することにより、該塩化鉄水溶液中に含まれる鉛を硫化物として沈殿分離した後、鉄の電解採取を行なうことを特徴とする。
Hereinafter, the method for recovering electrolytic iron from the aqueous iron chloride solution of the present invention will be described in detail.
The method for recovering electrolytic iron from the aqueous iron chloride solution of the present invention includes a step of leaching a copper raw material containing a copper sulfide mineral, a step of reducing the leaching product solution, and subjecting the reduction product solution to solvent extraction to separate and recover copper. In a wet copper smelting method including a step of obtaining an iron chloride aqueous solution and a step of electrolytically collecting iron from the iron chloride aqueous solution, a sulfurizing agent is added to the iron chloride aqueous solution during the step of electrolytically collecting iron from the iron chloride aqueous solution. Included in the aqueous iron chloride solution by adjusting the pH to 3.0 to 4.5 by adding a pH adjuster while controlling the redox potential (Ag / AgCl electrode standard) to -400 to -50 mV It is characterized in that the lead is collected by precipitation as a sulfide and then iron is electrolyzed.
上記湿式銅製錬法としては、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し、銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含むものであり、例えば、以下の工程により行われる。。   As the above-mentioned wet copper smelting method, a step of leaching a copper raw material containing a copper sulfide mineral, a step of reducing a leaching product solution, a solvent extraction of the reduction product solution, and separating and recovering copper to obtain an iron chloride aqueous solution It includes a process and a process of electrolytically collecting iron from an aqueous iron chloride solution. For example, the following process is performed. .
硫化銅鉱物を含む銅原料は、最初に塩素浸出工程に付され、銅、鉄等を含有する浸出生成液と硫黄含有残渣とに分離される。浸出生成液は、還元工程に付され、浸出生成液中の銅イオンは還元され、第1銅イオンを含む還元生成液が得られる。ここで、還元剤として硫化銅鉱物を含む銅原料を用いる場合は、この残渣は塩素浸出工程へ循環される。ついで、還元生成液は、溶媒抽出工程に付され、銅を分離回収して塩化鉄水溶液を得る。ここで、例えば、まず、溶媒抽出及び逆抽出により第1銅イオンを含有する逆抽出生成液と抽出残液とに分離される。逆抽出生成液は、銅電解採取工程に付され、銅は電着銅として回収される。また、製錬処理の原料の種類にもよるが、通常硫化銅鉱物を含む銅鉱石は、銅とほぼ同量に近い鉄を含有しており、前記溶媒抽出での抽出残液は塩化鉄水溶液であり、多量の鉄イオンが含まれる。最後に、塩化鉄水溶液は、鉄を電解採取する工程に付され、塩化鉄水溶液中の鉄は電解鉄として回収される。   A copper raw material containing a copper sulfide mineral is first subjected to a chlorine leaching process, and separated into a leaching product liquid containing copper, iron and the like and a sulfur-containing residue. The leaching product liquid is subjected to a reduction step, and the copper ions in the leaching product liquid are reduced to obtain a reduction product liquid containing first copper ions. Here, when using the copper raw material containing a copper sulfide mineral as a reducing agent, this residue is circulated to the chlorine leaching step. Next, the reduction product solution is subjected to a solvent extraction step, and copper is separated and recovered to obtain an iron chloride aqueous solution. Here, for example, first, the back extraction product liquid containing cuprous ions and the extraction residual liquid are separated by solvent extraction and back extraction. The back extraction product liquid is subjected to a copper electrowinning process, and copper is recovered as electrodeposited copper. Moreover, although depending on the type of raw material of the smelting treatment, the copper ore containing the copper sulfide mineral usually contains iron that is almost the same amount as copper, and the extraction residue in the solvent extraction is an aqueous iron chloride solution. And contains a large amount of iron ions. Finally, the aqueous iron chloride solution is subjected to a step of electrolytically collecting iron, and the iron in the aqueous iron chloride solution is recovered as electrolytic iron.
ここで、硫化銅鉱物を含む銅原料としては、黄銅鉱(CuFeS)、輝銅鉱(CuS)、斑銅鉱(CuFeS)などの硫化銅鉱物を含む銅鉱石、前記銅鉱石から浮遊選鉱法等によって硫化銅鉱物を濃集した銅精鉱、硫化銅鉱物を含み、酸化銅鉱物、ヒ化銅鉱物、アンチモン化銅鉱物など各種含銅鉱物を含む鉱石及びその銅精鉱、並びに銅精鉱などから乾式溶錬法で得られる銅マットおよび高品位銅マットが含まれ、さらには、これらと同時処理される硫化物状、酸化物状、金属状の各種含銅原料がある場合も含まれる。 Here, as a copper raw material containing a copper sulfide mineral, the copper ore containing a copper sulfide mineral such as chalcopyrite (CuFeS 2 ), chalcocite (Cu 2 S), and chalcopyrite (Cu 5 FeS 4 ), from the copper ore Copper concentrates concentrated with copper sulfide minerals by flotation, etc., ores containing copper sulfide minerals and various copper-containing minerals such as copper oxide minerals, copper arsenide minerals, copper antimonide minerals, and copper concentrates thereof, and Including copper mats and high-grade copper mats obtained by dry smelting method from copper concentrate, etc., and when there are various copper-containing raw materials of sulfide, oxide and metal that are processed simultaneously with these Is also included.
上記塩素浸出工程としては、上記硫化銅鉱物を含む銅原料を塩化銅、塩化鉄などを含む酸性塩化物水溶液中に懸濁させ、主に硫化銅鉱物を塩素で浸出して銅、鉄等を溶出させて、銅イオンと鉄イオンを含む浸出生成液と元素状硫黄を含む残渣とを形成する工程である。上記工程における塩素浸出液の酸化還元電位(銀/塩化銀電極規準)は、特に限定されるものではなく、好ましくは500〜600mV、より好ましくは500〜520mVで行われる。すなわち、ORPが500mV未満では、浸出の酸化力が弱いため、銅の浸出率が低い。一方、600mVを超えて浸出すると、硫黄の酸化率が著しく増加する。   In the chlorine leaching step, the copper raw material containing the copper sulfide mineral is suspended in an acidic chloride aqueous solution containing copper chloride, iron chloride, etc., and the copper sulfide mineral is mainly leached with chlorine to remove copper, iron, etc. It is a step of elution to form a leaching product liquid containing copper ions and iron ions and a residue containing elemental sulfur. The oxidation-reduction potential (silver / silver chloride electrode standard) of the chlorine leaching solution in the above step is not particularly limited, and is preferably 500 to 600 mV, more preferably 500 to 520 mV. That is, when the ORP is less than 500 mV, the leaching oxidizing power is weak, so the copper leaching rate is low. On the other hand, when leaching exceeds 600 mV, the oxidation rate of sulfur increases remarkably.
上記還元工程としては、上記塩素浸出工程で得られる銅イオン、鉄イオン等を含有する浸出生成液に還元剤を添加して銅イオンの還元処理を行い、浸出生成液に含有される第2銅イオンを第1銅イオンに還元し、同時に第2鉄イオンも第1鉄イオンに還元する工程である。これによって得られる第1銅イオンが高比率で存在する還元生成液から、次の溶媒抽出する工程において、銅イオンのみを選択的に有機溶媒に抽出させることができる。   As said reduction | restoration process, the reducing agent is added to the leaching production | generation liquid containing the copper ion, iron ion, etc. which are obtained in the said chlorine leaching process, a copper ion reduction process is carried out, and the 2nd copper contained in the leaching production | generation liquid In this step, ions are reduced to cuprous ions, and at the same time, ferric ions are reduced to ferrous ions. Only copper ions can be selectively extracted into an organic solvent in the next solvent extraction step from the reduction product liquid in which the first copper ions are present in a high ratio.
上記工程において、還元生成液の酸化還元電位(銀/塩化銀電極規準)は、特に限定されるものではなく、銅と鉄を含む塩化物水溶液中の第2銅イオンを第1銅イオンへ還元することができる電位に調整されるが、250〜400mVで行われる。すなわち、酸化還元電位(銀/塩化銀電極規準)が400mVを超えると、銅イオンの一部は2価となり、さらにこの第2銅イオンが酸化剤として働いて鉄イオンも一部3価の状態となるので、第1銅イオンが高比率で存在する還元生成液が得られない。一方、酸化還元電位(銀/塩化銀電極規準)が250mV未満であると、場合によって銅イオンが金属状態まで還元されて沈殿することがある。   In the above step, the oxidation-reduction potential (silver / silver chloride electrode standard) of the reduction product is not particularly limited, and cupric ions in a chloride aqueous solution containing copper and iron are reduced to cuprous ions. Although it is adjusted to a potential that can be performed, it is performed at 250 to 400 mV. That is, when the oxidation-reduction potential (silver / silver chloride electrode standard) exceeds 400 mV, a part of the copper ions becomes divalent, and the copper ions also act as an oxidant and the iron ions are also partly trivalent. Therefore, a reduction product liquid in which cuprous ions are present in a high ratio cannot be obtained. On the other hand, if the oxidation-reduction potential (silver / silver chloride electrode standard) is less than 250 mV, copper ions may be reduced to a metallic state and precipitate in some cases.
上記溶媒抽出工程で、銅のほとんどを分離した塩化鉄の溶液に鉄粉末を加え、銅を置換反応して得られる塩化鉄水溶液としては、銅原料、浸出工程等の湿式銅製錬法の諸条件によりことなるが、通常、鉄濃度50〜200g/L、銅濃度0.001g/L以下、鉛濃度0.001〜0.5g/L、亜鉛濃度0.2〜5g/Lである。   In the above solvent extraction step, iron powder is added to the iron chloride solution from which most of the copper has been separated, and the iron chloride aqueous solution obtained by substitution reaction of copper includes various conditions of the wet copper smelting method such as copper raw material and leaching step. Usually, the iron concentration is 50 to 200 g / L, the copper concentration is 0.001 g / L or less, the lead concentration is 0.001 to 0.5 g / L, and the zinc concentration is 0.2 to 5 g / L.
本発明の方法において、上記湿式銅製錬法から得られる塩化鉄水溶液から鉄を電解採取する工程の際に、該塩化鉄水溶液に硫化剤を添加し酸化還元電位(Ag/AgCl電極規準)を−400〜−50mVに制御しながら、pH調整剤を添加しpHを3.0〜4.5に調整することにより、該塩化鉄水溶液中に含まれる鉛を硫化物として沈殿分離した後、鉄の電解採取を行なうことが重要である。これによって、塩化鉄水溶液中の鉛濃度を好ましくは0.01g/L以下、より好ましくは0.005g/L以下、特に好ましくは0.002g/L以下になるように精製することができ、さらに精製後の塩化鉄水溶液から鉄を電解採取したとき、電着時の応力を抑え、平滑な表面状態の電着物、すなわち電着表面に隆起部の生成、不純物の析出、及び応力剥がれの発生がなく、平滑で表面状態に優れた電着物を得ることができる。   In the method of the present invention, in the step of electrolytically collecting iron from the iron chloride aqueous solution obtained from the above-described wet copper smelting method, a sulfurizing agent is added to the iron chloride aqueous solution, and the redox potential (Ag / AgCl electrode standard) is- By controlling the pH to 400 to -50 mV and adding pH adjuster to adjust the pH to 3.0 to 4.5, the lead contained in the iron chloride aqueous solution is precipitated and separated as a sulfide. It is important to perform electrowinning. Thereby, the lead concentration in the iron chloride aqueous solution can be purified to be preferably 0.01 g / L or less, more preferably 0.005 g / L or less, and particularly preferably 0.002 g / L or less. When iron is electrolyzed from a purified iron chloride aqueous solution, the stress during electrodeposition is suppressed, and a smooth surface electrodeposit, that is, formation of bumps on the electrodeposited surface, precipitation of impurities, and occurrence of stress peeling Therefore, an electrodeposit having a smooth and excellent surface condition can be obtained.
すなわち、塩化鉄水溶液中に0.01g/Lを超える鉛が存在すると、電解採取において、鉛も鉄と共析し、さらにカソード上の鉄の電着状態を悪化させ電着表面に割れ、隆起部の生成、不純物の析出、応力剥がれ等の欠陥を発生させる。なお、塩化鉄水溶液中の鉛濃度が0.01g/L未満においても、その鉛濃度により電着鉄中の鉛品位が上昇するのに伴ない電着表面に少々の割れが発生する場合があるが、隆起部の生成、不純物の析出、応力剥がれは見られず、この程度では品質上の問題はない。ここで、鉛の共析について、図を用いて具体例で説明する。図1は、所定濃度で鉛を含む塩化鉄水溶液を用いて電解採取を行なった場合の電解始液と鉛濃度と電着物の鉛品位の関係を表す。図1より、塩化鉄水溶液中の鉛濃度を0.01g/L以下にすることにより、鉛品位が0.1重量%以下の電解鉄が得られることが分かる。   That is, when lead exceeding 0.01 g / L is present in the iron chloride aqueous solution, lead is also co-deposited with iron in electrowinning, and further, the electrodeposition state of iron on the cathode is deteriorated and cracked on the electrodeposition surface. Defects such as formation of parts, precipitation of impurities, and stress peeling are generated. In addition, even if the lead concentration in the iron chloride aqueous solution is less than 0.01 g / L, a slight crack may occur on the electrodeposited surface as the lead quality in the electrodeposited iron increases due to the lead concentration. However, the formation of raised portions, precipitation of impurities, and stress peeling are not observed, and there is no quality problem at this level. Here, lead eutectoid will be described using a specific example with reference to the drawings. FIG. 1 shows the relationship between the electrolytic starting solution, the lead concentration, and the lead quality of the electrodeposit when electrolytic extraction is performed using an iron chloride aqueous solution containing lead at a predetermined concentration. From FIG. 1, it can be seen that electrolytic iron having a lead quality of 0.1% by weight or less can be obtained by setting the lead concentration in the iron chloride aqueous solution to 0.01 g / L or less.
この点について、以下により詳しく説明する。塩化鉄水溶液の隔膜電解法では、鉄等をカソードとし、不溶性アノードとの間に通電することによって鉄をカソード表面上に電解析出させる。一般に、銅、ニッケル等の電解採取では、通常含まれる不純物元素との電位差が充分に大きいので、比較的容易にしかも高純度の電着物が得られる。これに対して、原料である銅精鉱に起因する種々の元素が含有されている塩化鉄水溶液から、鉄のように卑な金属を電解採取する場合には、鉛、亜鉛のように鉄との電位差が小さい不純物元素が存在すると鉄と共析して電着物の不純物元素品位を上昇させる。さらに、鉄の電着状態は微量の不純物元素の影響を受けやすいため、所定品位を超えて電着物の不純物元素が含有されると、電解析出状態が悪化し電着物がカソードから剥離してショートを発生させ電力ロスの原因となり、また電着物に液を巻き込んで不純物元素品位がさらに上昇する等の問題も生じる。   This point will be described in more detail below. In the diaphragm electrolysis method using an aqueous iron chloride solution, iron or the like is used as a cathode, and iron is electrolytically deposited on the surface of the cathode by energizing the insoluble anode. Generally, in the electrowinning of copper, nickel, etc., the potential difference from the impurity element usually contained is sufficiently large, so that an electrodeposit having a high purity can be obtained relatively easily. On the other hand, when electrolytically extracting a base metal such as iron from an aqueous solution of iron chloride containing various elements derived from copper concentrate as a raw material, iron such as lead and zinc If there is an impurity element with a small potential difference, it will eutect with iron and raise the impurity element quality of the electrodeposit. Further, since the electrodeposition state of iron is easily affected by a small amount of impurity elements, if the impurity element of the electrodeposit is contained beyond a predetermined quality, the electrolytic deposition state deteriorates and the electrodeposit is separated from the cathode. A short circuit is caused to cause power loss, and problems such as a further increase in the quality of impurity elements due to the liquid being entrained in the electrodeposit.
また、本発明の方法としては、塩化鉄水溶液の酸化還元電位を制御しながら、pHを調整することにより、塩化鉄水溶液中の鉛を硫化物として沈殿分離する。このとき、塩化鉄水溶液に鉛とともに亜鉛が含有される場合には、その一部も同時に硫化され沈殿生成され、鉄の電着状態に大きな影響を及ぼさないレベルまで除去される。すなわち、塩化鉄水溶液中の鉛、亜鉛を硫化物として沈殿分離するためには、硫化剤を添加するとともにpHを調整することが効果的である。硫化剤を添加する際、液中の鉛、亜鉛含有量は、数十〜百数十g/Lの濃度で含有されている鉄と比較して微量なため、単純に鉛、亜鉛の硫化反応の当量見合いの硫化剤を添加しても十分に反応しない。そこで、硫化度合いの指標として、酸化還元電位を利用することが効果的である。   In the method of the present invention, the lead in the aqueous iron chloride solution is precipitated and separated as a sulfide by adjusting the pH while controlling the redox potential of the aqueous iron chloride solution. At this time, when zinc is contained together with lead in the aqueous iron chloride solution, a part thereof is also sulfided and formed at the same time, and is removed to a level that does not greatly affect the electrodeposition state of iron. That is, in order to precipitate and separate lead and zinc in an aqueous iron chloride solution as sulfides, it is effective to add a sulfurizing agent and adjust the pH. When adding a sulfiding agent, the lead and zinc contents in the liquid are very small compared to iron contained at a concentration of several tens to several tens of g / L. Even if a sulfurizing agent with an equivalent amount of is added, it does not react sufficiently. Therefore, it is effective to use the redox potential as an index of the degree of sulfuration.
上記酸化還元電位(Ag/AgCl電極規準)としては、−400〜−50mVであり、−150〜−50mVがより好ましい。すなわち、添加する硫化剤を大量に投入することで硫化雰囲気を強くすることができるが、酸化還元電位(Ag/AgCl電極規準)が−400mV未満では、反応に十分寄与しない硫化剤が無駄になってしまう。一方、硫化剤の添加を少なくして酸化還元電位(Ag/AgCl電極規準)が−50mV超えると、鉛の硫化沈殿が十分発生せず、鉛の除去率が低くなる。なお、大量に投入しても一定濃度以上には鉛は沈殿せず、通常−200〜−100mV付近で沈殿率は頭打ちになるため、酸化還元電位(Ag/AgCl電極規準)を−150〜−50mVに制御することがより好ましい。   The oxidation-reduction potential (Ag / AgCl electrode standard) is −400 to −50 mV, more preferably −150 to −50 mV. That is, by adding a large amount of the sulfiding agent to be added, the sulfiding atmosphere can be strengthened. However, if the redox potential (Ag / AgCl electrode standard) is less than −400 mV, the sulfiding agent that does not sufficiently contribute to the reaction is wasted. End up. On the other hand, if the addition of the sulfiding agent is reduced and the oxidation-reduction potential (Ag / AgCl electrode standard) exceeds −50 mV, lead sulfide precipitation does not occur sufficiently and the lead removal rate decreases. Note that lead does not precipitate above a certain concentration even when a large amount is added, and the precipitation rate usually reaches a peak around −200 to −100 mV, so the oxidation-reduction potential (Ag / AgCl electrode standard) is −150 to − It is more preferable to control to 50 mV.
また、上記pHとしては、3.0〜4.5であり、3.0〜4.0がより好ましい。すなわち、pHが3.0未満では、鉛が固形物として沈殿せず水溶液中に存在したままになってしまうため、沈殿分離ができない。一方、pHが4.5を超えると、それ以上に鉛の除去効率は変化せず、かつpH調整剤が余計に必要になる上、鉄の一部が水酸化鉄として沈殿を始めるため鉄の回収効率が悪くなってしまう。ここで、pH調整剤添加量と鉄水酸化物の発生が少ない3.0〜4.0がより好ましい。   Moreover, as said pH, it is 3.0-4.5, and 3.0-4.0 are more preferable. That is, when the pH is less than 3.0, lead is not precipitated as a solid but remains in the aqueous solution, so that precipitation cannot be separated. On the other hand, if the pH exceeds 4.5, the lead removal efficiency does not change any more, and an additional pH adjuster is required, and part of the iron begins to precipitate as iron hydroxide. The recovery efficiency will deteriorate. Here, 3.0 to 4.0 with less pH adjuster addition and less iron hydroxide is more preferable.
上記硫化剤としては、特に限定されるものではないが、HSガス、NaSH(水硫化ナトリウム)、又はNaS(硫化ナトリウム)から選ばれる少なくとも1種が好ましい。また、上記pH調整剤としては、Ca(OH)(水酸化カルシウム)及び/又はNaOH(水酸化ナトリウム)が好ましい。 Examples of the sulfurizing agent, is not particularly limited, H 2 S gas, NaSH (sodium hydrosulfide), or Na 2 S at least one selected from (sodium sulfide) is preferable. Moreover, as said pH adjuster, Ca (OH) 2 (calcium hydroxide) and / or NaOH (sodium hydroxide) are preferable.
ここで、酸化還元電位及びpHと、精製後の塩化鉄水溶液中の鉛濃度の関係を図を用いて具体的に説明する。
図2は、硫化沈殿法による酸化還元電位と精製後の塩化鉄水溶液中の鉛濃度の関係を表す。ここで、銅精鉱を酸性塩化物水溶液で塩素浸出して得た浸出生成液から、溶媒抽出法で銅を分離除去し、さらに鉄粉によるセメンテーション反応で残余の銅の殆どを除去した塩化鉄水溶液を用いて、鉛の除去を行った。なお、前記塩化鉄水溶液の主な金属の濃度は、鉄60g/L、銅0.001g/L以下、鉛0.072g/L、亜鉛0.016g/Lであった。また、硫化剤としてNaSHを鉛の反応当量の約5〜40倍添加して酸化還元電位を変化させ、pHをpH調整剤としてNaOHを添加することで4.0に保ち、それぞれ約1時間攪拌を行った。図2より、酸化還元電位を−400〜−50mVで制御することで0.01g/L以下の濃度にまで十分な鉛の除去ができることが分かる。
Here, the relationship between the oxidation-reduction potential and pH and the lead concentration in the iron chloride aqueous solution after purification will be specifically described with reference to the drawings.
FIG. 2 shows the relationship between the oxidation-reduction potential by the sulfide precipitation method and the lead concentration in the iron chloride aqueous solution after purification. Here, from the leaching product obtained by leaching copper concentrate with an acidic chloride aqueous solution, the copper was separated and removed by a solvent extraction method, and further, most of the remaining copper was removed by a cementation reaction with iron powder. Lead was removed using an aqueous iron solution. The main metal concentrations of the aqueous iron chloride solution were iron 60 g / L, copper 0.001 g / L or less, lead 0.072 g / L, and zinc 0.016 g / L. In addition, NaSH as a sulfurizing agent is added about 5 to 40 times the reaction equivalent of lead to change the oxidation-reduction potential, and pH is kept at 4.0 by adding NaOH as a pH adjusting agent, and each is stirred for about 1 hour. Went. From FIG. 2, it is understood that lead can be sufficiently removed to a concentration of 0.01 g / L or less by controlling the oxidation-reduction potential at −400 to −50 mV.
図3は、硫化沈殿法によるpHと精製後の塩化鉄水溶液中の鉛濃度の関係を表す。ここで、銅精鉱を酸性塩化物水溶液で塩素浸出して得た浸出生成液から、溶媒抽出法で銅を分離除去し、さらに鉄粉によるセメンテーション反応で残余の銅の殆どを除去した塩化鉄水溶液を用いて、鉛の除去を行った。なお、前記塩化鉄水溶液の主な金属の濃度は、鉄60g/L、銅0.001g/L以下、鉛0.072g/L、亜鉛0.016g/Lであった。また、硫化剤としてNaSHを鉛の反応当量の約10倍添加し、pHをpH調整剤としてNaOHを添加することで1.5〜4.5に変化させ、それぞれ約1時間攪拌を行った。図3より、pHを3.0〜4.5で制御することで0.01g/L以下の濃度にまで十分な鉛の除去ができることが分かる。   FIG. 3 shows the relationship between the pH by the sulfide precipitation method and the lead concentration in the iron chloride aqueous solution after purification. Here, from the leaching product obtained by leaching copper concentrate with an acidic chloride aqueous solution, the copper was separated and removed by a solvent extraction method, and further, most of the remaining copper was removed by a cementation reaction with iron powder. Lead was removed using an aqueous iron solution. The main metal concentrations of the aqueous iron chloride solution were iron 60 g / L, copper 0.001 g / L or less, lead 0.072 g / L, and zinc 0.016 g / L. Further, NaSH as a sulfurizing agent was added about 10 times the reaction equivalent of lead, and the pH was changed to 1.5 to 4.5 by adding NaOH as a pH adjusting agent, and each was stirred for about 1 hour. FIG. 3 shows that sufficient lead can be removed to a concentration of 0.01 g / L or less by controlling the pH at 3.0 to 4.5.
本発明の方法に用いる電解採取の方法としては、特に限定されるものではなく、一般的に鉄の電解採取法として行なわれる隔膜電解法が用いられる。例えば、塩化鉄水溶液の隔膜電解法では、電解槽内部をカソード室とアノード室とに隔膜により分割し、カソードと不溶性アノードとの間に通電することによって鉄をカソード表面上に電解析出させる。   The method of electrowinning used in the method of the present invention is not particularly limited, and a diaphragm electrolysis method generally used as an electrowinning method of iron is used. For example, in the diaphragm electrolysis method using an aqueous iron chloride solution, the inside of the electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, and iron is electrolytically deposited on the cathode surface by energizing between the cathode and the insoluble anode.
上記カソードとしては、特に限定されるものではなく、鉄、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金、黒鉛等が挙げられるが、この中で、ステンレス、又はチタンが好ましい。その形状としては、板状、棒状、簾状、エキスパンドメタル状のもの等が用いられる。   The cathode is not particularly limited, and examples thereof include iron, nickel, nickel alloy, stainless steel, titanium, titanium alloy, and graphite. Among these, stainless steel or titanium is preferable. As the shape, a plate shape, a rod shape, a bowl shape, an expanded metal shape, or the like is used.
上記不溶性アノードとしては、特に限定されるものではなく、市販されている黒鉛、白金被覆チタン、酸化ルテニウム被覆チタン、イリジウム酸化物系被覆チタン等が用いられる。また、板状、穿孔板状、棒状、簾状、エキスパンドメタル状等の形状ものが用いられる。   The insoluble anode is not particularly limited, and commercially available graphite, platinum-coated titanium, ruthenium oxide-coated titanium, iridium oxide-based coated titanium, and the like are used. Further, a plate shape, a perforated plate shape, a rod shape, a bowl shape, an expanded metal shape, or the like is used.
上記濾布としては、特に限定されるものではなく、例えば、ポリプロピレン、ポリエステル、アクリル樹脂、モダアクリル樹脂、ポリテトラフルオロエチレン、ポリ弗化ビニリデン等の材質からなるものが用いられ、この中でも、特に目が細かく、通水度が低くなるように織られた濾布が好ましい。   The filter cloth is not particularly limited, and examples thereof include those made of materials such as polypropylene, polyester, acrylic resin, modacrylic resin, polytetrafluoroethylene, and polyvinylidene fluoride. A filter cloth woven so as to be fine and low in water permeability is preferable.
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析はICP発光分析法で行った。
また、電解採取は、下記の方法により行なった。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The metal used in the examples and comparative examples was analyzed by ICP emission analysis.
Electrolytic collection was performed by the following method.
[電解採取方法]
図4に概略図を表した電解装置を用いた。電解槽1として、塩化ビニール製の縦630mm、横480mm、高さ930mmの大きさの箱型のものを使用した。電解槽1の中には、縦600mm、横40mm、高さ830mmの大きさのアノード室3を4槽設置し、カソード室2とアノード室3の間にはテトロン及びアクリル製の糸で縫製した瀘布4にて仕切りを設けた。アノードにはペルメレック電極(株)製の不溶性アノード6を用いた。アノードとしては、475mm×710mmのものを4枚使用した。カソード5としては、チタン板をアノードと電極面積が同じとなるようにマスキングしたもの3枚を用いた。
電解始液は、カソード室給液口7から給液し、カソード室排液口8から排出させる。また、アノード室3へは、カソード室2からの排液を各アノード室3に設置されたアノード口給液口9から給液し、同じく各アノード室3に設置されたアノード室排液口10から、カソード室2とアノード室3での電解液の液面差が10mmとなるようにサイフォンにより排液した。なお、図中において、アノード口給液口9とアノード室排液口10は、すべてのアノード室3に設置されているが、カソード室給液口7側のアノード室3のみに図示し、他は示していない。
ここで、電解始液の給液温度は、50〜60℃で、給液速度は、400mL/分で行なった。また、通電は電流密度400A/mで、表面状態の影響が判別できる24時間を基準に行った。
[Electrolytic collection method]
The electrolytic apparatus represented schematically in FIG. 4 was used. As the electrolytic cell 1, a box-shaped one made of vinyl chloride and having a size of 630 mm in length, 480 mm in width, and 930 mm in height was used. In the electrolytic cell 1, four anode chambers 3 having a length of 600 mm, a width of 40 mm, and a height of 830 mm were installed, and between the cathode chamber 2 and the anode chamber 3 were sewn with Tetron and acrylic threads. A partition was provided with the cloth 4. An insoluble anode 6 manufactured by Permerek Electrode Co., Ltd. was used as the anode. Four anodes having a size of 475 mm × 710 mm were used. As the cathode 5, three titanium plates masked so as to have the same electrode area as the anode were used.
The electrolytic start solution is supplied from the cathode chamber supply port 7 and discharged from the cathode chamber discharge port 8. Further, the drainage from the cathode chamber 2 is supplied to the anode chamber 3 from the anode port liquid supply port 9 installed in each anode chamber 3, and the anode chamber drainage port 10 also installed in each anode chamber 3. From the cathode chamber 2 and the anode chamber 3, the electrolyte solution was drained by a siphon so that the difference in the liquid level between the cathode chamber 2 and the anode chamber 3 was 10 mm. In the figure, the anode liquid supply port 9 and the anode chamber drainage port 10 are installed in all the anode chambers 3, but are shown only in the anode chamber 3 on the cathode chamber liquid supply port 7 side. Is not shown.
Here, the supply temperature of the electrolytic starting solution was 50 to 60 ° C., and the supply rate was 400 mL / min. The energization was performed at a current density of 400 A / m 2 on the basis of 24 hours in which the influence of the surface state can be determined.
(実施例1)
鉄を電解採取する工程に用いる塩化鉄水溶液として、銅精鉱を酸性塩化物水溶液で塩素浸出して得た浸出生成液を銅精鉱で還元し、次いで溶媒抽出法で銅を分離除去し、さらに鉄粉によるセメンテーション反応で残余の銅の殆どを除去した塩化鉄水溶液(組成:Fe80.4g/L、Pb0.119g/L、Cl121g/L)を用いて、まず、該塩化鉄水溶液に硫化ナトリウムと水酸化ナトリウムを添加して、酸化還元電位(Ag/AgCl電極規準)を−100mV、及びpHを3.5〜3.6に調整し、生成された硫化鉛の沈殿物を分離して電解始液を得て、その液中の鉛濃度を分析した。結果を表1に示す。
その後、上記[電解採取方法]に従って、鉄の電解採取を行なった。通電終了後、カソードを引き上げ、洗浄を行い、電着物の表面状態の評価を行った後、電着物を剥ぎ取り鉛の分析を行った。結果を表1に示す。
Example 1
As an aqueous solution of iron chloride used in the process of electrolytically collecting iron, a leaching product obtained by leaching copper concentrate with an aqueous solution of acidic chloride is reduced with copper concentrate, and then copper is separated and removed by a solvent extraction method. Furthermore, using an iron chloride aqueous solution (composition: Fe80.4 g / L, Pb 0.119 g / L, Cl121 g / L) from which most of the remaining copper was removed by a cementation reaction with iron powder, first, the iron chloride aqueous solution was sulfided. Sodium and sodium hydroxide were added, the redox potential (Ag / AgCl electrode standard) was adjusted to -100 mV, and the pH was adjusted to 3.5 to 3.6, and the resulting lead sulfide precipitate was separated. An electrolytic starting solution was obtained, and the lead concentration in the solution was analyzed. The results are shown in Table 1.
Thereafter, iron was collected by electrolysis according to the above [Electrolytic collection method]. After the energization was completed, the cathode was pulled up, washed, and the surface condition of the electrodeposit was evaluated. Then, the electrodeposit was peeled off and lead was analyzed. The results are shown in Table 1.
(実施例2)
鉄を電解採取する工程に用いる塩化鉄水溶液として、組成:Fe109g/L、Pb0.060g/L、Cl176g/Lを用いたこと以外は、実施例1と同様に行ない、電解始液を得て、さらに電解鉄を得た。結果を表1に示す。
(Example 2)
As the iron chloride aqueous solution used in the step of electrolytically collecting iron, the same procedure as in Example 1 was performed except that the composition: Fe109 g / L, Pb 0.060 g / L, Cl176 g / L was used, and an electrolysis initial solution was obtained. Furthermore, electrolytic iron was obtained. The results are shown in Table 1.
(実施例3)
鉄を電解採取する工程に用いる塩化鉄水溶液として、組成:Fe98.4g/L、Pb0.092g/L、Cl159g/L)を用いたこと以外は、実施例1と同様に行ない、電解始液を得て、さらに電解鉄を得た。結果を表1に示す。
(Example 3)
The same procedure as in Example 1 was performed except that the iron chloride aqueous solution used in the step of electrolytically collecting iron was used (composition: Fe 98.4 g / L, Pb 0.092 g / L, Cl 159 g / L). To obtain electrolytic iron. The results are shown in Table 1.
(実施例4)
鉄を電解採取する工程に用いる塩化鉄水溶液として、組成:Fe86g/L、Pb0.05g/L)を用いたこと、及びpH調整剤として水酸化カルシウムを用いたこと以外は、実施例1と同様に行ない、電解始液を得て、さらに電解鉄を得た。結果を表1に示す。
Example 4
As in Example 1, except that the iron chloride aqueous solution used in the step of electrolytically collecting iron was used as a composition: Fe 86 g / L, Pb 0.05 g / L) and calcium hydroxide was used as a pH adjuster. The electrolytic starting solution was obtained, and further electrolytic iron was obtained. The results are shown in Table 1.
(比較例1)
酸化還元電位(Ag/AgCl電極規準)を0mV、及びpHを約2.0に調整したこと以外は、実施例1と同様に行ない、電解始液を得て、さらに電解鉄を得た。結果を表1に示す。
(Comparative Example 1)
Except that the oxidation-reduction potential (Ag / AgCl electrode standard) was adjusted to 0 mV and the pH was adjusted to about 2.0, the same procedure as in Example 1 was performed to obtain an electrolytic starting solution, and further obtained electrolytic iron. The results are shown in Table 1.
表1より、実施例1〜4では、所定の酸化還元電位及びpHに調整して塩化鉄水溶液中の鉛を分離して得られた、鉛濃度が0.01g/L以下の電解始液を用いて鉄の電解採取を行ない、本発明の方法に従って行われたので、鉛品位が0.1重量%以下の電解鉄が得られ、電着時の応力を抑えて平滑な表面状態の電着物を得ることができる。これに対して、比較例1では、酸化還元電位及びpHがこれらの条件に合わないので、電解始液の鉛濃度が高く、電着表面に隆起部の生成、不純物の析出、応力剥がれ等の発生があり、電着物の表面状態において満足すべき結果が得られないことが分かる。   From Table 1, in Examples 1 to 4, an electrolytic starting solution having a lead concentration of 0.01 g / L or less obtained by adjusting lead to a predetermined oxidation-reduction potential and pH and separating lead in the iron chloride aqueous solution. Electrolytic extraction of iron was performed, and it was performed according to the method of the present invention, so that electrolytic iron having a lead quality of 0.1% by weight or less was obtained, and an electrodeposited material having a smooth surface state with reduced stress during electrodeposition Can be obtained. On the other hand, in Comparative Example 1, since the oxidation-reduction potential and pH do not meet these conditions, the lead concentration of the electrolytic starting solution is high, and the formation of bumps on the electrodeposition surface, precipitation of impurities, stress peeling, etc. It can be seen that satisfactory results are not obtained in the surface condition of the electrodeposit.
以上より明らかなように、本発明の方法によれば、硫化銅鉱物を含む銅原料の湿式銅製錬法において、得られる塩化鉄水溶液から鉄を電解採取する工程の際に、鉛等の不純物元素品位が低く、かつ表面状態に優れた電着物が得られるので、低コストで効率的に鉄を電解採取する方法として好適である。   As is clear from the above, according to the method of the present invention, in the process of electrolytically collecting iron from the obtained iron chloride aqueous solution in the wet copper smelting method of the copper raw material containing the copper sulfide mineral, an impurity element such as lead is obtained. Since an electrodeposit having a low quality and an excellent surface condition can be obtained, it is suitable as a method for efficiently collecting iron at low cost.
所定濃度で鉛を含む塩化鉄水溶液を用いて電解採取を行なった場合の電解始液と鉛濃度と電着物の鉛品位の関係を表す図である。It is a figure showing the relationship between the electrolysis start liquid, lead concentration, and the lead quality of an electrodeposit at the time of performing electrowinning using the iron chloride aqueous solution containing lead at a predetermined concentration. 硫化沈殿法による酸化還元電位と精製後の塩化鉄水溶液中の鉛濃度の関係を表す図である。It is a figure showing the relationship between the oxidation-reduction potential by a sulfide precipitation method, and the lead concentration in the iron chloride aqueous solution after refinement | purification. 硫化沈殿法によるpHと精製後の塩化鉄水溶液中の鉛濃度の関係を表す図である。It is a figure showing the relationship between the pH by a sulfide precipitation method, and the lead concentration in the iron chloride aqueous solution after refinement | purification. 実施例及び比較例で使用した電解装置の概略図である。It is the schematic of the electrolyzer used in the Example and the comparative example.
符号の説明Explanation of symbols
1 電解槽
2 カソード室
3 アノード室
4 濾布
5 カソード
6 不溶性アノード
7 カソード室給液口
8 カソード室排液口
9 アノード室給液口
10 アノード室排液口
DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2 Cathode chamber 3 Anode chamber 4 Filter cloth 5 Cathode 6 Insoluble anode 7 Cathode chamber liquid supply port 8 Cathode chamber liquid discharge port 9 Anode chamber liquid supply port 10 Anode chamber liquid discharge port

Claims (5)

  1. 硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、
    前記塩化鉄水溶液から鉄を電解採取する工程の際に、該塩化鉄水溶液に硫化剤を添加し酸化還元電位(Ag/AgCl電極規準)を−400〜−50mVに制御しながら、pH調整剤を添加しpHを3.0〜4.5に調整することにより、該塩化鉄水溶液中に含まれる鉛を硫化物として沈殿分離した後、鉄の電解採取を行なうことを特徴とする電解鉄の回収方法。
    A step of leaching a copper raw material containing copper sulfide minerals with chlorine, a step of reducing the leaching product solution, a step of subjecting the reduction product solution to solvent extraction to separate and recover copper to obtain an aqueous solution of iron chloride, and iron from the aqueous solution of iron chloride In the wet copper smelting method including the process of electrowinning,
    In the step of electrolytically collecting iron from the aqueous iron chloride solution, a pH adjusting agent is added while controlling the oxidation-reduction potential (Ag / AgCl electrode standard) to −400 to −50 mV by adding a sulfurizing agent to the aqueous iron chloride solution. Addition and adjustment of pH to 3.0 to 4.5 to precipitate and separate lead contained in the aqueous iron chloride solution as a sulfide, and then perform electrolytic collection of iron Method.
  2. 前記硫化剤は、HSガス、NaSH、又はNaSから選ばれる少なくとも1種であることを特徴とする請求項1に記載の電解鉄の回収方法。 2. The method for recovering electrolytic iron according to claim 1, wherein the sulfurizing agent is at least one selected from H 2 S gas, NaSH, or Na 2 S. 3.
  3. 前記pH調整剤は、Ca(OH)及び/又はNaOHであることを特徴とする請求項1に記載の電解鉄の回収方法。 The method for recovering electrolytic iron according to claim 1, wherein the pH adjuster is Ca (OH) 2 and / or NaOH.
  4. 塩化鉄水溶液中の鉛濃度が0.01g/L以下になるように鉛を沈殿分離することを特徴とする請求項1に記載の電解鉄の回収方法。   2. The method for recovering electrolytic iron according to claim 1, wherein lead is precipitated and separated so that a lead concentration in the aqueous iron chloride solution is 0.01 g / L or less.
  5. 前記電解採取の際に、隔膜電解法を用いることを特徴とする請求項1に記載の電解鉄の回収方法。   The method for recovering electrolytic iron according to claim 1, wherein a diaphragm electrolysis method is used for the electrowinning.
JP2006049920A 2006-02-27 2006-02-27 Method of recovering electrolytic iron from aqueous ferric chloride solution Pending JP2007224400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049920A JP2007224400A (en) 2006-02-27 2006-02-27 Method of recovering electrolytic iron from aqueous ferric chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049920A JP2007224400A (en) 2006-02-27 2006-02-27 Method of recovering electrolytic iron from aqueous ferric chloride solution

Publications (1)

Publication Number Publication Date
JP2007224400A true JP2007224400A (en) 2007-09-06

Family

ID=38546472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049920A Pending JP2007224400A (en) 2006-02-27 2006-02-27 Method of recovering electrolytic iron from aqueous ferric chloride solution

Country Status (1)

Country Link
JP (1) JP2007224400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315565A (en) * 2016-12-21 2018-07-24 智矿控股有限公司 A method of the Selectively leaching vulcanized lead from sulfide containing lead material
CN109136985A (en) * 2018-10-27 2019-01-04 揭阳市斯瑞尔环境科技有限公司 A kind of method that electrolytic chlorination iron etching waste liquor produces iron plate and ferric trichloride
CN109778227A (en) * 2019-03-20 2019-05-21 北京航天国环技术有限公司 A kind of processing method of iron content abraum salt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118893A (en) * 1982-12-27 1984-07-09 Showa Denko Kk Manufacture of electrolytic iron
JP2005060813A (en) * 2002-11-18 2005-03-10 Sumitomo Metal Mining Co Ltd Method for refining copper raw material containing copper sulfide mineral
JP2005220387A (en) * 2004-02-04 2005-08-18 Jfe Engineering Kk Method for recovering lead from waste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118893A (en) * 1982-12-27 1984-07-09 Showa Denko Kk Manufacture of electrolytic iron
JP2005060813A (en) * 2002-11-18 2005-03-10 Sumitomo Metal Mining Co Ltd Method for refining copper raw material containing copper sulfide mineral
JP2005220387A (en) * 2004-02-04 2005-08-18 Jfe Engineering Kk Method for recovering lead from waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315565A (en) * 2016-12-21 2018-07-24 智矿控股有限公司 A method of the Selectively leaching vulcanized lead from sulfide containing lead material
CN109136985A (en) * 2018-10-27 2019-01-04 揭阳市斯瑞尔环境科技有限公司 A kind of method that electrolytic chlorination iron etching waste liquor produces iron plate and ferric trichloride
CN109778227A (en) * 2019-03-20 2019-05-21 北京航天国环技术有限公司 A kind of processing method of iron content abraum salt

Similar Documents

Publication Publication Date Title
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
JP2009235525A (en) Method for leaching out gold
EP2268852A1 (en) Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
US4337128A (en) Cupric and ferric chloride leach of metal sulphide-containing material
JP2009256764A (en) Method for collecting copper from ore
JP5370683B2 (en) Method for recovering copper from copper sulfide
EP2650403A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
CN1688728A (en) Method for the recovery of metals using chloride leaching and extraction
JP4316582B2 (en) Method for producing metallic nickel from crude nickel sulfate
JP4631818B2 (en) Method for hydrometallizing nickel oxide ore
JP2009167451A (en) Method for electrolytically extracting copper
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
EA020759B1 (en) Method of processing nickel bearing raw material
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
CA2234989C (en) Production of high purity copper from primary or secondary sulfides
JP4506660B2 (en) Silver recovery method in wet copper smelting process
WO2018138917A1 (en) Bismuth purification method
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
CN103937975B (en) The method of extracting directly silver from zinc hydrometallurgy flotation of silver concentrate
JP2005104809A (en) Method for purifying nickel chloride aqueous solution
JP6233478B2 (en) Purification method of bismuth
JP2008019475A (en) Method for removing chlorine in electrodeposited copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614