JPH1180986A - Removing copper from nickel chloride solution containing copper - Google Patents

Removing copper from nickel chloride solution containing copper

Info

Publication number
JPH1180986A
JPH1180986A JP9254228A JP25422897A JPH1180986A JP H1180986 A JPH1180986 A JP H1180986A JP 9254228 A JP9254228 A JP 9254228A JP 25422897 A JP25422897 A JP 25422897A JP H1180986 A JPH1180986 A JP H1180986A
Authority
JP
Japan
Prior art keywords
copper
nickel
chloride solution
leaching
nickel chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9254228A
Other languages
Japanese (ja)
Other versions
JP3427879B2 (en
Inventor
Izumi Sugita
泉 杉田
Shigeki Matsuki
茂喜 松木
Tomoshi Matsumoto
智志 松本
Tomitatsu Yano
仁美樹 矢野
Nobumasa Iemori
伸正 家守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP25422897A priority Critical patent/JP3427879B2/en
Publication of JPH1180986A publication Critical patent/JPH1180986A/en
Application granted granted Critical
Publication of JP3427879B2 publication Critical patent/JP3427879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide the method for removing copper from the nickel chloride solution containing copper, which is capable of improving electric current efficiency and of lowering the running cost in the electrolytic process for removing copper. SOLUTION: When copper is electrolytically removed in the refining process of nickel, wherein the nickel is electrolytically recovered from the nickel solution, which has been obtained by leaching nickel with chlorine by using, as a raw material, a metal sulfide such as nickel mat containing copper, the copper is removed by first reducing copper ion in the nickel chloride solution containing copper in order to decrease the ratio of divalent copper ion and then electrolytically treating the resulting solution. As the reducing agent, nickel metal is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅を含有する例え
ばニッケルマットなどの金属硫化物を原料とし、塩素浸
出と電解採取によって電気ニッケルを回収するニッケル
電解精錬工程において、工程中に行われる含銅塩化ニッ
ケル溶液から銅を電解採取によって除去する脱銅電解工
程の改善に関するものである。
The present invention relates to a nickel electrolytic refining process for recovering electric nickel by chlorine leaching and electrolytic extraction from a metal sulfide such as nickel matte containing copper as a raw material. The present invention relates to an improvement in a copper removal electrolytic process for removing copper from a copper nickel chloride solution by electrolytic extraction.

【0002】[0002]

【従来の技術】従来、高純度ニッケルは、図2に代表さ
れる工程により製造されている。すなわち、図2に従っ
てその主要工程(a)〜(e)について概要的に説明す
ると、該工程は、(a)含銅塩化ニッケル溶液中の銅を
ニッケルマット中のニッケルと置換反応させ、除銅塩化
ニッケル溶液(CML)と、含銅残渣(CMR)を得る
セメンテーション(CM)工程、(b)前記除銅塩化ニ
ッケル溶液(CML)中のコバルトなどの不純物をさら
に除去して、高純度塩化ニッケル溶液(純液)を得る浄
液工程、(c)前記した高純度塩化ニッケル溶液を電解
液として用い、電解を行って高純度ニッケル(E−N
i)を得るニッケル電解工程、を主要な工程とし、さら
に、(d)工程(a)のセメンテーション(CM)工程
で得られた含銅残渣(CMR)と、ニッケルマットを塩
素で浸出して濾過し、濾液として含銅塩化ニッケル溶液
(CPL)、残渣としてさらなる濾過残渣(CPR)を
得る浸出(CP)工程、(e)工程(d)で得られた含
銅塩化ニッケル溶液(CPL)の一部を電解液として用
い、陽極に不溶性電極、陰極にチタン電極を用いて電解
して銅粉を得、電解廃液(CuL)を工程(d)に還流
させてセメンテーション(CM)工程に供給する脱銅電
解工程からなる。なお、工程(c)のニッケル電解工程
で発生する塩素ガスは、電解廃液の脱塩素工程で得られ
た塩素ガスとともに塩素回収工程に送られ、回収された
塩素ガスは工程(d)の浸出工程に送られ、また、脱塩
素電解廃液はニッケル原料ニッケルマットのスラリー化
のための破砕工程に供給される。
2. Description of the Related Art Conventionally, high-purity nickel has been manufactured by a process represented by FIG. That is, the main steps (a) to (e) will be schematically described with reference to FIG. 2. In this step, (a) a copper-containing nickel chloride solution is subjected to a substitution reaction with nickel in a nickel mat to remove copper. A cementation (CM) step of obtaining a nickel chloride solution (CML) and a copper-containing residue (CMR); (b) further removing impurities such as cobalt in the copper-free nickel chloride solution (CML) to obtain a high-purity chloride; A purification step of obtaining a nickel solution (pure solution); (c) electrolysis is performed by using the above-mentioned high-purity nickel chloride solution as an electrolytic solution to obtain high-purity nickel (E-N
The nickel electrolysis step for obtaining i) is the main step, and the copper-containing residue (CMR) obtained in the cementation (CM) step of step (a) and the nickel mat are leached with chlorine. Filtration, a leaching (CP) step of obtaining a copper-containing nickel chloride solution (CPL) as a filtrate, a further filtration residue (CPR) as a residue, and (e) a copper-containing nickel chloride solution (CPL) obtained in step (d). A part is used as an electrolyte, electrolysis is performed using an insoluble electrode for the anode and a titanium electrode for the cathode to obtain copper powder, and the electrolytic waste liquid (CuL) is refluxed to the step (d) and supplied to the cementation (CM) step. Copper removal electrolytic process. The chlorine gas generated in the nickel electrolysis step of the step (c) is sent to the chlorine recovery step together with the chlorine gas obtained in the dechlorination step of the electrolytic waste liquid, and the recovered chlorine gas is subjected to the leaching step of the step (d). And the dechlorinated electrolytic waste liquid is supplied to a crushing step for slurrying nickel raw material nickel matte.

【0003】本発明は、上記高純度電気ニッケル精錬工
程中、工程(e)で行われる脱銅電解工程の改善に係る
ものであり、該工程において銅を効率的に除去する方法
を提案するものであり、以下により詳細に説明する。高
純度電気ニッケル精錬工程中における脱銅電解工程の意
義について説明すると、図2および図3に示すように、
工程(a)のセメンテーション工程で得られた含銅残渣
はニッケルマットスラリーの一部と混合されて塩素で浸
出されるが、ニッケルマット中に含まれる銅は塩素浸出
液中で銅イオンとなって系内に蓄積される。本発明にお
いて対象とする脱銅電解工程はこの蓄積された余剰の銅
を銅粉として除去回収することを目的とする工程であ
る。
[0003] The present invention relates to the improvement of the copper removal electrolysis step performed in the step (e) during the high purity electric nickel refining step, and proposes a method for efficiently removing copper in the step. And will be described in more detail below. The significance of the copper removal electrolysis step in the high-purity electric nickel refining step will be described. As shown in FIGS.
The copper-containing residue obtained in the cementation step of step (a) is mixed with a part of the nickel matte slurry and leached with chlorine, but the copper contained in the nickel matte becomes copper ions in the chlorine leaching solution. Accumulated in the system. The copper removal electrolytic process targeted in the present invention is a process aimed at removing and collecting the accumulated excess copper as copper powder.

【0004】脱銅電解工程の設備フローを図4に示す
と、工程(d)の浸出(CP)工程で得られた含銅塩化
ニッケル溶液(CPL)の一部を受入槽1に導入し、ニ
ッケル電解工程からの電解廃液(アノライト)により含
銅塩化ニッケル溶液(CPL)中の銅濃度を所定の基準
値になるように希釈し、ヘッドタンク2から脱銅電解槽
3に給液する。給液の一部はカソライトとして電解槽3
よりオーバーフローさせて液面を一定に保持する。電解
槽3内のアノードボックス4から塩素ガスと廃液を同時
に吸引し、気液分離器5で塩素ガスと廃液を分離し、塩
素ガスはバッファータンク6を経て浸出(CP)工程に
還流させる。一方廃液は、廃液槽7を経てカソライト中
継槽8に送られ、そこで廃液中の遊離塩素は、カソライ
ト中の1価銅イオンにより還元処理されてセメンテーシ
ョン(CM)工程に還流される。
FIG. 4 shows the equipment flow of the copper removal electrolysis step. A part of the copper-containing nickel chloride solution (CPL) obtained in the leaching (CP) step of the step (d) is introduced into the receiving tank 1. The copper concentration in the copper-containing nickel chloride solution (CPL) is diluted with an electrolytic waste solution (anolyte) from the nickel electrolysis process so as to have a predetermined reference value, and the diluted copper solution is supplied from the head tank 2 to the copper removal electrolytic bath 3. Part of the liquid supply is catholyte and used in electrolytic cell 3.
The liquid surface is kept constant by overflowing more. The chlorine gas and the waste liquid are simultaneously sucked from the anode box 4 in the electrolytic cell 3, the chlorine gas and the waste liquid are separated by the gas-liquid separator 5, and the chlorine gas is returned to the leaching (CP) step via the buffer tank 6. On the other hand, the waste liquid is sent to a catholyte relay tank 8 via a waste liquid tank 7, where free chlorine in the waste liquid is reduced by monovalent copper ions in the catholyte and returned to a cementation (CM) step.

【0005】一方、電解槽3のカソード9に電着した銅
粉は、例えばエアーシリンダーを用いたビーム落下方式
などの分離手段でカソードから分離され、レパルプ槽1
0、レパルプ中継槽11を経て、遠心分離機12で濾
過、洗浄後系外に排出される。濾液は濾液槽13、14
を経てその大部分は電解槽3に還流する。
On the other hand, the copper powder electrodeposited on the cathode 9 of the electrolytic cell 3 is separated from the cathode by a separating means such as a beam dropping method using an air cylinder.
After passing through the repulp relay tank 11, it is filtered by the centrifugal separator 12, washed and discharged out of the system. The filtrate is in filtrate tanks 13 and 14
Most of the water is returned to the electrolytic cell 3 via.

【0006】表1は、脱銅電解工程に使用される含銅塩
化ニッケル溶液(CPL)、電解廃液(アノライト)及
び銅濃度希釈後の給液の液組成の一例を示すものであ
る。
Table 1 shows an example of the composition of the copper-containing nickel chloride solution (CPL), the electrolytic waste solution (anolyte), and the feed solution after the dilution of the copper concentration, which are used in the copper removal electrolytic process.

【0007】[0007]

【表1】 [Table 1]

【0008】脱銅電解工程は以上のフローにより行われ
ているが、従来脱銅電解工程に供給される含銅塩化ニッ
ケル溶液(CPL)は、塩素を使用した浸出(CP)工
程後の浸出液であるためにpHが低く、かつ酸化性が高
かった。したがって電解槽3で起こるカソード反応(銅
の還元析出反応)は阻害され、電流効率を悪化させたり
するのでランニングコストが上昇するという問題があっ
た。
[0008] The copper removal electrolysis step is performed according to the above flow. However, the copper-containing nickel chloride solution (CPL) conventionally supplied to the copper removal electrolysis step is a leachate obtained after the leaching (CP) step using chlorine. For this reason, the pH was low and the oxidizing property was high. Therefore, the cathode reaction (reduction and precipitation reaction of copper) occurring in the electrolytic cell 3 is hindered, and the current efficiency is deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明は、ニッケルの
電解精錬の脱銅電解工程における上記の問題点を解決
し、脱銅電解の電流効率の向上と、これによるランニン
グコストの低減を図ることのできる含銅塩化ニッケル溶
液からの銅の除去方法を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in the copper removal electrolytic process of nickel electrolytic refining, to improve the current efficiency of the copper removal electrolytic process, and to reduce the running cost. It is an object of the present invention to provide a method for removing copper from a copper-containing nickel chloride solution that can be performed.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、銅を含有する金属硫化物を原料とし、ニ
ッケルの塩素浸出を行い、これにより得られた塩化ニッ
ケル溶液からニッケルの電解採取を行うニッケル精錬方
法における脱銅電解工程において、含銅塩化ニッケル溶
液中の銅イオンを還元し、2価銅比を低下させた後に、
銅を電解採取する含銅塩化ニッケル溶液からの銅の除去
方法を特徴とするものであり、前記還元剤として金属ニ
ッケルを用いることが好ましい。
In order to achieve the above object, the present invention provides a method for leaching nickel from a metal sulfide containing copper as a raw material, and removing nickel from the resulting nickel chloride solution. In the copper removal electrolysis step in the nickel refining method for performing electrowinning, after reducing copper ions in the copper-containing nickel chloride solution and reducing the bivalent copper ratio,
The method is characterized by a method for removing copper from a copper-containing nickel chloride solution for electrolytically collecting copper, and it is preferable to use metallic nickel as the reducing agent.

【0011】[0011]

【発明の実施の形態】通常脱銅電解工程に供給される含
銅塩化ニッケル溶液(CPL)中の銅イオンは1価およ
び2価の形態で存在している。脱銅電解に際しては、下
記に示す(1)式と(2)式の電解反応が起こる。 Cu2++e=Cu (1) Cu +e=Cu (2) このうち(1)式の反応が優先的に進行するために、全
銅中の2価の銅イオンが占める割合、すなわちCu2+
/全Cu(以下、2価銅比という。)が高くなると、銅
粉の電解採取に使用される電力が余分にかかることにな
り、2価銅換算での脱銅電解のカソード電流効率の低下
を招くことになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Copper ions in a copper-containing nickel chloride solution (CPL) usually supplied to a copper-free electrolytic process exist in monovalent and divalent forms. At the time of copper-free electrolysis, the following electrolytic reactions (1) and (2) occur. Cu 2+ + e = Cu + (1) Cu + + e = Cu (2) Among these, since the reaction of the formula (1) proceeds preferentially, the proportion of divalent copper ions in the total copper, that is, Cu 2+
When the total Cu (hereinafter, referred to as divalent copper ratio) is increased, an extra electric power used for electrowinning copper powder is required, and the cathode current efficiency of copper-free electrolysis in terms of divalent copper is reduced. Will be invited.

【0012】上記した含銅塩化ニッケル溶液(CPL)
中の2価銅比を支配するのが、工程(d)の浸出(C
P)工程での反応条件の1つである酸化還元電位(OR
P;Ag/AgCl電極)であり、図5に示すように酸
化還元電位(ORP)が上昇すると2価銅比が上昇す
る。そして酸化還元電位(ORP)と脱銅電解のカソー
ド電流効率の関係は、図6に示すように逆比例の関係、
すなわち酸化還元電位(ORP)が上昇するとカソード
電流効率が低下することになる。
The above copper-containing nickel chloride solution (CPL)
It is the leaching (C) in step (d) that governs the bivalent copper ratio in the
Oxidation-reduction potential (OR
P; Ag / AgCl electrode), and as shown in FIG. 5, when the oxidation-reduction potential (ORP) increases, the divalent copper ratio increases. As shown in FIG. 6, the relationship between the oxidation-reduction potential (ORP) and the cathode current efficiency of the copper removal electrolysis is inversely proportional,
That is, as the oxidation-reduction potential (ORP) increases, the cathode current efficiency decreases.

【0013】より具体的には、例えば脱銅電解のカソー
ド電流効率100%以上を達成するための酸化還元電位
(ORP)は図5より478mV以下であることが必要
であり、この478mVに対応する含銅塩化ニッケル溶
液(CPL)中の2価銅比は図5より48%付近である
ことがわかる。したがって、脱銅電解工程においては、
工程(d)の浸出(CP)工程での反応条件の1つであ
る酸化還元電位(ORP)が低いほど、すなわち工程
(d)の浸出(CP)工程で得られた含銅塩化ニッケル
溶液(CPL)中の2価銅比が低いほど高電流効率が得
られることになるが、一方において、浸出(CP)工程
において酸化還元電位(ORP)を低くすることは、本
来の目的である原料ニッケルマット中のニッケルの浸出
を妨げる結果となってニッケルの生産効率上好ましくな
い。
More specifically, for example, the oxidation-reduction potential (ORP) for achieving a cathode current efficiency of 100% or more in the copper removal electrolysis is required to be 478 mV or less from FIG. 5, which corresponds to this 478 mV. FIG. 5 shows that the ratio of divalent copper in the copper-containing nickel chloride solution (CPL) is around 48%. Therefore, in the copper removal electrolytic process,
The lower the oxidation-reduction potential (ORP), which is one of the reaction conditions in the leaching (CP) step of step (d), that is, the copper-containing nickel chloride solution obtained in the leaching (CP) step of step (d) ( The lower the ratio of divalent copper in CPL), the higher the current efficiency can be obtained. On the other hand, the lowering of the oxidation-reduction potential (ORP) in the leaching (CP) step is the original purpose of the raw material nickel. As a result, the leaching of nickel in the mat is prevented, which is not preferable in terms of nickel production efficiency.

【0014】図7に、浸出(CP)工程でのニッケルの
浸出状態の指標である浸出後の濾過残渣(CPR)中の
残留ニッケル品位と酸化還元電位(ORP)との関係を
示したが、図7に見られるように酸化還元電位(OR
P)が低くなればなるほど濾過残渣(CPR)中の残留
ニッケル品位が高くなり、ニッケルの浸出率が低下する
ことがわかる。したがって、脱銅電解工程でのカソード
電流効率の向上と浸出(CP)工程でニッケル浸出率の
向上とは、相反する関係にあるので両者を同時に満足さ
せることは困難であった。
FIG. 7 shows the relationship between the residual nickel quality in the filtered residue (CPR) after leaching, which is an indicator of the state of leaching of nickel in the leaching (CP) step, and the oxidation-reduction potential (ORP). As shown in FIG. 7, the oxidation-reduction potential (OR
It can be seen that the lower the P), the higher the residual nickel quality in the filtration residue (CPR), and the lower the nickel leaching rate. Therefore, it is difficult to satisfy both of the improvement of the cathode current efficiency in the copper removal electrolysis step and the improvement of the nickel leaching rate in the leaching (CP) step at the same time, since they are opposite to each other.

【0015】以上述べたように、浸出(CP)工程での
酸化還元電位(ORP)は、前述の通りニッケルマット
中のニッケル等の金属の浸出率に大きな影響を及ぼすこ
とから、浸出(CP)工程で得られた含銅塩化ニッケル
溶液(CPL)中の2価銅比を低く抑えるための反応条
件である酸化還元電位(ORP)を低くするのには限界
がある。本発明者らは、脱銅電解工程への供給直前の含
銅塩化ニッケル溶液(CPL)に、還元剤を用いて強制
的に2価の銅を1価の銅、または金属銅に還元させてや
れば、浸出(CP)工程でのニッケルの浸出率を低下さ
せることなく、脱銅電解でのカソード電流効率を高める
ことができるものとの考察に基づき本発明を完成したも
のである。
As described above, since the oxidation-reduction potential (ORP) in the leaching (CP) step has a large effect on the leaching rate of a metal such as nickel in the nickel mat as described above, the leaching (CP) There is a limit to reducing the oxidation-reduction potential (ORP), which is a reaction condition for keeping the ratio of divalent copper in the copper-containing nickel chloride solution (CPL) obtained in the process low. The present inventors forcibly reduced divalent copper to monovalent copper or metallic copper by using a reducing agent in the copper-containing nickel chloride solution (CPL) immediately before the supply to the copper removal electrolytic process. The present invention has been completed based on the consideration that the cathode current efficiency in copper removal electrolysis can be increased without lowering the leaching rate of nickel in the leaching (CP) step.

【0016】本発明において使用される還元剤は、工程
内に無用の不純物を増大させることがなく、また原料費
などのランニングコストをできるだけ抑えることのでき
るものを選択することが望ましく、この意味で例えば工
程内で発生する電気ニッケル屑を採用することが好まし
い。
As the reducing agent used in the present invention, it is desirable to select a reducing agent which does not increase unnecessary impurities in the process and can minimize running costs such as raw material costs. For example, it is preferable to use electric nickel scrap generated in the process.

【0017】[0017]

【実施例】本発明の実施例においては、図1に示すよう
な脱銅電解槽1槽を有するパイロット電解装置を用いて
脱銅電解実験を行った。図1において、3は脱銅電解
槽、15はカラム槽、16はストレーナー、17は給液
流量調整用バルブである。この実施例においては含銅塩
化ニッケル溶液(CPL)に相当する組成の給液を一旦
電気ニッケル屑片の入ったカラム槽へ通液し、給液中の
2価銅または1価銅とニッケルとを置換させ、1価銅ま
たは金属銅に還元した後、脱銅電解槽へ供給する方法を
用いた。実験条件を表2に示す。
EXAMPLE In an example of the present invention, a copper removal electrolysis experiment was performed using a pilot electrolytic apparatus having one copper removal electrolytic bath as shown in FIG. In FIG. 1, reference numeral 3 denotes a copper removal electrolytic bath, 15 denotes a column bath, 16 denotes a strainer, and 17 denotes a liquid supply flow rate adjusting valve. In this embodiment, a feed solution having a composition corresponding to a copper-containing nickel chloride solution (CPL) is once passed through a column tank containing scraps of electric nickel, and copper (II) or monovalent copper and nickel in the feed are mixed with nickel. , And reduced to monovalent copper or metallic copper, and then supplied to a copper-free electrolytic cell. Table 2 shows the experimental conditions.

【0018】[0018]

【表2】 カラム槽容量 :37.5リットル カラム給液流量 :1.0リットル/min 給液滞留時間 :37.5min 還元剤 :電気ニッケル屑片(900x25x1.2)(mm) 還元剤装入量 :50.0kg[Table 2] Column tank capacity: 37.5 liters Column supply flow rate: 1.0 liter / min Supply liquid residence time: 37.5 min Reducing agent: Electric nickel scrap (900x25x1.2) (mm) Amount: 50.0kg

【0019】実験データの採取項目は、カラム槽給液
(入口側)およびオーバーフロー液(出口側)の酸化還
元電位(ORP)と2価銅比、電気ニッケル屑片の消費
量およびカラム槽底にて採取された析出物の化学分析値
である。
The collection items of the experimental data were the oxidation-reduction potential (ORP) and the ratio of copper (II) of the column tank feed (inlet side) and overflow solution (outlet side), the consumption of electric nickel debris, and the column tank bottom. It is a chemical analysis value of the precipitate collected by the above method.

【0020】実験結果を表3に示す。Table 3 shows the experimental results.

【0021】[0021]

【表3】 カラム槽給液(入口側) オーバーフロー液(出口側) 効果 ──────────────────────────────────── ORP pH 全Cu Cu2+ 2価銅 ORP pH 全Cu Cu2+ 2価銅 2価銅比 (mV) (g/l) (g/l) 比 (%) (mV) (g/l) (g/l) 比 (%) 減 (%) ──────────────────────────────────── 428 0.84 40.4 18.1 44.8 418 0.89 40.3 11.4 35.4 9.4 440 0.89 39.5 18.1 45.8 420 0.96 39.5 11.6 29.1 16.7 420 1.05 33.8 18.1 53.6 410 1.18 33.4 13.1 39.2 14.4 410 1.42 34.4 14.8 43.0 394 1.47 34.0 10.5 30.9 12.2 407 1.39 32.6 12.5 38.3 390 1.57 32.6 9.2 28.2 10.1 400 1.35 33.2 12.1 36.4 380 1.43 34.1 9.2 27.0 9.4 ────────────────────────────────────[Table 3] Column tank liquid supply (inlet side) Overflow liquid (outlet side) Effect ─────────────────────────────── ───── ORP pH Total Cu Cu 2+ Divalent Copper ORP pH Total Cu Cu 2+ Divalent Copper Divalent Copper Ratio (mV) (g / l) (g / l) Ratio (%) (mV) ( g / l) (g / l) Ratio (%) Decrease (%) ───────────────────────────────── ─── 428 0.84 40.4 18.1 44.8 418 0.89 40.3 11.4 35.4 9.4 440 0.89 39.5 18.1 45.8 420 0.96 39.5 11.6 29.1 16.7 420 1.05 33.8 18.1 53.6 410 1.18 33.4 13.1 39.2 14.4 410 1.42 34.4 14.8 43.0 394 1.47 34.0 10.5 30.9 12.2 407 1.39 32.6 12.5 38.3 390 1.57 32.6 9.2 28.2 10.1 400 1.35 33.2 12.1 36.4 380 1.43 34.1 9.2 27.0 9.4 ─────────────────────────────── ─────

【0022】表3の結果から、カラム槽の入口側と出口
側で給液の酸化還元電位(ORP)の差は10〜20m
Vであり、図5に示された相関係数yより算出すると、
液中のCuの2価銅比を約14%減少させることができ
ることがわかった。すなわち、図5および図6から脱銅
電解のカソード電流効率を7%上昇させることができ
た。
From the results shown in Table 3, the difference in the oxidation-reduction potential (ORP) of the feed solution between the inlet side and the outlet side of the column tank is 10 to 20 m.
V, calculated from the correlation coefficient y shown in FIG.
It was found that the divalent copper ratio of Cu in the liquid could be reduced by about 14%. That is, from FIGS. 5 and 6, the cathode current efficiency of the copper removal electrolysis was increased by 7%.

【0023】以上の実施例による実験操業を9日間継続
して行ったところ、カラム槽中の電気ニッケルは54k
gから22kgまで減少し、消費された電気ニッケル屑
片の量は3.5kg/日であった。カラム槽底に析出し
た沈殿物の分析結果を脱銅電解によって得られた銅粉の
分析結果と比較して表4に示す。
When the experimental operation according to the above embodiment was continued for 9 days, the electric nickel in the column tank was 54 kN.
g to 22 kg, and the amount of spent electric nickel debris was 3.5 kg / day. Table 4 shows the results of analysis of the precipitate deposited at the bottom of the column tank in comparison with the results of analysis of copper powder obtained by copper-free electrolysis.

【0024】[0024]

【表4】 [Table 4]

【0025】表4の結果から、カラム槽底に得られる沈
殿物は、脱銅電解によって得られた銅粉とほぼ同等の組
成を示すことがわかった。これよりカラム槽内では、ニ
ッケル屑片の存在により給液中の銅がCu2+→Cu
→Cuの還元反応を起こすほどの強い還元力を受けるこ
とがわかった。
From the results shown in Table 4, it was found that the precipitate obtained at the bottom of the column tank had almost the same composition as the copper powder obtained by the copper removal electrolysis. Thus, in the column tank, the copper in the liquid supply was changed from Cu 2+ → Cu + due to the presence of the nickel scrap pieces.
→ It was found that the steel sheet received a strong reducing power enough to cause a reduction reaction of Cu.

【0026】さらに、この実施例において、電解液のカ
ラム槽内での滞留時間を長くしたり、給液と電気ニッケ
ル屑片との接触面積を大きくしたり、あるいは電気ニッ
ケル屑片に振動を与え物質移動を促進するなどの方法を
採るときには、上記Cu2+→Cu→Cuの還元反応
はさらに促進され、一層2価銅比の減少による脱銅電解
におけるカソード電流効率の向上を図ることができるこ
とが実験的に確認された。
Furthermore, in this embodiment, the residence time of the electrolytic solution in the column tank is increased, the contact area between the supply liquid and the electric nickel scraps is increased, or vibration is applied to the electric nickel scraps. When a method such as promoting mass transfer is employed, the above-mentioned reduction reaction of Cu 2+ → Cu + → Cu is further promoted, and the cathode current efficiency in the copper removal electrolysis can be further improved by reducing the divalent copper ratio. Was confirmed experimentally.

【0027】[0027]

【発明の効果】以上述べたように、本発明の方法による
ときは、高純度ニッケルの電解精錬工程における含銅ニ
ッケル水溶液からの銅の除去を行うに際し、浸出(C
P)工程でのニッケルマット中のニッケルの浸出を阻害
することなく、換言すれば高いニッケルの生産効率を維
持しつつ、含銅塩化ニッケル溶液(CPL)中の2価銅
比を低減させることができ、これによって脱銅電解の電
流効率の向上とこれによるランニングコストの低減を図
ることができるのでその効果は大きい。
As described above, according to the method of the present invention, when copper is removed from the aqueous copper-containing nickel solution in the high-purity nickel electrolytic refining process, leaching (C
It is possible to reduce the divalent copper ratio in the copper-containing nickel chloride solution (CPL) without inhibiting the leaching of nickel in the nickel matte in the step P), in other words, while maintaining high nickel production efficiency. As a result, the current efficiency of the copper removal electrolysis can be improved and the running cost can be reduced, and the effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に使用する実験用脱銅電解装置
の概略を示す斜視図である。
FIG. 1 is a perspective view schematically showing an experimental copper removal electrolytic apparatus used in an embodiment of the present invention.

【図2】高純度ニッケル精錬のプロセスフロー図であ
る。
FIG. 2 is a process flow chart of high-purity nickel refining.

【図3】脱銅電解工程の意義を示すための説明図であ
る。
FIG. 3 is an explanatory diagram showing the significance of a copper removal electrolytic process.

【図4】脱銅電解工程における装置のフロー図である。FIG. 4 is a flow chart of an apparatus in a copper removal electrolytic process.

【図5】浸出(CP)工程での酸化還元電位(mV;A
g/AgCl電極)と浸出反応液中の2価銅比(%)と
の関係を示す相関図である。
FIG. 5: Redox potential (mV; A) in the leaching (CP) step
g / AgCl electrode) and a divalent copper ratio (%) in the leaching reaction solution.

【図6】浸出(CP)工程での酸化還元電位(mV;A
g/AgCl電極)と脱銅電解工程におけるカソード電
流効率との関係を示す相関図である。
FIG. 6: Redox potential (mV; A) in leaching (CP) step
FIG. 4 is a correlation diagram showing the relationship between the g / AgCl electrode) and the cathode current efficiency in the copper removal electrolytic process.

【図7】浸出(CP)工程での酸化還元電位(mV;A
g/AgCl電極)と該工程で得られる濾過残渣(CP
R)中の残留ニッケル品位との関係を示す相関図であ
る。
FIG. 7: Redox potential (mV; A) in leaching (CP) step
g / AgCl electrode) and the filtration residue (CP
It is a correlation figure showing the relation with residual nickel grade in R).

【符号の説明】[Explanation of symbols]

1 受入槽 2 ヘッドタンク 3 脱銅電解槽 4 アノードボックス 5 気液分離器 6 バッファータンク 7 廃液槽 8 カソライト中継槽 9 カソード 10 レパルプ槽 11 レパルプ中継槽 12 遠心分離機 13、14 濾液槽 15 カラム槽 16 ストレーナー 17 給液流量調整用バルブ。 DESCRIPTION OF SYMBOLS 1 Receiving tank 2 Head tank 3 Copper removal electrolytic tank 4 Anode box 5 Gas-liquid separator 6 Buffer tank 7 Waste liquid tank 8 Catholite relay tank 9 Cathode 10 Repulp tank 11 Repulp relay tank 12 Centrifugal separator 13, 14 Filtrate tank 15 Column tank 16 Strainer 17 Valve for adjusting liquid supply flow rate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅を含有する金属硫化物を原料とし、ニ
ッケルの塩素浸出を行い、これにより得られた塩化ニッ
ケル溶液からニッケルの電解採取を行うニッケル精錬方
法における脱銅電解工程において、含銅塩化ニッケル溶
液中の銅イオンを還元して2価銅比を低下させた後に、
銅を電解採取することを特徴とする含銅塩化ニッケル溶
液からの銅の除去方法。
1. A copper-removing electrolysis step in a nickel refining method in which nickel leaching is performed using a metal sulfide containing copper as a raw material and nickel is extracted from a nickel chloride solution obtained thereby. After reducing copper ions in the nickel chloride solution to reduce the divalent copper ratio,
A method for removing copper from a copper-containing nickel chloride solution, comprising electrolytically collecting copper.
【請求項2】 前記還元剤として金属ニッケルを用いる
ことを特徴とする請求項1記載の含銅塩化ニッケル溶液
からの銅の除去方法。
2. The method for removing copper from a copper-containing nickel chloride solution according to claim 1, wherein metallic nickel is used as the reducing agent.
JP25422897A 1997-09-03 1997-09-03 Method for removing copper from copper-containing nickel chloride solution Expired - Fee Related JP3427879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25422897A JP3427879B2 (en) 1997-09-03 1997-09-03 Method for removing copper from copper-containing nickel chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25422897A JP3427879B2 (en) 1997-09-03 1997-09-03 Method for removing copper from copper-containing nickel chloride solution

Publications (2)

Publication Number Publication Date
JPH1180986A true JPH1180986A (en) 1999-03-26
JP3427879B2 JP3427879B2 (en) 2003-07-22

Family

ID=17262050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25422897A Expired - Fee Related JP3427879B2 (en) 1997-09-03 1997-09-03 Method for removing copper from copper-containing nickel chloride solution

Country Status (1)

Country Link
JP (1) JP3427879B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162254A1 (en) 2010-06-21 2011-12-29 住友金属鉱山株式会社 Method for removal of copper ions from copper-containing nickel chloride solution, and process for production of electrolytic nickel
JP2015105386A (en) * 2013-11-28 2015-06-08 住友金属鉱山株式会社 Method for removing tellurium from sulfuric acid leachate of copper electrolytic slime
JP2015214737A (en) * 2014-05-13 2015-12-03 住友金属鉱山株式会社 Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
JP2016044355A (en) * 2014-08-26 2016-04-04 住友金属鉱山株式会社 Treatment method of nickel sulfide raw material
WO2016194658A1 (en) * 2015-05-29 2016-12-08 住友金属鉱山株式会社 Aqueous cobalt chloride solution purification method
WO2016194659A1 (en) * 2015-05-29 2016-12-08 住友金属鉱山株式会社 Aqueous cobalt chloride solution purification method
JP2017155342A (en) * 2017-05-19 2017-09-07 住友金属鉱山株式会社 Method for adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
CN108034822A (en) * 2017-12-06 2018-05-15 贵州红星电子材料有限公司 A kind of method for removing copper ion in tri compound sulfate liquor
JP2018199858A (en) * 2017-05-29 2018-12-20 住友金属鉱山株式会社 Copper removal method, method for producing electrolytically refined nickel
US10344354B2 (en) 2014-08-13 2019-07-09 Sumitomo Metal Mining Co., Ltd. Nickel recovery process
JP2019178353A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment device
JP2019178354A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment device
CN117550765A (en) * 2024-01-12 2024-02-13 国工恒昌新材料(义乌)有限公司 Sewage treatment system and method for preparing recycled copper-titanium alloy

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162254A1 (en) 2010-06-21 2011-12-29 住友金属鉱山株式会社 Method for removal of copper ions from copper-containing nickel chloride solution, and process for production of electrolytic nickel
EP2584055A4 (en) * 2010-06-21 2016-01-20 Sumitomo Metal Mining Co Method for removal of copper ions from copper-containing nickel chloride solution, and process for production of electrolytic nickel
JP2015105386A (en) * 2013-11-28 2015-06-08 住友金属鉱山株式会社 Method for removing tellurium from sulfuric acid leachate of copper electrolytic slime
JP2015214737A (en) * 2014-05-13 2015-12-03 住友金属鉱山株式会社 Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
US10344354B2 (en) 2014-08-13 2019-07-09 Sumitomo Metal Mining Co., Ltd. Nickel recovery process
JP2016044355A (en) * 2014-08-26 2016-04-04 住友金属鉱山株式会社 Treatment method of nickel sulfide raw material
JP2016222977A (en) * 2015-05-29 2016-12-28 住友金属鉱山株式会社 Method for purifying aqueous cobalt chloride solution
JP2016222976A (en) * 2015-05-29 2016-12-28 住友金属鉱山株式会社 Method for purifying aqueous cobalt chloride solution
WO2016194659A1 (en) * 2015-05-29 2016-12-08 住友金属鉱山株式会社 Aqueous cobalt chloride solution purification method
CN107614711A (en) * 2015-05-29 2018-01-19 住友金属矿山株式会社 The purification process of cobalt chloride solution
US10239764B2 (en) * 2015-05-29 2019-03-26 Sumitomo Metal Mining Co., Ltd. Aqueous cobalt chloride solution purification method
WO2016194658A1 (en) * 2015-05-29 2016-12-08 住友金属鉱山株式会社 Aqueous cobalt chloride solution purification method
JP2017155342A (en) * 2017-05-19 2017-09-07 住友金属鉱山株式会社 Method for adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
JP2018199858A (en) * 2017-05-29 2018-12-20 住友金属鉱山株式会社 Copper removal method, method for producing electrolytically refined nickel
CN108034822A (en) * 2017-12-06 2018-05-15 贵州红星电子材料有限公司 A kind of method for removing copper ion in tri compound sulfate liquor
JP2019178353A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment device
JP2019178354A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment device
CN117550765A (en) * 2024-01-12 2024-02-13 国工恒昌新材料(义乌)有限公司 Sewage treatment system and method for preparing recycled copper-titanium alloy
CN117550765B (en) * 2024-01-12 2024-04-12 国工恒昌新材料(义乌)有限公司 Sewage treatment system and method for preparing recycled copper-titanium alloy

Also Published As

Publication number Publication date
JP3427879B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
CN1038348C (en) Production of metal from minerals
JP3879126B2 (en) Precious metal smelting method
JP3427879B2 (en) Method for removing copper from copper-containing nickel chloride solution
JP2001316736A (en) Method for recovering silver
TWI428451B (en) Valuable metal recovery method from lead-free waste solder
CN107177865A (en) Process for separating lead and bismuth from high-bismuth lead alloy
JP2003247089A (en) Method of recovering indium
JPH10140257A (en) Wet refining method of nickel by chlorine leaching electrolytic extracting method
JP2009167451A (en) Method for electrolytically extracting copper
PL111879B1 (en) Method of recovery of copper from diluted acid solutions
JP6233478B2 (en) Purification method of bismuth
WO2018138917A1 (en) Bismuth purification method
RU2510669C2 (en) Method of extracting noble metals from wastes
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
JP3896107B2 (en) Diaphragm electrolysis method
EP0161224B1 (en) Process for copper chloride aqueous electrolysis
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
JP3704266B2 (en) How to recover bismuth
CN1034958C (en) One-step Zn smelting technique by suspension electrolysis of ZnS
JPH07300691A (en) Method for adjusting copper ion concentration in electrolyte for removing copper
JP3951041B2 (en) Electrochemical recovery of heavy metals from fly ash
US4634507A (en) Process for the production of lead from sulphide ores
JP3803858B2 (en) Electrochemical recovery of heavy metals from fly ash
JP2001262389A (en) Liquid feed controlling method in decoppering electrolysis
JP2001279344A (en) Method for recovering tin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees