JP3427879B2 - Method for removing copper from copper-containing nickel chloride solution - Google Patents
Method for removing copper from copper-containing nickel chloride solutionInfo
- Publication number
- JP3427879B2 JP3427879B2 JP25422897A JP25422897A JP3427879B2 JP 3427879 B2 JP3427879 B2 JP 3427879B2 JP 25422897 A JP25422897 A JP 25422897A JP 25422897 A JP25422897 A JP 25422897A JP 3427879 B2 JP3427879 B2 JP 3427879B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- nickel
- chloride solution
- nickel chloride
- leaching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、銅を含有する例え
ばニッケルマットなどの金属硫化物を原料とし、塩素浸
出と電解採取によって電気ニッケルを回収するニッケル
電解精錬工程において、工程中に行われる含銅塩化ニッ
ケル溶液から銅を電解採取によって除去する脱銅電解工
程の改善に関するものである。TECHNICAL FIELD The present invention relates to a nickel electrolytic refining process for recovering electric nickel by chlorine leaching and electrolytic extraction using a metal sulfide such as nickel matte containing copper as a raw material. The present invention relates to an improvement in a decoppering electrolysis process of removing copper from a copper nickel chloride solution by electrowinning.
【0002】[0002]
【従来の技術】従来、高純度ニッケルは、図2に代表さ
れる工程により製造されている。すなわち、図2に従っ
てその主要工程(a)〜(e)について概要的に説明す
ると、該工程は、(a)含銅塩化ニッケル溶液中の銅を
ニッケルマット中のニッケルと置換反応させ、除銅塩化
ニッケル溶液(CML)と、含銅残渣(CMR)を得る
セメンテーション(CM)工程、(b)前記除銅塩化ニ
ッケル溶液(CML)中のコバルトなどの不純物をさら
に除去して、高純度塩化ニッケル溶液(純液)を得る浄
液工程、(c)前記した高純度塩化ニッケル溶液を電解
液として用い、電解を行って高純度ニッケル(E−N
i)を得るニッケル電解工程、を主要な工程とし、さら
に、(d)工程(a)のセメンテーション(CM)工程
で得られた含銅残渣(CMR)と、ニッケルマットを塩
素で浸出して濾過し、濾液として含銅塩化ニッケル溶液
(CPL)、残渣としてさらなる濾過残渣(CPR)を
得る浸出(CP)工程、(e)工程(d)で得られた含
銅塩化ニッケル溶液(CPL)の一部を電解液として用
い、陽極に不溶性電極、陰極にチタン電極を用いて電解
して銅粉を得、電解廃液(CuL)を工程(d)に還流
させてセメンテーション(CM)工程に供給する脱銅電
解工程からなる。なお、工程(c)のニッケル電解工程
で発生する塩素ガスは、電解廃液の脱塩素工程で得られ
た塩素ガスとともに塩素回収工程に送られ、回収された
塩素ガスは工程(d)の浸出工程に送られ、また、脱塩
素電解廃液はニッケル原料ニッケルマットのスラリー化
のための破砕工程に供給される。2. Description of the Related Art Conventionally, high-purity nickel is manufactured by a process represented by FIG. That is, the main steps (a) to (e) will be schematically described with reference to FIG. 2. In the step, (a) copper in a copper-containing nickel chloride solution is replaced with nickel in a nickel matte to react to remove copper. A nickel chloride solution (CML) and a cementation (CM) step for obtaining a copper-containing residue (CMR); (b) further removing impurities such as cobalt in the copper removal nickel chloride solution (CML) to obtain high-purity chloride. A purifying step of obtaining a nickel solution (pure liquid), (c) using the high-purity nickel chloride solution described above as an electrolytic solution, electrolysis is performed to obtain high-purity nickel (E-N).
The nickel electrolysis step of obtaining i) is the main step, and further, (d) the copper-containing residue (CMR) obtained in the cementation (CM) step of (a) and the nickel matte are leached with chlorine. Of the copper-containing nickel chloride solution (CPL) obtained in the step (e) step (d), which is filtered to obtain a copper-containing nickel chloride solution (CPL) as a filtrate, and a further filtration residue (CPR) as a residue. A part of the electrolyte is used as an electrolytic solution, an insoluble electrode is used as an anode, and a titanium electrode is used as a cathode to perform electrolysis to obtain copper powder, and electrolytic waste liquid (CuL) is refluxed to step (d) and supplied to the cementation (CM) step. The decoppering electrolytic process is performed. The chlorine gas generated in the nickel electrolysis step of the step (c) is sent to the chlorine recovery step together with the chlorine gas obtained in the dechlorination step of the electrolytic waste liquid, and the recovered chlorine gas is the leaching step of the step (d). And the dechlorination electrolysis waste liquid is supplied to a crushing step for making a nickel raw material nickel matte slurry.
【0003】本発明は、上記高純度電気ニッケル精錬工
程中、工程(e)で行われる脱銅電解工程の改善に係る
ものであり、該工程において銅を効率的に除去する方法
を提案するものであり、以下により詳細に説明する。高
純度電気ニッケル精錬工程中における脱銅電解工程の意
義について説明すると、図2および図3に示すように、
工程(a)のセメンテーション工程で得られた含銅残渣
はニッケルマットスラリーの一部と混合されて塩素で浸
出されるが、ニッケルマット中に含まれる銅は塩素浸出
液中で銅イオンとなって系内に蓄積される。本発明にお
いて対象とする脱銅電解工程はこの蓄積された余剰の銅
を銅粉として除去回収することを目的とする工程であ
る。The present invention relates to an improvement of the decoppering electrolytic process performed in the step (e) in the above high-purity electric nickel refining process, and proposes a method for efficiently removing copper in the process. And will be described in more detail below. Explaining the significance of the decoppering electrolysis process in the high-purity electric nickel refining process, as shown in FIG. 2 and FIG.
The copper-containing residue obtained in the cementation step of step (a) is mixed with a part of the nickel matte slurry and leached with chlorine, but the copper contained in the nickel matte becomes copper ions in the chlorine leaching solution. It is accumulated in the system. The decoppering electrolysis step targeted in the present invention is a step for removing and collecting the accumulated excess copper as copper powder.
【0004】脱銅電解工程の設備フローを図4に示す
と、工程(d)の浸出(CP)工程で得られた含銅塩化
ニッケル溶液(CPL)の一部を受入槽1に導入し、ニ
ッケル電解工程からの電解廃液(アノライト)により含
銅塩化ニッケル溶液(CPL)中の銅濃度を所定の基準
値になるように希釈し、ヘッドタンク2から脱銅電解槽
3に給液する。給液の一部はカソライトとして電解槽3
よりオーバーフローさせて液面を一定に保持する。電解
槽3内のアノードボックス4から塩素ガスと廃液を同時
に吸引し、気液分離器5で塩素ガスと廃液を分離し、塩
素ガスはバッファータンク6を経て浸出(CP)工程に
還流させる。一方廃液は、廃液槽7を経てカソライト中
継槽8に送られ、そこで廃液中の遊離塩素は、カソライ
ト中の1価銅イオンにより還元処理されてセメンテーシ
ョン(CM)工程に還流される。FIG. 4 shows the equipment flow of the decoppering electrolysis process. A part of the copper-containing nickel chloride solution (CPL) obtained in the leaching (CP) process of the process (d) is introduced into the receiving tank 1, The copper concentration in the copper-containing nickel chloride solution (CPL) is diluted with the electrolytic waste liquid (anolyte) from the nickel electrolysis step to a predetermined reference value, and the copper solution is supplied from the head tank 2 to the copper removal electrolytic bath 3. A part of the liquid supply is used as catholyte and electrolytic cell 3
More overflow to maintain a constant liquid level. Chlorine gas and waste liquid are simultaneously sucked from the anode box 4 in the electrolytic cell 3, chlorine gas and waste liquid are separated by the gas-liquid separator 5, and the chlorine gas is returned to the leaching (CP) step through the buffer tank 6. On the other hand, the waste liquid is sent through the waste liquid tank 7 to the catholyte relay tank 8, where the free chlorine in the waste liquid is reduced by the monovalent copper ions in the catholyte, and is returned to the cementation (CM) step.
【0005】一方、電解槽3のカソード9に電着した銅
粉は、例えばエアーシリンダーを用いたビーム落下方式
などの分離手段でカソードから分離され、レパルプ槽1
0、レパルプ中継槽11を経て、遠心分離機12で濾
過、洗浄後系外に排出される。濾液は濾液槽13、14
を経てその大部分は電解槽3に還流する。On the other hand, the copper powder electrodeposited on the cathode 9 of the electrolytic cell 3 is separated from the cathode by a separating means such as a beam dropping method using an air cylinder, and the repulp tank 1
0, after passing through the repulp relay tank 11, filtered and washed by the centrifugal separator 12 and discharged to the outside of the system. The filtrate is the filtrate tank 13 and 14
Most of the water is returned to the electrolytic cell 3 via the.
【0006】表1は、脱銅電解工程に使用される含銅塩
化ニッケル溶液(CPL)、電解廃液(アノライト)及
び銅濃度希釈後の給液の液組成の一例を示すものであ
る。Table 1 shows an example of the liquid composition of the copper-containing nickel chloride solution (CPL) used in the decoppering electrolytic process, the electrolytic waste liquid (anolite), and the feed liquid after diluting the copper concentration.
【0007】[0007]
【表1】 [Table 1]
【0008】脱銅電解工程は以上のフローにより行われ
ているが、従来脱銅電解工程に供給される含銅塩化ニッ
ケル溶液(CPL)は、塩素を使用した浸出(CP)工
程後の浸出液であるためにpHが低く、かつ酸化性が高
かった。したがって電解槽3で起こるカソード反応(銅
の還元析出反応)は阻害され、電流効率を悪化させたり
するのでランニングコストが上昇するという問題があっ
た。The decoppering electrolytic process is carried out according to the above flow, but the copper-containing nickel chloride solution (CPL) conventionally supplied to the decoppering electrolytic process is a leachate after the leaching (CP) process using chlorine. Because of this, the pH was low and the oxidizing property was high. Therefore, there is a problem in that the cathode reaction (reduction and deposition reaction of copper) that occurs in the electrolytic cell 3 is hindered and the current efficiency is deteriorated, resulting in an increase in running cost.
【0009】[0009]
【発明が解決しようとする課題】本発明は、ニッケルの
電解精錬の脱銅電解工程における上記の問題点を解決
し、脱銅電解の電流効率の向上と、これによるランニン
グコストの低減を図ることのできる含銅塩化ニッケル溶
液からの銅の除去方法を提供することを目的とするもの
である。SUMMARY OF THE INVENTION The present invention solves the above problems in the decoppering electrolysis process of electrolytic refining of nickel to improve the current efficiency of the decoppering electrolysis and thereby reduce the running cost. It is an object of the present invention to provide a method for removing copper from a copper-containing nickel chloride solution that can be used.
【0010】[0010]
【課題を解決するための手段】上記の目的を達成するた
めの本発明は、銅を含有する金属硫化物を原料とし、ニ
ッケルの塩素浸出を行い、これにより得られた塩化ニッ
ケル溶液からニッケルの電解採取を行うニッケル精錬方
法における脱銅電解工程において、含銅塩化ニッケル溶
液中の銅イオンを還元し、2価銅比を低下させた後に、
銅を電解採取する含銅塩化ニッケル溶液からの銅の除去
方法を特徴とするものであり、前記還元剤として金属ニ
ッケルを用いることが好ましい。Means for Solving the Problems The present invention for achieving the above object uses a metal sulfide containing copper as a raw material to perform chlorine leaching of nickel, and to obtain nickel from a nickel chloride solution thus obtained. In the decoppering electrolysis step in the nickel refining method for performing electrolytic extraction, after reducing the copper ions in the copper-containing nickel chloride solution to reduce the divalent copper ratio,
The method is characterized by a method for removing copper from a copper-containing nickel chloride solution in which copper is electrolytically extracted, and it is preferable to use metallic nickel as the reducing agent.
【0011】[0011]
【発明の実施の形態】通常脱銅電解工程に供給される含
銅塩化ニッケル溶液(CPL)中の銅イオンは1価およ
び2価の形態で存在している。脱銅電解に際しては、下
記に示す(1)式と(2)式の電解反応が起こる。
Cu2++e−=Cu+ (1)
Cu+ +e−=Cu (2)
このうち(1)式の反応が優先的に進行するために、全
銅中の2価の銅イオンが占める割合、すなわちCu2+
/全Cu(以下、2価銅比という。)が高くなると、銅
粉の電解採取に使用される電力が余分にかかることにな
り、2価銅換算での脱銅電解のカソード電流効率の低下
を招くことになる。BEST MODE FOR CARRYING OUT THE INVENTION Copper ions in a copper-containing nickel chloride solution (CPL) usually supplied to a decoppering electrolytic process exist in monovalent and divalent forms. In decoppering electrolysis, electrolytic reactions of the following formulas (1) and (2) occur. Cu 2+ + e − = Cu + (1) Cu + + e − = Cu (2) Of these, since the reaction of the formula (1) proceeds preferentially, the proportion of divalent copper ions in the total copper, that is, Cu 2+
/ When the total Cu (hereinafter referred to as the divalent copper ratio) becomes high, an extra electric power is used for electrowinning the copper powder, and the cathode current efficiency of decopperization in terms of divalent copper is reduced. Will be invited.
【0012】上記した含銅塩化ニッケル溶液(CPL)
中の2価銅比を支配するのが、工程(d)の浸出(C
P)工程での反応条件の1つである酸化還元電位(OR
P;Ag/AgCl電極)であり、図5に示すように酸
化還元電位(ORP)が上昇すると2価銅比が上昇す
る。そして酸化還元電位(ORP)と脱銅電解のカソー
ド電流効率の関係は、図6に示すように逆比例の関係、
すなわち酸化還元電位(ORP)が上昇するとカソード
電流効率が低下することになる。Copper-containing nickel chloride solution (CPL) described above
It is the leaching (C) of step (d) that controls the divalent copper ratio in the
Redox potential (OR) which is one of the reaction conditions in the step (P).
P; Ag / AgCl electrode), and as shown in FIG. 5, when the redox potential (ORP) rises, the divalent copper ratio rises. The relationship between the oxidation-reduction potential (ORP) and the cathode current efficiency of the decoppering electrolysis is inversely proportional as shown in FIG.
That is, if the redox potential (ORP) rises, the cathode current efficiency will decrease.
【0013】より具体的には、例えば脱銅電解のカソー
ド電流効率100%以上を達成するための酸化還元電位
(ORP)は図5より478mV以下であることが必要
であり、この478mVに対応する含銅塩化ニッケル溶
液(CPL)中の2価銅比は図5より48%付近である
ことがわかる。したがって、脱銅電解工程においては、
工程(d)の浸出(CP)工程での反応条件の1つであ
る酸化還元電位(ORP)が低いほど、すなわち工程
(d)の浸出(CP)工程で得られた含銅塩化ニッケル
溶液(CPL)中の2価銅比が低いほど高電流効率が得
られることになるが、一方において、浸出(CP)工程
において酸化還元電位(ORP)を低くすることは、本
来の目的である原料ニッケルマット中のニッケルの浸出
を妨げる結果となってニッケルの生産効率上好ましくな
い。More specifically, for example, the oxidation-reduction potential (ORP) for achieving a cathode current efficiency of 100% or more in decopperization is required to be 478 mV or less as shown in FIG. 5, which corresponds to 478 mV. It can be seen from FIG. 5 that the divalent copper ratio in the copper-containing nickel chloride solution (CPL) is around 48%. Therefore, in the copper removal electrolytic process,
The lower the redox potential (ORP), which is one of the reaction conditions in the leaching (CP) step of step (d), that is, the copper-containing nickel chloride solution (() obtained in the leaching (CP) step of step (d) ( The lower the divalent copper ratio in CPL), the higher the current efficiency will be obtained. On the other hand, lowering the redox potential (ORP) in the leaching (CP) step is the original purpose of the raw material nickel. This results in hindering the leaching of nickel in the mat, which is not preferable in terms of nickel production efficiency.
【0014】図7に、浸出(CP)工程でのニッケルの
浸出状態の指標である浸出後の濾過残渣(CPR)中の
残留ニッケル品位と酸化還元電位(ORP)との関係を
示したが、図7に見られるように酸化還元電位(OR
P)が低くなればなるほど濾過残渣(CPR)中の残留
ニッケル品位が高くなり、ニッケルの浸出率が低下する
ことがわかる。したがって、脱銅電解工程でのカソード
電流効率の向上と浸出(CP)工程でニッケル浸出率の
向上とは、相反する関係にあるので両者を同時に満足さ
せることは困難であった。FIG. 7 shows the relationship between the redox potential (ORP) and the residual nickel quality in the filtered residue (CPR) after leaching, which is an index of the leaching state of nickel in the leaching (CP) step. As seen in FIG. 7, the redox potential (OR
It can be seen that the lower the P), the higher the residual nickel quality in the filtration residue (CPR) and the lower the nickel leaching rate. Therefore, there is a contradictory relationship between the improvement of the cathode current efficiency in the decoppering electrolytic process and the improvement of the nickel leaching rate in the leaching (CP) process, and it has been difficult to satisfy both at the same time.
【0015】以上述べたように、浸出(CP)工程での
酸化還元電位(ORP)は、前述の通りニッケルマット
中のニッケル等の金属の浸出率に大きな影響を及ぼすこ
とから、浸出(CP)工程で得られた含銅塩化ニッケル
溶液(CPL)中の2価銅比を低く抑えるための反応条
件である酸化還元電位(ORP)を低くするのには限界
がある。本発明者らは、脱銅電解工程への供給直前の含
銅塩化ニッケル溶液(CPL)に、還元剤を用いて強制
的に2価の銅を1価の銅、または金属銅に還元させてや
れば、浸出(CP)工程でのニッケルの浸出率を低下さ
せることなく、脱銅電解でのカソード電流効率を高める
ことができるものとの考察に基づき本発明を完成したも
のである。As described above, the redox potential (ORP) in the leaching (CP) step has a great influence on the leaching rate of the metal such as nickel in the nickel mat as described above. There is a limit to lowering the redox potential (ORP) which is a reaction condition for suppressing the divalent copper ratio in the copper-containing nickel chloride solution (CPL) obtained in the step. The present inventors used a reducing agent to forcibly reduce divalent copper to monovalent copper or metallic copper in a copper-containing nickel chloride solution (CPL) immediately before supply to the decoppering electrolytic process. The present invention has been completed based on the consideration that the cathode current efficiency in decopperization can be increased without lowering the nickel leaching rate in the leaching (CP) step.
【0016】本発明において使用される還元剤は、工程
内に無用の不純物を増大させることがなく、また原料費
などのランニングコストをできるだけ抑えることのでき
るものを選択することが望ましく、この意味で例えば工
程内で発生する電気ニッケル屑を採用することが好まし
い。As the reducing agent used in the present invention, it is desirable to select a reducing agent that does not increase unnecessary impurities in the process and can keep running costs such as raw material costs as low as possible. For example, it is preferable to employ electric nickel scrap generated in the process.
【0017】[0017]
【実施例】本発明の実施例においては、図1に示すよう
な脱銅電解槽1槽を有するパイロット電解装置を用いて
脱銅電解実験を行った。図1において、3は脱銅電解
槽、15はカラム槽、16はストレーナー、17は給液
流量調整用バルブである。この実施例においては含銅塩
化ニッケル溶液(CPL)に相当する組成の給液を一旦
電気ニッケル屑片の入ったカラム槽へ通液し、給液中の
2価銅または1価銅とニッケルとを置換させ、1価銅ま
たは金属銅に還元した後、脱銅電解槽へ供給する方法を
用いた。実験条件を表2に示す。EXAMPLES In the examples of the present invention, a decoppering electrolysis experiment was conducted using a pilot electrolysis apparatus having one decoppering electrolysis cell as shown in FIG. In FIG. 1, 3 is a decoppering electrolytic bath, 15 is a column bath, 16 is a strainer, and 17 is a supply liquid flow rate adjusting valve. In this example, a feed liquid having a composition corresponding to a copper-containing nickel chloride solution (CPL) was once passed through a column tank containing pieces of electric nickel scrap, and divalent copper or monovalent copper and nickel in the feed liquid were added. Was replaced and reduced to monovalent copper or metallic copper, and then supplied to a copper removal electrolytic bath. The experimental conditions are shown in Table 2.
【0018】[0018]
【表2】 カラム槽容量 :37.5リットル カラム給液流量 :1.0リットル/min 給液滞留時間 :37.5min 還元剤 :電気ニッケル屑片(900x25x1.2)(mm) 還元剤装入量 :50.0kg[Table 2] Column tank capacity: 37.5 liters Column liquid supply flow rate: 1.0 liter / min Liquid retention time: 37.5 min Reducing agent: Electric nickel scrap (900x25x1.2) (mm) Amount of reducing agent charged: 50.0 kg
【0019】実験データの採取項目は、カラム槽給液
(入口側)およびオーバーフロー液(出口側)の酸化還
元電位(ORP)と2価銅比、電気ニッケル屑片の消費
量およびカラム槽底にて採取された析出物の化学分析値
である。The items of the experimental data to be collected are the redox potential (ORP) and the divalent copper ratio of the feed liquid (inlet side) and the overflow liquid (outlet side) of the column tank, the consumption of electric nickel scraps, and the bottom of the column tank. It is the chemical analysis value of the precipitate collected by
【0020】実験結果を表3に示す。The experimental results are shown in Table 3.
【0021】[0021]
【表3】 カラム槽給液(入口側) オーバーフロー液(出口側) 効果 ──────────────────────────────────── ORP pH 全Cu Cu2+ 2価銅 ORP pH 全Cu Cu2+ 2価銅 2価銅比 (mV) (g/l) (g/l) 比 (%) (mV) (g/l) (g/l) 比 (%) 減 (%) ──────────────────────────────────── 428 0.84 40.4 18.1 44.8 418 0.89 40.3 11.4 35.4 9.4 440 0.89 39.5 18.1 45.8 420 0.96 39.5 11.6 29.1 16.7 420 1.05 33.8 18.1 53.6 410 1.18 33.4 13.1 39.2 14.4 410 1.42 34.4 14.8 43.0 394 1.47 34.0 10.5 30.9 12.2 407 1.39 32.6 12.5 38.3 390 1.57 32.6 9.2 28.2 10.1 400 1.35 33.2 12.1 36.4 380 1.43 34.1 9.2 27.0 9.4 ────────────────────────────────────[Table 3] Column tank liquid supply (inlet side) Overflow liquid (outlet side) Effect ──────────────────────────────── ───── ORP pH All Cu Cu 2+ divalent copper ORP pH All Cu Cu 2+ Divalent copper Divalent copper ratio (mV) (g / l) (g / l) Ratio (%) (mV) ( g / l) (g / l) Ratio (%) Decrease (%) ────────────────────────────────── ─── 428 0.84 40.4 18.1 44.8 418 0.89 40.3 11.4 35.4 9.4 440 0.89 39.5 18.1 45.8 420 0.96 39.5 11.6 29.1 16.7 420 1.05 33.8 18.1 53.6 410 1.18 33.4 13.1 39.2 14.4 410 1.42 34.4 14.8 43.0 394 1.47 34.0 10.5 30.9 12.2 407 1.39 32.6 12.5 38.3 390 1.57 32.6 9.2 28.2 10.1 400 1.35 33.2 12.1 36.4 380 1.43 34.1 9.2 27.0 9.4 ──────────────────────────────── ─────
【0022】表3の結果から、カラム槽の入口側と出口
側で給液の酸化還元電位(ORP)の差は10〜20m
Vであり、図5に示された相関係数yより算出すると、
液中のCuの2価銅比を約14%減少させることができ
ることがわかった。すなわち、図5および図6から脱銅
電解のカソード電流効率を7%上昇させることができ
た。From the results shown in Table 3, the difference between the redox potential (ORP) of the feed liquid at the inlet side and the outlet side of the column tank is 10 to 20 m.
V, which is calculated from the correlation coefficient y shown in FIG.
It was found that the divalent copper ratio of Cu in the liquid can be reduced by about 14%. That is, from FIG. 5 and FIG. 6, the cathode current efficiency of decopperization could be increased by 7%.
【0023】以上の実施例による実験操業を9日間継続
して行ったところ、カラム槽中の電気ニッケルは54k
gから22kgまで減少し、消費された電気ニッケル屑
片の量は3.5kg/日であった。カラム槽底に析出し
た沈殿物の分析結果を脱銅電解によって得られた銅粉の
分析結果と比較して表4に示す。When the experimental operation according to the above example was continued for 9 days, the electric nickel in the column tank was 54 k.
The amount of the electric nickel scrap pieces consumed was 3.5 kg / day. Table 4 shows the analysis results of the precipitate deposited on the bottom of the column tank in comparison with the analysis results of the copper powder obtained by decopperization.
【0024】[0024]
【表4】 [Table 4]
【0025】表4の結果から、カラム槽底に得られる沈
殿物は、脱銅電解によって得られた銅粉とほぼ同等の組
成を示すことがわかった。これよりカラム槽内では、ニ
ッケル屑片の存在により給液中の銅がCu2+→Cu+
→Cuの還元反応を起こすほどの強い還元力を受けるこ
とがわかった。From the results shown in Table 4, it was found that the precipitate obtained at the bottom of the column has a composition almost equal to that of the copper powder obtained by decopperization. As a result, in the column tank, the copper in the feed liquid was Cu 2+ → Cu + due to the presence of nickel scraps.
→ It turned out that it receives a strong reducing power enough to cause the reduction reaction of Cu.
【0026】さらに、この実施例において、電解液のカ
ラム槽内での滞留時間を長くしたり、給液と電気ニッケ
ル屑片との接触面積を大きくしたり、あるいは電気ニッ
ケル屑片に振動を与え物質移動を促進するなどの方法を
採るときには、上記Cu2+→Cu+→Cuの還元反応
はさらに促進され、一層2価銅比の減少による脱銅電解
におけるカソード電流効率の向上を図ることができるこ
とが実験的に確認された。Furthermore, in this embodiment, the residence time of the electrolytic solution in the column tank is lengthened, the contact area between the feed solution and the electric nickel scrap pieces is increased, or the electric nickel scrap pieces are vibrated. When a method such as accelerating mass transfer is adopted, the reduction reaction of Cu 2+ → Cu + → Cu is further promoted, and the cathode current efficiency in decopperization electrolysis can be improved by further reducing the divalent copper ratio. Was confirmed experimentally.
【0027】[0027]
【発明の効果】以上述べたように、本発明の方法による
ときは、高純度ニッケルの電解精錬工程における含銅ニ
ッケル水溶液からの銅の除去を行うに際し、浸出(C
P)工程でのニッケルマット中のニッケルの浸出を阻害
することなく、換言すれば高いニッケルの生産効率を維
持しつつ、含銅塩化ニッケル溶液(CPL)中の2価銅
比を低減させることができ、これによって脱銅電解の電
流効率の向上とこれによるランニングコストの低減を図
ることができるのでその効果は大きい。As described above, according to the method of the present invention, when the copper is removed from the copper-containing nickel aqueous solution in the electrolytic refining process of high-purity nickel, leaching (C
It is possible to reduce the divalent copper ratio in the copper-containing nickel chloride solution (CPL) without inhibiting the leaching of nickel in the nickel matte in the step P), in other words, maintaining the high nickel production efficiency. Therefore, the current efficiency of the decopperization can be improved and the running cost can be reduced, so that the effect is great.
【図1】本発明の実施例に使用する実験用脱銅電解装置
の概略を示す斜視図である。FIG. 1 is a perspective view schematically showing an experimental decopperization electrolytic apparatus used in an example of the present invention.
【図2】高純度ニッケル精錬のプロセスフロー図であ
る。FIG. 2 is a process flow diagram of high-purity nickel refining.
【図3】脱銅電解工程の意義を示すための説明図であ
る。FIG. 3 is an explanatory diagram showing the significance of a decoppering electrolytic process.
【図4】脱銅電解工程における装置のフロー図である。FIG. 4 is a flow chart of an apparatus in a copper removal electrolytic process.
【図5】浸出(CP)工程での酸化還元電位(mV;A
g/AgCl電極)と浸出反応液中の2価銅比(%)と
の関係を示す相関図である。FIG. 5: Redox potential (mV; A during leaching (CP) step)
It is a correlation diagram which shows the relationship between the divalent copper ratio (%) in a leaching reaction liquid (g / AgCl electrode).
【図6】浸出(CP)工程での酸化還元電位(mV;A
g/AgCl電極)と脱銅電解工程におけるカソード電
流効率との関係を示す相関図である。FIG. 6: Redox potential (mV; A in the leaching (CP) step
(g / AgCl electrode) and a cathode current efficiency in a copper removal electrolysis process.
【図7】浸出(CP)工程での酸化還元電位(mV;A
g/AgCl電極)と該工程で得られる濾過残渣(CP
R)中の残留ニッケル品位との関係を示す相関図であ
る。FIG. 7: Redox potential (mV; A during leaching (CP) step)
g / AgCl electrode) and the filtration residue (CP
It is a correlation diagram which shows the relationship with the residual nickel grade in R).
1 受入槽 2 ヘッドタンク 3 脱銅電解槽 4 アノードボックス 5 気液分離器 6 バッファータンク 7 廃液槽 8 カソライト中継槽 9 カソード 10 レパルプ槽 11 レパルプ中継槽 12 遠心分離機 13、14 濾液槽 15 カラム槽 16 ストレーナー 17 給液流量調整用バルブ。 1 receiving tank 2 head tank 3 Copper removal electrolytic bath 4 Anode box 5 gas-liquid separator 6 buffer tanks 7 waste tank 8 Casolite relay tank 9 cathode 10 repulp tank 11 Repulp relay tank 12 Centrifuge 13, 14 Filtrate tank 15 column tank 16 strainers 17 Valve for adjusting the liquid supply flow rate.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−300691(JP,A) 特開 平9−125280(JP,A) 特開 平5−295467(JP,A) 特公 昭28−5159(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C25C 1/12 C22B 23/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-300691 (JP, A) JP-A-9-125280 (JP, A) JP-A-5-295467 (JP, A) JP-B-28- 5159 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C25C 1/12 C22B 23/06
Claims (2)
ッケルの塩素浸出を行い、これにより得られた塩化ニッ
ケル溶液からニッケルの電解採取を行うニッケル精錬方
法における脱銅電解工程において、含銅塩化ニッケル溶
液中の銅イオンを還元して2価銅比を低下させた後に、
銅を電解採取することを特徴とする含銅塩化ニッケル溶
液からの銅の除去方法。1. A copper-containing electrolysis step in a nickel refining method in which a metal sulfide containing copper is used as a raw material, chlorine is leached from nickel, and nickel is electrolytically extracted from a nickel chloride solution obtained by the method. After reducing the copper ions in the nickel chloride solution to reduce the divalent copper ratio,
A method for removing copper from a copper-containing nickel chloride solution, which comprises electrolytically collecting copper.
ことを特徴とする請求項1記載の含銅塩化ニッケル溶液
からの銅の除去方法。2. The method for removing copper from a copper-containing nickel chloride solution according to claim 1, wherein metallic nickel is used as the reducing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25422897A JP3427879B2 (en) | 1997-09-03 | 1997-09-03 | Method for removing copper from copper-containing nickel chloride solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25422897A JP3427879B2 (en) | 1997-09-03 | 1997-09-03 | Method for removing copper from copper-containing nickel chloride solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1180986A JPH1180986A (en) | 1999-03-26 |
JP3427879B2 true JP3427879B2 (en) | 2003-07-22 |
Family
ID=17262050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25422897A Expired - Fee Related JP3427879B2 (en) | 1997-09-03 | 1997-09-03 | Method for removing copper from copper-containing nickel chloride solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3427879B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180014003A (en) * | 2015-05-29 | 2018-02-07 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for purifying cobalt chloride aqueous solution |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4924754B2 (en) * | 2010-06-21 | 2012-04-25 | 住友金属鉱山株式会社 | Method for removing copper ions from copper-containing nickel chloride solution and method for producing electrolytic nickel |
JP6127938B2 (en) * | 2013-11-28 | 2017-05-17 | 住友金属鉱山株式会社 | Removal of tellurium from sulfuric acid leachate of copper electrolytic slime |
JP6172526B2 (en) * | 2014-05-13 | 2017-08-02 | 住友金属鉱山株式会社 | Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process |
JP5884870B1 (en) | 2014-08-13 | 2016-03-15 | 住友金属鉱山株式会社 | How to recover nickel |
JP6362029B2 (en) * | 2014-08-26 | 2018-07-25 | 住友金属鉱山株式会社 | Nickel sulfide raw material processing method |
JP6201154B2 (en) * | 2015-05-29 | 2017-09-27 | 住友金属鉱山株式会社 | Purification method of cobalt chloride aqueous solution |
JP6332523B2 (en) * | 2017-05-19 | 2018-05-30 | 住友金属鉱山株式会社 | Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process |
JP6957984B2 (en) * | 2017-05-29 | 2021-11-02 | 住友金属鉱山株式会社 | Copper removal method, electronickel manufacturing method |
CN108034822B (en) * | 2017-12-06 | 2019-11-19 | 贵州红星电子材料有限公司 | A method of copper ion in removal tri compound sulfate liquor |
JP7022332B2 (en) * | 2018-03-30 | 2022-02-18 | 住友金属鉱山株式会社 | Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment |
JP7022331B2 (en) * | 2018-03-30 | 2022-02-18 | 住友金属鉱山株式会社 | Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment |
CN117550765B (en) * | 2024-01-12 | 2024-04-12 | 国工恒昌新材料(义乌)有限公司 | Sewage treatment system and method for preparing recycled copper-titanium alloy |
-
1997
- 1997-09-03 JP JP25422897A patent/JP3427879B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180014003A (en) * | 2015-05-29 | 2018-02-07 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for purifying cobalt chloride aqueous solution |
KR102460255B1 (en) | 2015-05-29 | 2022-10-27 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Purification method of cobalt chloride aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
JPH1180986A (en) | 1999-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1038348C (en) | Production of metal from minerals | |
JP3879126B2 (en) | Precious metal smelting method | |
CN104046785B (en) | The treatment process of a kind of waste and old copper iron base diamond cutter head | |
JP3427879B2 (en) | Method for removing copper from copper-containing nickel chloride solution | |
JP3474526B2 (en) | How to recover silver | |
JP3431148B2 (en) | Electrochemical system for recovery of metals from metal compounds. | |
CN107177865A (en) | Process for separating lead and bismuth from high-bismuth lead alloy | |
JPH11506808A (en) | Copper matte electrowinning method | |
JP2003247089A (en) | Method of recovering indium | |
JPH10140257A (en) | Wet refining method of nickel by chlorine leaching electrolytic extracting method | |
JP2009167451A (en) | Method for electrolytically extracting copper | |
PL111879B1 (en) | Method of recovery of copper from diluted acid solutions | |
JP6233478B2 (en) | Purification method of bismuth | |
RU2510669C2 (en) | Method of extracting noble metals from wastes | |
CN117568624A (en) | Bismuth purification method | |
JP3896107B2 (en) | Diaphragm electrolysis method | |
JP4501726B2 (en) | Electrowinning of iron from acidic chloride aqueous solution | |
JP3243929B2 (en) | Adjustment method of copper ion concentration of copper removal electrolytic solution | |
EP0161224B1 (en) | Process for copper chloride aqueous electrolysis | |
JP5482461B2 (en) | Method for recovering copper from copper electrolysis waste liquid | |
JP2001115288A (en) | Copper removing electorlysis method for copper- containing nickel chloride solution | |
JP2008127627A (en) | Method for electrowinning copper | |
JP2001262389A (en) | Liquid feed controlling method in decoppering electrolysis | |
JP2007224400A (en) | Method of recovering electrolytic iron from aqueous ferric chloride solution | |
US4634507A (en) | Process for the production of lead from sulphide ores |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140516 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |