JP2006241568A - Electrowinning method for iron from acid chloride aqueous solution - Google Patents

Electrowinning method for iron from acid chloride aqueous solution Download PDF

Info

Publication number
JP2006241568A
JP2006241568A JP2005062130A JP2005062130A JP2006241568A JP 2006241568 A JP2006241568 A JP 2006241568A JP 2005062130 A JP2005062130 A JP 2005062130A JP 2005062130 A JP2005062130 A JP 2005062130A JP 2006241568 A JP2006241568 A JP 2006241568A
Authority
JP
Japan
Prior art keywords
iron
anode
aqueous solution
chamber
chloride aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062130A
Other languages
Japanese (ja)
Other versions
JP4501726B2 (en
Inventor
Koji Ando
孝治 安藤
Masaki Imamura
正樹 今村
Tatsuya Higaki
達也 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005062130A priority Critical patent/JP4501726B2/en
Publication of JP2006241568A publication Critical patent/JP2006241568A/en
Application granted granted Critical
Publication of JP4501726B2 publication Critical patent/JP4501726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical electrowinning method where, at the time when metal iron is recovered from an iron ion-containing acid chloride aqueous solution by an electrowinning method, the reduction of the cell voltage in an electrolytic cell is attained, thus electrolytic treatment can be performed at a low power cost. <P>SOLUTION: In the method where, using an electrolytic cell composed of a cathode chamber and an anode chamber partitioned by a diaphragm, iron is electrolytically won from an iron ion-containing acid chloride aqueous solution, the acid chloride aqueous solution is fed to the cathode chamber to electrolytically deposit a part of the iron ions, is successively introduced into the anode chamber provided with an oxygen generation type insoluble anode through the diaphragm to oxidize the iron ions, and is thereafter exhausted from the anode chamber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸性塩化物水溶液からの鉄の電解採取方法に関し、さらに詳しくは、鉄イオンを含む酸性塩化物水溶液から電解採取法によって金属鉄を回収する際に、電解槽の槽電圧の低減を図り、電力コストが低い電解処理を行うことができる経済的な電解採取方法に関する。   The present invention relates to a method for electrolytically collecting iron from an aqueous solution of acidic chloride, and more specifically, when recovering metallic iron from an aqueous solution of acidic chloride containing iron ions by an electrolytic collection method, the cell voltage of the electrolytic cell is reduced. In particular, the present invention relates to an economical electrowinning method capable of performing electrolytic treatment with low power cost.

鉄イオンを含む酸性塩化物水溶液としては、メッキ、酸洗浄処理等の中間物又は廃液として工業的に大量に発生している。従来、これらの廃液中の鉄イオンを工業的に利用することが可能な形態として回収する際には、高コストを要し経済性に問題があった。このため、これらの廃液の最終処分方法としては、中和処理され、鉄等を水酸化物などの形態で固体化して埋め立て処分にする手段が取られることが多かった。しかしながら、鉄イオンを水酸化物として分離することは、生成物量を増大化することになり、処分場容量のゆとりを圧迫する等の問題があった。   The acidic chloride aqueous solution containing iron ions is industrially produced in large quantities as an intermediate or waste solution for plating, acid cleaning treatment and the like. Conventionally, when recovering iron ions in these waste liquids in a form that can be used industrially, high cost is required and there is a problem in economic efficiency. For this reason, as a final disposal method of these waste liquids, a means for neutralization treatment and solidification of iron or the like in the form of hydroxide or the like to landfill disposal has been often taken. However, separating iron ions as a hydroxide increases the amount of product, and there is a problem that the capacity of the disposal site is compressed.

さらに、水酸化物は化学的にそれほど安定な形態とは言えず、微量に共存する不純物成分が長時間の間に溶出するなどして地下水中に浸透すことも懸念される。したがって、環境に影響しないように浸透防止対策を行った管理型の処分場で処理したり、水酸化物を加熱脱水処理してヘマタイトなどの安定な酸化鉄の形態に変換してから処理することが行なわれていた。これらの処理には多額の費用がかかり、廃液処理のためのコストは無視できないものとなっていた。   Furthermore, hydroxide is not a chemically stable form, and there is a concern that impurity components coexisting in a trace amount may elute over a long period of time and penetrate into groundwater. Therefore, it should be processed at a controlled disposal site that has taken measures to prevent permeation so as not to affect the environment. Was done. These treatments cost a lot of money, and the costs for waste liquid treatment cannot be ignored.

この対策として、液中の鉄イオンを容量が少なくかつ安定な形態である金属鉄として固定化することが考えられる。金属鉄として回収された鉄は、新たな資源としてリサイクルすることができるので、環境対策としてもっとも優れた処理方法と言える。ところで、酸性液に含まれる鉄イオンを金属鉄として回収する方法としては、ガス還元、電解採取、中和後の乾式処理での還元等が挙げられるが、この中で、電解採取による金属鉄の回収は、他の方法に比べて低い温度で行なうことができるので省エネルギーであるとともに、特別に高価な設備も不要であるのでもっとも有利な方法である。   As a countermeasure, it is conceivable to fix iron ions in the liquid as metallic iron having a small capacity and a stable form. Since iron recovered as metallic iron can be recycled as a new resource, it can be said to be the most excellent treatment method as an environmental measure. By the way, methods for recovering iron ions contained in an acidic solution as metallic iron include gas reduction, electrowinning, reduction by dry treatment after neutralization, etc. Recovery is the most advantageous method because it can be performed at a lower temperature than other methods, thus saving energy and requiring no particularly expensive equipment.

ところで、電解採取では一般に隔膜電解法が用いられる。例えば、塩化鉄水溶液の隔膜電解法では、鉄、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金、黒鉛等をカソードとし、酸化ルテニウム被覆チタン、黒鉛、白金被覆チタン等の不溶性アノードとの間に通電することによって鉄をカソード表面上に電解析出させる(例えば、特許文献1参照)。しかしながら、電解採取法では、一般に、アノードとして粗金属鉄を用いる電解精製法に比べて、アノード電位が高くなるので電解槽の槽電圧が上昇し電力コストが増加するという欠点があった。   By the way, diaphragm electrolysis is generally used for electrowinning. For example, in the diaphragm electrolysis method using iron chloride aqueous solution, iron, nickel, nickel alloy, stainless steel, titanium, titanium alloy, graphite, etc. are used as the cathode, and current is passed between the insoluble anode such as ruthenium oxide coated titanium, graphite, platinum coated titanium, etc. By doing so, iron is electrolytically deposited on the cathode surface (see, for example, Patent Document 1). However, the electrowinning method generally has a disadvantage that the anode potential is higher and the cell voltage of the electrolyzer is increased and the power cost is increased as compared with the electrorefining method using crude metallic iron as the anode.

また、一般に、電解採取においてアノードの電位を下げるために、例えばアノードにチタン製のバスケットを使用し、その中に粗金属を投入し、同時にアノードとカソード間をイオン交換膜で仕切ることで不純物の移動を制限し、アノード電位の低下と不純物の共析防止の両立を図る方法がある。しかしながら、この方法には、高価なイオン交換膜を使用することから初期投資や維持費がかさんでしまうこと、イオン交換膜による電圧上昇も無視できないこと、さらに、液中の不純物によりイオン交換膜の劣化が促進されること等の問題もあり鉄を回収する際には実用的な方法とはいえない。   In general, in order to lower the potential of the anode during electrowinning, for example, a basket made of titanium is used for the anode, and a crude metal is introduced into the anode, and at the same time, the anode and the cathode are partitioned by an ion exchange membrane. There is a method of limiting the movement to achieve both reduction in anode potential and prevention of impurity co-deposition. However, since this method uses expensive ion exchange membranes, initial investment and maintenance costs are increased, voltage increase due to ion exchange membranes cannot be ignored, and ion exchange membranes due to impurities in the liquid. It is not a practical method for recovering iron due to problems such as accelerated deterioration of iron.

この解決策として、本発明者らによる硫化銅鉱物を含む銅原料の精錬方法(特願2003−315124号)では、銅を分離回収した後の酸性塩化物水溶液に含まれる鉄イオンを、不溶性アノードを備えた隔膜電解法で金属鉄として回収する方法が提案されている。ここでは、特定の給液方法及び電解条件を用いて行うことによって、電解での塩素ガスの発生の抑制と槽電圧の低下が達成され、電解に要する電力コストを削減することができるとしている。しかしながら、経済性の向上のためさらに電力コストを低減することが期待されている。   As a solution to this problem, in the method for refining a copper raw material containing a copper sulfide mineral by the present inventors (Japanese Patent Application No. 2003-315124), iron ions contained in an acidic chloride aqueous solution after separating and recovering copper are converted into an insoluble anode. There has been proposed a method of recovering as metallic iron by a diaphragm electrolysis method comprising: Here, by using a specific liquid supply method and electrolysis conditions, suppression of the generation of chlorine gas in electrolysis and a reduction in cell voltage are achieved, and the power cost required for electrolysis can be reduced. However, it is expected to further reduce the power cost to improve the economy.

特開平11−61445号公報(第1頁、第2頁、第5頁)JP-A-11-61445 (first page, second page, fifth page)

本発明の目的は、上記の従来技術の問題点に鑑み、鉄イオンを含む酸性塩化物水溶液から電解採取法によって金属鉄を回収する際に、電解槽の槽電圧の低減を図り、電力コストが低い電解処理を行うことができる経済的な電解採取方法を提供することにある。これにより、液中の鉄イオンを金属鉄として回収し有用な資源としてリサイクルすることができる。   The object of the present invention is to reduce the cell voltage of the electrolytic cell and reduce the power cost when recovering metallic iron from the acidic chloride aqueous solution containing iron ions by the electrowinning method in view of the above-mentioned problems of the prior art. An object of the present invention is to provide an economical electrowinning method capable of performing low electrolytic treatment. Thereby, the iron ion in a liquid can be collect | recovered as metallic iron, and can be recycled as a useful resource.

本発明者らは、上記目的を達成するために、隔膜で仕切られたカソード室とアノード室から構成される電解槽を用いて、鉄イオンを含む酸性塩化物水溶液から鉄を電解採取する方法について、鋭意研究を重ねた結果、鉄イオンを含む酸性塩化物水溶液を、カソード室に供給し、隔膜を通してアノード室に導き鉄を電解採取する際に、特定の不溶性アノードを用いたところ、電解槽の槽電圧の低減が得られ、電力コストが低い電解処理を行うことができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have provided a method for electrolytically collecting iron from an acidic chloride aqueous solution containing iron ions using an electrolytic cell composed of a cathode chamber and an anode chamber partitioned by a diaphragm. As a result of intensive research, an acidic chloride aqueous solution containing iron ions was supplied to the cathode chamber, led to the anode chamber through the diaphragm, and when a specific insoluble anode was used for electrolytic collection, The inventors have found that a reduction in cell voltage can be obtained and that an electrolytic treatment with low power cost can be performed, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、隔膜で仕切られたカソード室とアノード室から構成される電解槽を用いて、鉄イオンを含む酸性塩化物水溶液から鉄を電解採取する方法であって、
前記酸性塩化物水溶液をカソード室に供給し、鉄イオンの一部を電解析出させ、続いて隔膜を通して酸素発生型の不溶性アノードを備えたアノード室に導き、鉄イオンを酸化させた後、アノード室から排出させることを特徴とする鉄の電解採取方法が提供される。
That is, according to the first aspect of the present invention, there is provided a method for electrolytically collecting iron from an acidic chloride aqueous solution containing iron ions using an electrolytic cell composed of a cathode chamber and an anode chamber partitioned by a diaphragm. And
The acidic aqueous chloride solution is supplied to the cathode chamber, and a part of iron ions is electrolytically deposited, and then led to the anode chamber having an oxygen-generating insoluble anode through the diaphragm to oxidize the iron ions, and then the anode An iron electrowinning method is provided, characterized in that it is discharged from the chamber.

また、本発明の第2の発明によれば、第1の発明において、前記酸素発生型の不溶性アノードは、イリジウム酸化物系被覆電極であることを特徴とする鉄の電解採取方法が提供される。   According to a second aspect of the present invention, there is provided an iron electrowinning method according to the first aspect, wherein the oxygen generating insoluble anode is an iridium oxide-based coated electrode. .

また、本発明の第3の発明によれば、第1の発明において、前記イリジウム酸化物系被覆電極は、網目状構造であることを特徴とする鉄の電解採取方法が提供される。   According to a third aspect of the present invention, there is provided the iron electrowinning method according to the first aspect, wherein the iridium oxide-based coated electrode has a network structure.

また、本発明の第4の発明によれば、第1の発明において、前記酸性塩化物水溶液のpHは、0.5〜1.5に調整されることを特徴とする鉄の電解採取方法が提供される。   According to a fourth aspect of the present invention, there is provided the iron electrowinning method according to the first aspect, wherein the pH of the acidic chloride aqueous solution is adjusted to 0.5 to 1.5. Provided.

また、本発明の第5の発明によれば、第1〜4いずれかの発明において、前記酸性塩化物水溶液に含まれる鉄イオンは実質的に2価状態で存在するとともに、アノード室に供給される鉄イオン量はカソードで電解析出される鉄量の2〜2.8倍量であることを特徴とする鉄の電解採取方法が提供される。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the iron ions contained in the acidic chloride aqueous solution are substantially in a divalent state and are supplied to the anode chamber. There is provided a method for electrolytically collecting iron, wherein the amount of iron ions is 2 to 2.8 times the amount of iron electrolytically deposited at the cathode.

本発明の酸性塩化物水溶液からの鉄の電解採取方法は、第1の発明において、鉄イオンを含む酸性塩化物水溶液から電解採取法によって金属鉄を回収する際に、酸素発生型の不溶性アノードを用いる隔膜電解法により、電解槽の槽電圧が低下され、電解処理の電力コストが低減されるので、その工業的価値は極めて大きい。また、第2〜5では、さらに、電力コストを低下することができるので、より有利である。   The method for electrolytically collecting iron from an aqueous solution of acidic chloride according to the present invention is the same as that of the first invention, when recovering metallic iron from an aqueous solution of acidic chloride containing iron ions by electrolytic collection. The diaphragm electrolysis method used reduces the cell voltage of the electrolytic cell and reduces the power cost of the electrolytic treatment, so that its industrial value is extremely high. Moreover, in the 2nd-5th, since electric power cost can be reduced further, it is more advantageous.

以下、本発明の酸性塩化物水溶液からの鉄の電解採取方法を詳細に説明する。
本発明は、隔膜で仕切られたカソード室とアノード室から構成される電解槽を用いて、鉄イオンを含む酸性塩化物水溶液から鉄を電解採取する方法であって、前記酸性塩化物水溶液をカソード室に供給し、鉄イオンの一部を電解析出させ、続いて隔膜を通して酸素発生型の不溶性アノードを備えたアノード室に導き、鉄イオンを酸化させた後、アノード室から排出させることを特徴とする。
Hereinafter, the method for electrolytically collecting iron from the aqueous acid chloride solution of the present invention will be described in detail.
The present invention relates to a method of electrolytically collecting iron from an acidic chloride aqueous solution containing iron ions using an electrolytic cell composed of a cathode chamber and an anode chamber partitioned by a diaphragm, wherein the acidic chloride aqueous solution is used as a cathode. It is supplied to the chamber, electrolytically deposits a part of iron ions, then leads to an anode chamber equipped with an oxygen generating insoluble anode through a diaphragm, oxidizes iron ions, and then discharges from the anode chamber And

本発明において、鉄イオンを含む酸性塩化物水溶液から鉄を隔膜電解法により電解採取する際に、酸素発生型の不溶性アノードを用いることが重要である。これによって、電解槽の槽電圧が低下され、電解処理の電力コストが低減される。   In the present invention, it is important to use an oxygen-generating insoluble anode when electrolytically collecting iron from an acidic chloride aqueous solution containing iron ions by a diaphragm electrolysis method. Thereby, the cell voltage of the electrolytic cell is lowered, and the power cost of the electrolytic treatment is reduced.

すなわち、アノードとして粗金属鉄を用いる電解精製に比較して電解採取において槽電圧が上昇するのは、用いる不溶性アノードによるアノード電位によるものと考えられる。
上記酸性塩化物水溶液等のいわゆる塩化浴から鉄イオンを電解採取する際には、鉄イオンに付随している塩化物イオンを固定化しなければ、浴全体の塩化物イオンのバランスが取れなくなる。したがって、従来は、浴全体の塩化物イオンのバランスをとるために、塩素をガスとして分離することが一般的であったため、塩化浴では塩素発生型の不溶性アノードが使用されていた。このとき、塩素をガスとして発生させるので、ガス発生にともない電圧が上昇する。これに対して、従来は硫酸浴での電解に用いられていた酸素発生型の不溶性アノードを用いれば、液中の塩素イオンは副生する水素イオンと結合して塩酸を生成し、アノードでの塩素ガスの発生が抑制されて電圧が低下することになる。
That is, it can be considered that the increase in the cell voltage in the electrowinning compared with the electrolytic purification using crude metallic iron as the anode is due to the anode potential due to the insoluble anode used.
When electrolytically collecting iron ions from a so-called chloride bath such as the above acidic chloride aqueous solution, the chloride ions in the entire bath cannot be balanced unless the chloride ions associated with the iron ions are fixed. Therefore, conventionally, in order to balance chloride ions in the entire bath, it has been common to separate chlorine as a gas, so a chlorine generating insoluble anode has been used in the chloride bath. At this time, since chlorine is generated as a gas, the voltage increases as the gas is generated. On the other hand, if an oxygen-generating insoluble anode that has been used for electrolysis in a sulfuric acid bath is used, chlorine ions in the liquid combine with hydrogen ions produced as a by-product to produce hydrochloric acid. Generation | occurrence | production of chlorine gas will be suppressed and a voltage will fall.

まず、本発明の電解装置と電解方法の概要について、図面を用いて説明する。図1は、本発明に用いる電解装置の構造の一例を表す概略図である。
図1において、電解槽1は、隔膜2によってカソード室3とアノード室4に仕切られている。各室には、所定の電極面積を有するカソード5と酸素発生型の不溶性アノード6が所定の極間距離で設置される。
First, the outline | summary of the electrolysis apparatus and electrolysis method of this invention is demonstrated using drawing. FIG. 1 is a schematic view showing an example of the structure of an electrolysis apparatus used in the present invention.
In FIG. 1, the electrolytic cell 1 is divided into a cathode chamber 3 and an anode chamber 4 by a diaphragm 2. In each chamber, a cathode 5 having a predetermined electrode area and an oxygen-generating insoluble anode 6 are installed at a predetermined inter-electrode distance.

電解において、電解液として鉄イオンを含む酸性塩化物水溶液は所定の温度に調整された後、カソード室3の上部に設けられた給液口7からカソード室3へ所定の流量で供給される。電解槽1内で、電解液は、隔膜2を通過してカソード室3からアノード室4に流入し、アノード室4の下部から所定の位置に液面高さが設定されるサイホン8により排出される。ここで、電解はカソード5と酸素発生型の不溶性アノード6間に所定の電流密度となるように所定の電流を通電して行われる。この間、カソード5の表面では鉄イオンが還元され金属鉄が析出される。一方、酸素発生型の不溶性アノード6の表面では2価の鉄イオンが3価に酸化される。   In electrolysis, an acidic chloride aqueous solution containing iron ions as an electrolytic solution is adjusted to a predetermined temperature, and then supplied to the cathode chamber 3 from a liquid supply port 7 provided in the upper portion of the cathode chamber 3 at a predetermined flow rate. In the electrolytic cell 1, the electrolytic solution passes through the diaphragm 2, flows from the cathode chamber 3 into the anode chamber 4, and is discharged from the lower portion of the anode chamber 4 by the siphon 8 whose liquid level is set at a predetermined position. The Here, the electrolysis is performed by passing a predetermined current between the cathode 5 and the oxygen generating insoluble anode 6 so as to obtain a predetermined current density. During this time, iron ions are reduced on the surface of the cathode 5 and metallic iron is deposited. On the other hand, divalent iron ions are oxidized trivalently on the surface of the oxygen generating insoluble anode 6.

本発明に用いる酸素発生型の不溶性アノードとしては、特に限定されるものではなく、例えば、従来、硫酸浴に使用されている、チタン等の金属基板表面にイリジウム酸化物等を塗布後焼成して製造されたイリジウム酸化物系被覆電極が用いられる。なお、一般に、アノード用の不溶性電極としては、例えば、酸素発生型の電極としては硫酸浴に使用されているイリジウム酸化物を塗布した電極、塩素発生型電極としては塩化浴に使用されているルテニウム酸化物を塗布した電極等、アノード電位を抑制するため種々のアノードが市販されている。   The oxygen generating insoluble anode used in the present invention is not particularly limited. For example, conventionally, an iridium oxide or the like is applied to the surface of a metal substrate such as titanium, which is conventionally used in a sulfuric acid bath, and then fired. The manufactured iridium oxide-based coated electrode is used. In general, as an insoluble electrode for an anode, for example, an electrode coated with iridium oxide used in a sulfuric acid bath as an oxygen generation type electrode, and ruthenium used in a chloride bath as a chlorine generation type electrode. Various anodes such as electrodes coated with oxides are commercially available for suppressing the anode potential.

本発明に用いるイリジウム酸化物系被覆電極の構造としては、特に限定されるものではなく、板(プレート)状、網目(メッシュ)状など様々な構造のものが用いられるが、この中で、網目状構造であるものが好ましい。すなわち、網目状構造のアノードは板状構造のアノードに比べて、塩素ガスの発生が生じていない状態でも槽電圧の低下の効果が大きい。なお、従来、網目状構造のアノードは生成されたガスを電極から早期に大気放出させることができるので電圧上昇を抑える効果があるとされてきた。しかしながら、網目状構造のアノードでは、3価に酸化された鉄イオンが拡散されやすく、それだけ未反応の2価鉄イオンと接触する機会が増加するためによるものと思われる。   The structure of the iridium oxide-based coated electrode used in the present invention is not particularly limited, and various structures such as a plate shape and a mesh shape can be used. Those having a shape structure are preferred. That is, the network-structured anode has a greater effect of reducing the cell voltage even when no chlorine gas is generated, compared to the plate-structured anode. Conventionally, the network-structured anode has been considered to have an effect of suppressing the voltage increase because the generated gas can be released from the electrode to the atmosphere at an early stage. However, it is considered that in the network-structured anode, trivalently oxidized iron ions are easily diffused, and the chance of contact with unreacted divalent iron ions increases accordingly.

本発明に用いるカソードとしては、特に限定されるものではないが、鉄、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金、黒鉛等が挙げられるが、この中で、ステンレス、又はチタンが好ましい。   Although it does not specifically limit as a cathode used for this invention, Iron, nickel, nickel alloy, stainless steel, titanium, a titanium alloy, graphite etc. are mentioned, Among these, stainless steel or titanium is preferable.

本発明に用いる隔膜としては、特に限定されるものではないが、例えば、濾布又は固体電解質膜が用いられるが、この中でも、特に目が細かく、通水度が低くなるように織られた濾布を用いる方法が好ましい。すなわち、固体電解質膜は、濾布と比べてコストが高く、また不純物に弱いからである。   The diaphragm used in the present invention is not particularly limited. For example, a filter cloth or a solid electrolyte membrane is used. Among these, a filter woven so as to have a particularly fine mesh and a low water permeability. A method using a cloth is preferred. That is, the solid electrolyte membrane is more expensive than the filter cloth and is vulnerable to impurities.

本発明に用いる鉄イオンを含む酸性塩化物水溶液としては、特に限定されるものではなく、メッキ、酸洗浄処理、鉄鋼製錬、非鉄金属製錬等の中間工程水、廃液等の鉄イオンを含む酸性塩化物水溶液が用いられるが、この中で、得られた金属鉄の純度等品質を確保するためには、事前の工程において、鉄よりも貴な金属イオンの大部分が除去されている液が望ましい。また、鉄イオンが2価状態で存在する液は、カソードでの鉄電着量とアノードでの鉄イオンの酸化反応の関係を制御することが容易である。   The acidic chloride aqueous solution containing iron ions used in the present invention is not particularly limited, and includes iron ions such as plating, acid cleaning treatment, steel smelting, non-ferrous metal smelting intermediate process water, waste liquid, etc. An acidic chloride aqueous solution is used. Among these, in order to ensure the purity and quality of the obtained metallic iron, a liquid in which most of the noble metal ions than iron are removed in the previous step. Is desirable. In addition, the liquid in which iron ions exist in a divalent state can easily control the relationship between the amount of iron electrodeposition at the cathode and the oxidation reaction of iron ions at the anode.

例えば、銅の湿式製錬法として注目されている、銅原料を塩素により浸出する塩素浸出工程、第1銅イオンを含む還元生成液を得る銅イオン還元処理工程、銅を含む逆抽出生成液と抽出残液とを得る溶媒抽出工程、前記逆抽出生成液を電解採取に付し、電着銅を得る銅電解採取工程、前記溶媒抽出工程で得られる抽出残液を浄液に付し、精製液を得る浄液工程からなる一連のプロセスから得られる塩化物水溶液は、不純物元素が除去され、かつ鉄イオンは実質的に2価状態で存在するので好ましく用いられる。   For example, a chlorine leaching step for leaching a copper raw material with chlorine, a copper ion reduction treatment step for obtaining a reduction product solution containing first copper ions, a back extraction product solution containing copper, which has been attracting attention as a copper smelting method Solvent extraction step for obtaining an extraction residual solution, subjecting the back extraction product solution to electrowinning, copper electrowinning step for obtaining electrodeposited copper, and subjecting the extraction residue obtained in the solvent extraction step to a purified solution for purification An aqueous chloride solution obtained from a series of processes comprising a liquid purification step for obtaining a liquid is preferably used because impurity elements are removed and iron ions are present in a substantially divalent state.

本発明に用いる鉄イオンを含む酸性塩化物水溶液のpHとしては、特に限定されるものではなく、好ましくは0.5〜2.0、より好ましくは0.5〜1.5に調整される。すなわち、酸素発生型の不溶性アノードでは、生成した塩酸が酸化物を溶解し付着と成長を抑制する作用があるが、pHが2.0を超えると、巻き込んだ空気により電解液中に鉄の水酸化物が生成し、電解液を懸濁して配管や隔膜の目詰まりを生じたり、カソードの金属鉄への巻き込みを生じる。また、アノード表面で酸化物が生成しアノード表面を覆うことで電圧が上昇する現象が起こる。一方、pHが0.5未満では、カソードで析出した金属鉄の化学溶解が生じる。   It does not specifically limit as pH of the acidic chloride aqueous solution containing the iron ion used for this invention, Preferably it is 0.5-2.0, More preferably, it adjusts to 0.5-1.5. That is, in the oxygen generation type insoluble anode, the generated hydrochloric acid dissolves oxides and suppresses adhesion and growth. However, when the pH exceeds 2.0, iron water is contained in the electrolyte by the entrained air. Oxide is generated, and the electrolyte is suspended to cause clogging of the piping and the diaphragm, or the cathode is involved in metallic iron. In addition, a phenomenon occurs in which an oxide is generated on the anode surface and the voltage is increased by covering the anode surface. On the other hand, if the pH is less than 0.5, chemical dissolution of metallic iron deposited at the cathode occurs.

例えば、鉄濃度100g/L及び塩化物濃度200g/Lで、pH1.0又は2.0になるように調整された第1塩化鉄水溶液を電解液として用いて、図1の電解装置を使用して、電流密度200A/mとなるように通電して電解採取した。なお、イリジウム酸化物系被覆の酸素発生型の不溶性アノード(プレート型、ペルメレック電極(株)製)を用い、またアノード室に供給される鉄イオン量はカソードで電解析出される鉄量の2.8倍量であった。このとき、通電初期の槽電圧はpH1.0、2.0の場合にそれぞれ1.51V、1.50Vであったが、停電直前には、表1に示すようにそれぞれ1.50V、2.22Vとなった。これより、pH1.0で給液すれば、pH2.0に比べて、槽電圧の上昇を抑えることができる。 For example, using the first iron chloride aqueous solution adjusted to pH 1.0 or 2.0 at an iron concentration of 100 g / L and a chloride concentration of 200 g / L as an electrolytic solution, the electrolytic apparatus of FIG. 1 is used. Then, electrification was carried out by energizing to a current density of 200 A / m 2 . In addition, an oxygen generating insoluble anode (plate type, manufactured by Permerek Electrode Co., Ltd.) coated with iridium oxide is used, and the amount of iron ions supplied to the anode chamber is 2. The amount was 8 times. At this time, the cell voltage at the initial energization was 1.51 V and 1.50 V at pH 1.0 and 2.0, respectively, but immediately before power failure, as shown in Table 1, 1.50 V, 2. It became 22V. From this, if the liquid is supplied at pH 1.0, an increase in the cell voltage can be suppressed as compared with pH 2.0.

Figure 2006241568
Figure 2006241568

本発明で用いる望ましい鉄イオンの形態と供給量としては、特に限定されるものではないが、鉄を含む塩化物水溶液の鉄イオンは実質的に2価状態で存在するとともに、アノード室に供給される鉄イオンは鉄イオン量はカソードで電解析出される鉄量(カソード鉄電着量)の好ましくは2倍量以上、より好ましくは2〜2.8倍量である。
すなわち、2価の鉄イオンを含む塩化浴の液から1gの鉄を電析させた場合、アノードでは2gの2価の鉄イオンが3価に酸化されるのが望ましい。この際、アノードからの塩素ガスの発生を防止することができる。言い換えれば、アノードではカソードで電析する鉄量の2倍量の鉄イオンがないと、酸化する鉄イオンが不足し塩素ガスが発生することになるので、電解採取する鉄量をカソードに給液した2価の鉄イオンの3分の1以下になるように電解条件で制御することが肝要である。
The form and supply amount of desirable iron ions used in the present invention are not particularly limited, but iron ions in an aqueous chloride solution containing iron exist in a substantially divalent state and are supplied to the anode chamber. The amount of iron ions is preferably twice or more, more preferably 2 to 2.8 times the amount of iron electrolytically deposited at the cathode (cathode iron electrodeposition amount).
That is, when 1 g of iron is electrodeposited from a solution of a chloride bath containing divalent iron ions, it is desirable that 2 g of divalent iron ions are oxidized to trivalent at the anode. At this time, generation of chlorine gas from the anode can be prevented. In other words, if there is no iron ion twice the amount of iron electrodeposited at the cathode, the iron ion to be oxidized will be insufficient and chlorine gas will be generated. It is important to control the electrolysis conditions so that it is 1/3 or less of the divalent iron ions.

なお、塩素ガスが発生した場合の酸化還元電位(ORP、銀/塩化銀電極を使用し60℃で測定)は1000mVを超えるのに対して、アノード室へカソードで電解析出される鉄イオンの2倍量の給液を行った際のアノード室の酸化還元電位(ORP、銀/塩化銀電極を使用し60℃で測定)は、約530mVであり、アノードからの塩素ガスの発生は起きないが、電圧上昇を確実に抑制するには、カソード鉄電着量の2.8倍量にすることが望ましい。   The oxidation-reduction potential (ORP, measured at 60 ° C. using a silver / silver chloride electrode) when chlorine gas is generated exceeds 1000 mV, whereas 2 of iron ions that are electrolytically deposited at the cathode into the anode chamber. The oxidation-reduction potential of the anode chamber (ORP, measured at 60 ° C. using a silver / silver chloride electrode) when supplying a double amount of liquid is about 530 mV, and generation of chlorine gas from the anode does not occur. In order to suppress the increase in voltage with certainty, it is desirable that the amount is 2.8 times the amount of cathode iron electrodeposition.

例えば、鉄濃度100g/L、塩化物濃度200g/Lで、pH1.0になるように調整された第1塩化鉄水溶液を電解液として用いて、図1の電解装置を使用して、カソード室への給液量を3.5、7、10mlに変え、電流密度400A/mとなるように通電して電解採取した。なお、イリジウム酸化物系被覆の酸素発生型の不溶性アノード(メッシュ型、ペルメレック電極(株)製)を用いた。前記給液量は、アノード室に供給される鉄イオン量としては、カソード鉄電着量に対しては1.4、2.8、4倍量にあたる。
このとき停電時の槽電圧は、表2に示すように、アノード室に供給される鉄イオン量が2.8倍量を超えてもそれ以上効果は見られない。
For example, the first iron chloride aqueous solution adjusted to pH 1.0 with an iron concentration of 100 g / L and a chloride concentration of 200 g / L is used as an electrolyte solution, and the cathode chamber is used by using the electrolysis apparatus of FIG. The amount of liquid supplied to was changed to 3.5, 7, and 10 ml, and electrolysis was performed by energizing to a current density of 400 A / m 2 . In addition, an oxygen-generating insoluble anode (mesh type, manufactured by Permerek Electrode Co., Ltd.) with an iridium oxide coating was used. The amount of liquid supply corresponds to 1.4, 2.8, and 4 times the amount of cathode ion electrodeposition as the amount of iron ions supplied to the anode chamber.
At this time, as shown in Table 2, the effect of the cell voltage at the time of power failure is not seen even if the amount of iron ions supplied to the anode chamber exceeds 2.8 times.

Figure 2006241568
Figure 2006241568

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析方法は、ICP発光分析法で行った。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used by the Example and the comparative example was performed by the ICP emission analysis method.

また、実施例及び比較例で用いた電解槽の構造は以下の通りである。
「電解槽の構造」
電解槽の構造は、図1の概略図に示すものであり、長さ60mm、横幅90mm、深さ170mmの大きさの塩化ビニル製のものであった。この電解槽の長さ方向をアノード側で20mm、カソード側で40mmとなる位置でテトロン製の濾布で仕切った。アノード室には、電極面積が65×120mmの不溶性アノード1枚を設置した。
なお、メッシュ型アノードでは、網目の大きさは一辺が約7mmの菱形であり、開口部分を除いた真の電極面積は、板状電極の約70%となる。カソード室には、厚さ2mmのチタン板を電極面積がアノードと同じようになるようにマスキングしたカソード1枚を設置した。両電極の極間距離が60mmとなるように電解槽に装入し固定した。電極の裏面はいずれも全面をマスキングした。
Moreover, the structure of the electrolytic cell used by the Example and the comparative example is as follows.
"Structure of electrolytic cell"
The structure of the electrolytic cell is shown in the schematic diagram of FIG. 1, and was made of vinyl chloride having a length of 60 mm, a lateral width of 90 mm, and a depth of 170 mm. The electrolytic cell was partitioned with a Tetron filter cloth at a position where the length of the electrolytic cell was 20 mm on the anode side and 40 mm on the cathode side. In the anode chamber, one insoluble anode having an electrode area of 65 × 120 mm was installed.
In the mesh type anode, the mesh size is a rhombus having a side of about 7 mm, and the true electrode area excluding the opening is about 70% of the plate electrode. In the cathode chamber, one cathode was prepared by masking a 2 mm thick titanium plate so that the electrode area was the same as that of the anode. The electrode was charged and fixed so that the distance between the electrodes was 60 mm. The entire back surface of the electrode was masked.

電解液は、定量ポンプで所定の流量でカソード室の液面付近に給液し、アノード室の下部から排出するようにした。廃電解液の排出は、サイホン式により、電解槽の底から150mmの位置からオーバーフローさせるようにしたので電解槽の液量はカソード室で540ml、アノード室で270mlとなる。   The electrolyte was supplied near the liquid level in the cathode chamber at a predetermined flow rate with a metering pump and discharged from the lower part of the anode chamber. The waste electrolyte is discharged from the position 150 mm from the bottom of the electrolytic cell by a siphon method, so that the amount of liquid in the electrolytic cell is 540 ml in the cathode chamber and 270 ml in the anode chamber.

また、実施例及び比較例で用いた電解液の調整方法は以下の通りである。
「電解液の調整方法」
塩化第1鉄(試薬1級)を鉄濃度が100g/Lになるように純水に溶解し、pHが1.0になるように塩酸で調整し、さらに塩化物濃度が200g/Lになるように食塩を加えて調製した。
Moreover, the adjustment method of the electrolyte solution used by the Example and the comparative example is as follows.
"Method for adjusting electrolyte"
Ferrous chloride (reagent grade 1) is dissolved in pure water so that the iron concentration is 100 g / L, adjusted with hydrochloric acid so that the pH is 1.0, and further the chloride concentration is 200 g / L. In this way, sodium chloride was added.

(実施例1)
アノードとしては、イリジウム酸化物系被覆の酸素発生型の不溶性アノード(プレート型、ペルメレック電極(株)製)を用いた。
上記電解槽を用いて、カソード室へ上記方法で調整された電解液を温度60℃に加温した後、毎分7mlの流量で給液した。給液量から求めた平均滞留時間は、カソード室で77分、及びアノード室で39分の計約2時間である。この時間で給液が排出されることになる。電解電流を3.1A(電流密度400A/m)に調整して24時間通電した。この給液量は、アノード室に供給される鉄イオン量ではカソード鉄電着量の2.8倍量にあたる。この間、通電から5分毎にアノードとカソードの間の電圧を測定した。なお、初期槽電圧は2.5V程度であった。6時間目以降から停電までの槽電圧を平均した値を停電時の槽電圧とした。結果を表3に示す。
Example 1
As the anode, an iridium oxide-based oxygen-generating insoluble anode (plate type, manufactured by Permerek Electrode Co., Ltd.) was used.
Using the electrolytic cell, the electrolytic solution prepared by the above method was heated to a temperature of 60 ° C. and then supplied to the cathode chamber at a flow rate of 7 ml per minute. The average residence time determined from the amount of supplied liquid is about 2 hours in total of 77 minutes in the cathode chamber and 39 minutes in the anode chamber. The liquid supply is discharged at this time. The electrolysis current was adjusted to 3.1 A (current density 400 A / m 2 ), and energized for 24 hours. This liquid supply amount corresponds to 2.8 times the amount of cathode iron electrodeposition in terms of the amount of iron ions supplied to the anode chamber. During this time, the voltage between the anode and the cathode was measured every 5 minutes after energization. The initial cell voltage was about 2.5V. The value obtained by averaging the tank voltage from the sixth hour to the power failure was taken as the cell voltage at the time of the power failure. The results are shown in Table 3.

(実施例2)
アノードとしてイリジウム酸化物系被覆の酸素発生型の不溶性アノード(メッシュ型、ペルメレック電極(株)製)を用いた以外は実施例1と同様に行ない槽電圧を測定した。なお、初期槽電圧は2.5V程度であった。結果を表3に示す。
(Example 2)
The cell voltage was measured in the same manner as in Example 1 except that an iridium oxide-based oxygen-generating insoluble anode (mesh type, manufactured by Permerek Electrode Co., Ltd.) was used as the anode. The initial cell voltage was about 2.5V. The results are shown in Table 3.

(比較例1)
アノードとしてルテニウム酸化物系被覆の塩素発生型の不溶性アノード(プレート型、ペルメレック電極(株)製)を用いた以外は実施例1と同様に行ない槽電圧を測定した。なお、初期槽電圧は2.5V程度であった。結果を表3に示す。
(Comparative Example 1)
The cell voltage was measured in the same manner as in Example 1 except that a ruthenium oxide-coated chlorine-generating insoluble anode (plate type, manufactured by Permerek Electrode Co., Ltd.) was used as the anode. The initial cell voltage was about 2.5V. The results are shown in Table 3.

(比較例2)
アノードとしてルテニウム酸化物系被覆の塩素発生型の不溶性アノード(メッシュ型、ペルメレック電極(株)製)を用いた以外は実施例1と同様に行ない槽電圧を測定した。なお、初期槽電圧は2.5V程度であった。結果を表3に示す。
(Comparative Example 2)
The cell voltage was measured in the same manner as in Example 1 except that a ruthenium oxide-based, chlorine-generating insoluble anode (mesh type, manufactured by Permerek Electrode Co., Ltd.) was used as the anode. The initial cell voltage was about 2.5V. The results are shown in Table 3.

Figure 2006241568
Figure 2006241568

表3より、実施例1又は2では、不溶性アノードの種類で、本発明の方法に従って行われたので、電解にともなう電圧の上昇は見られず停電時の槽電圧は初期槽電圧とほぼ同様であり、従来の塩素発生型の不溶性アノードの場合と比べて低い槽電圧が得られることが分かる。これに対して、比較例1又は2では、不溶性アノードの種類がこれらの条件に合わないので、停電時の槽電圧は初期槽電圧に比べて上昇し満足すべき結果が得られないことが分かる。   From Table 3, in Example 1 or 2, the insoluble anode type was carried out according to the method of the present invention, so the voltage increase due to electrolysis was not seen, and the cell voltage at the time of power failure was almost the same as the initial cell voltage. It can be seen that a lower cell voltage can be obtained than in the case of a conventional chlorine generating insoluble anode. On the other hand, in Comparative Example 1 or 2, since the type of insoluble anode does not meet these conditions, the cell voltage at the time of power failure rises compared to the initial cell voltage, and it can be seen that satisfactory results cannot be obtained. .

以上より明らかなように、本発明の酸性塩化物水溶液からの鉄の電解採取方法は、メッキ、酸洗浄処理、鉄鋼製錬、非鉄金属製錬等の中間工程水、廃液等の処理分野において、鉄イオンを含む酸性塩化物水溶液から鉄を電解採取する際に電解電力を低減させる方法として好適である。   As is clear from the above, the method of electrolytic extraction of iron from the acidic chloride aqueous solution of the present invention is in the field of treatment of intermediate process water such as plating, acid cleaning treatment, steel smelting, nonferrous metal smelting, waste liquid, etc. This is suitable as a method for reducing electrolysis power when electrolytically collecting iron from an aqueous solution of acidic chloride containing iron ions.

本発明に用いる電解装置の構造の一例を表す概略図である。It is the schematic showing an example of the structure of the electrolyzer used for this invention.

符号の説明Explanation of symbols

1 電解槽
2 隔膜
3 カソード室
4 アノード室
5 カソード
6 酸素発生型の不溶性アノード
7 給液口
8 サイホン
DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2 Diaphragm 3 Cathode chamber 4 Anode chamber 5 Cathode 6 Oxygen generation type insoluble anode 7 Liquid supply port 8 Siphon

Claims (5)

隔膜で仕切られたカソード室とアノード室から構成される電解槽を用いて、鉄イオンを含む酸性塩化物水溶液から鉄を電解採取する方法であって、
前記酸性塩化物水溶液をカソード室に供給し、鉄イオンの一部を電解析出させ、続いて隔膜を通して酸素発生型の不溶性アノードを備えたアノード室に導き、鉄イオンを酸化させた後、アノード室から排出させることを特徴とする鉄の電解採取方法。
A method of electrolytically collecting iron from an acidic chloride aqueous solution containing iron ions using an electrolytic cell composed of a cathode chamber and an anode chamber partitioned by a diaphragm,
The acidic aqueous chloride solution is supplied to the cathode chamber, and a part of iron ions is electrolytically deposited, and then led to the anode chamber having an oxygen-generating insoluble anode through the diaphragm to oxidize the iron ions, and then the anode A method for electrolytically collecting iron, which is discharged from a chamber.
前記酸素発生型の不溶性アノードは、イリジウム酸化物系被覆電極であることを特徴とする請求項1に記載の鉄の電解採取方法。   2. The iron electrowinning method according to claim 1, wherein the oxygen generating insoluble anode is an iridium oxide-based coated electrode. 前記イリジウム酸化物系被覆電極は、網目状構造であることを特徴とする請求項1に記載の鉄の電解採取方法。   2. The iron electrowinning method according to claim 1, wherein the iridium oxide-based coated electrode has a network structure. 前記酸性塩化物水溶液のpHは、0.5〜1.5に調整されることを特徴とする請求項1に記載の鉄の電解採取方法。   The method of electrolytic collection of iron according to claim 1, wherein the pH of the acidic chloride aqueous solution is adjusted to 0.5 to 1.5. 前記酸性塩化物水溶液に含まれる鉄イオンは実質的に2価状態で存在するとともに、アノード室に供給される鉄イオン量はカソードで電解析出される鉄量の2〜2.8倍量であることを特徴とする請求項1〜4のいずれかに記載の鉄の電解採取方法。   The iron ions contained in the acidic chloride aqueous solution exist substantially in a divalent state, and the amount of iron ions supplied to the anode chamber is 2 to 2.8 times the amount of iron electrolytically deposited at the cathode. The iron electrowinning method according to any one of claims 1 to 4.
JP2005062130A 2005-03-07 2005-03-07 Electrowinning of iron from acidic chloride aqueous solution Active JP4501726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062130A JP4501726B2 (en) 2005-03-07 2005-03-07 Electrowinning of iron from acidic chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062130A JP4501726B2 (en) 2005-03-07 2005-03-07 Electrowinning of iron from acidic chloride aqueous solution

Publications (2)

Publication Number Publication Date
JP2006241568A true JP2006241568A (en) 2006-09-14
JP4501726B2 JP4501726B2 (en) 2010-07-14

Family

ID=37048260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062130A Active JP4501726B2 (en) 2005-03-07 2005-03-07 Electrowinning of iron from acidic chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP4501726B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034212A1 (en) 2006-09-21 2008-03-27 Qit-Fer & Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
CN102037160A (en) * 2008-03-20 2011-04-27 魁北克钛铁公司 Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
CN109778227A (en) * 2019-03-20 2019-05-21 北京航天国环技术有限公司 A kind of processing method of iron content abraum salt
US11753732B2 (en) 2021-03-24 2023-09-12 Electrasteel, Inc. Ore dissolution and iron conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126973A (en) * 1980-10-30 1982-08-06 Terasu Konsaanobi Podonitsuku Continuous regeneration of iron chloride solution
JPH03193889A (en) * 1989-12-22 1991-08-23 Tdk Corp Electrode for generating oxygen and production thereof
JPH11140670A (en) * 1997-11-11 1999-05-25 Tsurumi Soda Co Ltd Method for regenerating ferric chloride liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126973A (en) * 1980-10-30 1982-08-06 Terasu Konsaanobi Podonitsuku Continuous regeneration of iron chloride solution
JPH03193889A (en) * 1989-12-22 1991-08-23 Tdk Corp Electrode for generating oxygen and production thereof
JPH11140670A (en) * 1997-11-11 1999-05-25 Tsurumi Soda Co Ltd Method for regenerating ferric chloride liquid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034212A1 (en) 2006-09-21 2008-03-27 Qit-Fer & Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
EP2064369A1 (en) * 2006-09-21 2009-06-03 Qit-Fer Et Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
EP2064369A4 (en) * 2006-09-21 2009-11-04 Qit Fer Titane Inc Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
AU2007299519B2 (en) * 2006-09-21 2011-12-15 Qit-Fer & Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
CN102037160A (en) * 2008-03-20 2011-04-27 魁北克钛铁公司 Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
JP2011514446A (en) * 2008-03-20 2011-05-06 キュイテ−フェル エ チタン インコーポレイティド Electrochemical treatment method for recovering the value of metallic iron and chlorine from iron rich metal chloride waste
US8784639B2 (en) 2008-03-20 2014-07-22 Rio Tinto Fer Et Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
CN109778227A (en) * 2019-03-20 2019-05-21 北京航天国环技术有限公司 A kind of processing method of iron content abraum salt
US11753732B2 (en) 2021-03-24 2023-09-12 Electrasteel, Inc. Ore dissolution and iron conversion system
US11767604B2 (en) 2021-03-24 2023-09-26 Electrasteel, Inc. 2-step iron conversion system

Also Published As

Publication number Publication date
JP4501726B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
EP2268852B1 (en) Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
EP1660700B1 (en) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction
EP2650403A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
RU2357012C1 (en) Extraction method of noble metals from wastes of radio-electronic industry
JP2007231363A (en) Process for electrolytic refining of copper
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
JP3427879B2 (en) Method for removing copper from copper-containing nickel chloride solution
US4256557A (en) Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes
JP2009167451A (en) Method for electrolytically extracting copper
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
CN104651880B (en) The method that a kind of decopper(ing) point cyanogen simultaneous PROCESS FOR TREATMENT silver smelts the lean solution containing cyanogen
RU2510669C2 (en) Method of extracting noble metals from wastes
JP3896107B2 (en) Diaphragm electrolysis method
JP2008127627A (en) Method for electrowinning copper
JP4797128B2 (en) Method for electrolytic production of cobalt
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
JP4701943B2 (en) Electrowinning of iron from acidic chloride aqueous solution
EP1601818B1 (en) Method for copper electrowinning in hydrochloric solution
JP5344278B2 (en) Indium metal production method and apparatus
JP2009167453A (en) Electrowinning method for iron from acid chloride aqueous solution
KR20200064668A (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
JPS6363637B2 (en)
JPH0215187A (en) Production of iron and chlorine from aqueous solution containing iron chloride
JP2571591B2 (en) Precious metal recovery method
JP2570076B2 (en) Manufacturing method of high purity nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3