JPH09217190A - Energization method in electrolytic refining - Google Patents

Energization method in electrolytic refining

Info

Publication number
JPH09217190A
JPH09217190A JP8027773A JP2777396A JPH09217190A JP H09217190 A JPH09217190 A JP H09217190A JP 8027773 A JP8027773 A JP 8027773A JP 2777396 A JP2777396 A JP 2777396A JP H09217190 A JPH09217190 A JP H09217190A
Authority
JP
Japan
Prior art keywords
current
time
current efficiency
energization
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8027773A
Other languages
Japanese (ja)
Inventor
Koji Ando
孝治 安藤
Naoyuki Tsuchida
直行 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8027773A priority Critical patent/JPH09217190A/en
Publication of JPH09217190A publication Critical patent/JPH09217190A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the degradation in current efficiency and improve an electrodeposited surface state by setting specified pause time at the time of changing over a forward direction to backward direction. SOLUTION: The pause time in changeover of forward and backward energization in electrolytic refining of metal is 30 to 100 seconds and the changeover of current directions is executed at a ratio of once every 15 minutes to 1 hour, by which the occurrence of an anode passive state is prevented and the degradation in the current efficiency is minimized. The degradation in the current efficiency occurs in the instantaneous shorting by the reversing of the current in the electrified layer of the cathode surface, in addition to the dissolution of the cathode. Then, the electrodeposition progresses even during the discharge time and the degradation in the current efficiency is effectively prevented if the current direction is reversed after the electrified layer is discharged with the pause of the specified time. The reason thereof conceivably lies in that the required metallic ion concn. is restored by natural convection and diffusion while the electrified layer is not annihilated right after the service interruption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、銅やニッケルなど
の電解精製、電解採取などにおいて高電流密度を用いる
操業等に利用できる。
BACKGROUND OF THE INVENTION The present invention can be utilized for operations such as electrolytic refining of copper and nickel, electrolytic extraction, and the like, which use a high current density.

【0002】[0002]

【従来の技術】銅などの電解精製においては生産性を向
上するために高電流密度操業を行う。高電流密度による
電解ではカソード側で粒の発生が、アノード側では不動
態化のおそれがある。このため、周期的にアノードとカ
ソードの電流の向き、すなわちアノード側に電気の正極
をつなぎ、カソード側に電気の負極をつないで通電した
り(以下、正方向とする。)、あるいはアノード側に電
気の負極をつなぎ、カソード側に電気の正極をつないで
通電する(以下、逆方向とする。)ことにより電極表面
での分極の減少をはかる通電方法(以下、PR通電と称
する)が工業的に用いられてきた。
2. Description of the Related Art In electrolytic refining of copper or the like, a high current density operation is performed in order to improve productivity. In electrolysis with high current density, particles may be generated on the cathode side and passivated on the anode side. For this reason, the direction of the current of the anode and the cathode is periodically, that is, the positive electrode of electricity is connected to the anode side and the negative electrode of electricity is connected to the cathode side to conduct electricity (hereinafter, referred to as positive direction), or to the anode side. An industrial method is an energization method (hereinafter referred to as PR energization) in which an electric negative electrode is connected and an electric positive electrode is connected to a cathode side to energize (hereinafter, reverse direction) to reduce polarization on an electrode surface. Has been used for.

【0003】しかしながら、PR通電の電気銅の外観
は、一方向通電の電気銅に比べて低下するという問題が
ある。また、PR通電では一般に数分程度以下の短い周
期で電着表面を再溶解することを繰り返すために、実際
の電流効率が低くなるという問題もある。
However, there is a problem that the appearance of PR-conducting electrolytic copper is deteriorated as compared with that of unidirectionally-conducting electrolytic copper. Further, in PR energization, in general, re-melting of the electrodeposited surface is repeated in a short cycle of about several minutes or less, so that there is a problem that the actual current efficiency becomes low.

【0004】外観の低下を防止するために電流反転時間
を延長したり、逆転する電流量を増加することが行われ
てきたが、再溶解が均一に行われるとは限らず、一層電
流効率が低下することもあって効果的ではなかった。
It has been attempted to extend the current reversal time or increase the amount of current for reversal in order to prevent the deterioration of the appearance, but remelting is not always performed uniformly, and the current efficiency is further improved. It was not effective because it decreased.

【0005】[0005]

【発明が解決しようとする課題】本発明はPR通電にお
ける電着表面の向上と電力の有効利用を行おうとするも
のである。
DISCLOSURE OF THE INVENTION The present invention is intended to improve the surface of electrodeposition and effectively utilize electric power during PR energization.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では、正方向から逆方向へ通電を切り替え
る時に一定の休止時間を設ける。この一定の休止時間
は、電解液中の帯電層の消失に関連する。また、本発明
では通電の切り替えを長周期に行い電流効率の低下を最
小限に抑える。なお、本発明の方法は、従来のPR通電
に対し、PPR通電と称される。
In order to solve the above-mentioned problems, the present invention provides a certain pause time when switching the energization from the forward direction to the reverse direction. This constant dwell time is associated with the disappearance of the charged layer in the electrolyte. Further, in the present invention, switching of energization is performed in a long cycle to minimize a decrease in current efficiency. The method of the present invention is called PPR energization, as opposed to conventional PR energization.

【0007】本発明の通電方法では、電流を定期的に逆
転しながら通電する金属の電解精製において、正方向の
通電の後で帯電層が存在する一定時間停電した後に逆方
向の通電を行うことを特徴とする。
According to the energization method of the present invention, in the electrolytic refining of a metal in which an electric current is applied while periodically reversing the electric current, an electric current is applied in the reverse direction after a power failure for a certain period of time in which the charged layer is present after the application of the positive direction. Is characterized by.

【0008】前記一定時間は30秒以上〜100秒未満
であるとよい。また、電流方向の切り替えを15分〜1
時間に1回の割合で行うことにより、アノード不動態の
発生を防止し、かつ、電流効率の低下を最小に抑えるこ
とができる。さらに、前記金属は銅またはニッケル、
金、銀、鉛、亜鉛から選択される。
The certain period of time is preferably 30 seconds or more and less than 100 seconds. Also, switching the current direction is 15 minutes to 1
By performing the operation once a time, it is possible to prevent the occurrence of anode passivation and suppress the decrease in current efficiency to the minimum. Further, the metal is copper or nickel,
It is selected from gold, silver, lead and zinc.

【0009】[0009]

【発明の実施の形態】高電流密度電解で用いるPPR通
電では、従来のPR通電と同様に正方向と逆方向の通電
を周期的に繰り返す。アノード不動態化の防止を目的と
するPPR通電では、正逆方向の切り替えは従来のPR
通電における数分程度の周期よりも長周期である15分
〜1時間に一度の切り替えで充分に防止できることを見
い出した。不動態の発生が防止できるならば、切り替え
頻度を減少した方が、効率良く、経済的である。
BEST MODE FOR CARRYING OUT THE INVENTION In PPR energization used in high current density electrolysis, energization in the forward and reverse directions is periodically repeated as in the conventional PR energization. In PPR energization for the purpose of preventing anode passivation, switching in the forward and reverse directions is the same as the conventional PR.
It has been found that the switching can be sufficiently prevented by switching once every 15 minutes to 1 hour, which is a cycle longer than a few minutes of energization. If passivation can be prevented, it is more efficient and economical to reduce the switching frequency.

【0010】また、従来のPR法ではカソード上への電
着の一部を溶解するため電流効率が低下する問題がある
が、電流効率の低下はカソードの溶解によること以外に
もカソード表面の電気二重層など帯電層を電流の逆転に
より瞬時にショートすることにも起因すると考えられ
る。これを防止するにはPPR通電におけるように帯電
層を放電させてから電流方向を逆転すれば、放電時間中
にも電着が進行し、電流効率の低下防止に効果があると
考えられる。
Further, in the conventional PR method, there is a problem that the current efficiency is lowered because part of the electrodeposition on the cathode is dissolved. However, the decrease in current efficiency is caused not only by the dissolution of the cathode but also on the surface of the cathode. It is considered that this is also due to the fact that the charging layer such as the double layer is short-circuited instantaneously due to the reversal of the current. To prevent this, if the charging layer is discharged and then the current direction is reversed as in PPR energization, it is considered that electrodeposition proceeds even during the discharge time, which is effective in preventing a decrease in current efficiency.

【0011】電極表面での放電時間は電解槽を停電して
からの槽電圧の変化で容易に知ることができる。種々の
電流密度下で放電時間を測定した結果、おおむね30秒
の間に放電が終了することが判明した。すなわち、正方
向の通電後に最小で30秒間の停電時間を設け、完全に
放電させることで電流効率の低下を防止できると考えら
れる。これに関する余裕時間は100秒であり、従っ
て、これ以上停電すると生産効率が低下する。
The discharge time on the electrode surface can be easily known by the change in the cell voltage after the power failure of the electrolytic cell. As a result of measuring the discharge time under various current densities, it was found that the discharge was completed within about 30 seconds. That is, it is considered that the current efficiency can be prevented from being lowered by providing a power failure time of at least 30 seconds after the current is applied in the positive direction and completely discharging the power. The margin time in this regard is 100 seconds, so that a further power outage reduces production efficiency.

【0012】また、PPR通電において逆方向の電流を
0、すなわち一時停電を行った場合には電気銅表面が効
果的に改善されることも見い出した。PR通電による外
観改善は古くから知られているが、長時間の逆電解を行
わなければ外観の改善は困維であることが判明してい
る。
It has also been found that the electric copper surface is effectively improved when the reverse current is zero during PPR energization, that is, when a temporary power failure is performed. It has been known for a long time to improve the appearance by applying a PR current, but it has been found that the improvement of the appearance is difficult unless reverse electrolysis is performed for a long time.

【0013】銅電解において、通電中にはカソード表面
の銅濃度は0に近くなるが、とりわけ高電流密度の場合
この傾向が加速される。カソード表面の銅濃度が0とな
ると平滑な電析を得ることができなくなるが、電流方向
を逆転することでカソード表面を溶解し、表面近傍での
銅濃度を回復することができる。
In copper electrolysis, the copper concentration on the cathode surface is close to 0 during energization, but this tendency is accelerated especially at high current densities. When the copper concentration on the cathode surface becomes 0, smooth electrodeposition cannot be obtained, but by reversing the current direction, the cathode surface can be dissolved and the copper concentration near the surface can be recovered.

【0014】しかし、PPR通電におけるように、電流
を逆転することなく停電することでも通電時の電極表面
の液流れおよび電解液からの電極表面への拡散によりカ
ソード表面の銅濃度をかなりの程度回復することができ
る。このため、停電直後で帯電層の消滅しない約30秒
間は、液流れによる自然対流および拡散により銅濃度を
回復し、消失後に電流を逆転することで電極表面の銅濃
度をさらに濃くすることが考えられる。PPR通電で
は、この自然対流や拡散現象を停電操作により有効に使
うことにより、従来のPR通電の電解よりも経済的に陰
極表面の銅濃度を増加させることができる。
However, as in the case of PPR energization, even if a power failure occurs without reversing the current, the liquid concentration on the electrode surface during energization and the diffusion from the electrolytic solution to the electrode surface restores the copper concentration on the cathode surface to a considerable extent. can do. Therefore, it is conceivable that the copper concentration on the electrode surface will be further increased by recovering the copper concentration by natural convection and diffusion due to the liquid flow and reversing the current after the disappearance for about 30 seconds after the power failure, where the charged layer does not disappear. To be In PPR energization, the natural convection and diffusion phenomena are effectively used in the power failure operation, so that the copper concentration on the cathode surface can be increased more economically than in the conventional PR energization electrolysis.

【0015】以上述べたように長周期による電流の切り
替えと、正方向から逆方向に切り替える時点において完
全に放電させるための30秒程度の一時停電を行う通電
方法により電流効率の向上と電着表面状態の改善が効果
的に実現できる。
As described above, the current efficiency is improved and the electrodeposition surface is improved by the energization method in which the current is switched by the long cycle and the temporary power failure is carried out for about 30 seconds to completely discharge at the time of switching from the forward direction to the reverse direction. The improvement of the condition can be effectively realized.

【0016】[0016]

【実施例】【Example】

[実施例1]精製アノード(サイズ縦1030×横10
50×厚さ38mm、重量360kg)26枚と銅カソ
ード(サイズ縦1050×横1070×厚さ0.7m
m、重量約7kg)25枚を電解槽(サイズ長さ300
0×幅1260×深さ1390mm)に装入した。銅5
0g/l、硫酸190g/lの組成である液温60℃の
電解液を毎分20リットル循環した。カソード電流密度
は正方向、逆方向とも350A/m2 とした。
[Example 1] Purified anode (size: length 1030 x width 10)
50 pieces x thickness 38 mm, weight 360 kg 26 sheets and copper cathode (size length 1050 x width 1070 x thickness 0.7 m)
m, weight about 7 kg) 25 sheets electrolyzer (size length 300
0 × width 1260 × depth 1390 mm). Copper 5
An electrolytic solution having a composition of 0 g / l and sulfuric acid 190 g / l and having a liquid temperature of 60 ° C. was circulated at 20 liters per minute. The cathode current density was 350 A / m 2 in both the forward and reverse directions.

【0017】3つの電槽を用意しA槽・B槽・C槽とし
た。有効電流効率を以下の式(数1)で定義した。
Three battery tanks were prepared and used as tank A, tank B, and tank C. The effective current efficiency was defined by the following formula (Equation 1).

【0018】[0018]

【数1】E=(TP×IP−TR×IR)/(TP+T
R)×100 E; 有効電流効率(%) TP;正方向時間 TR;逆方向時間 IP;正方向電流 IR;逆方向電流
## EQU1 ## E = (TP × IP-TR × IR) / (TP + T
R) × 100 E; Effective current efficiency (%) TP; Forward direction time TR; Reverse direction time IP; Forward direction current IR; Reverse direction current

【0019】この有効電流効率は直接電力原単位に影響
し、経済性の指標になる。
This effective current efficiency directly affects the electric power consumption rate and becomes an index of economic efficiency.

【0020】A槽は200秒間正方向に通電後、10秒
間逆方向に通電することを操り返した。A槽の有効電流
効率は90.5%となった。
In tank A, electricity was applied in the forward direction for 200 seconds and then electricity was applied in the reverse direction for 10 seconds. The effective current efficiency of tank A was 90.5%.

【0021】B槽は通電方法を正方向に29.5分毎に
30秒間の逆転時間を設けた。B槽の有効電流効率は9
6.2%であった。
In tank B, a reversing time of 30 seconds was set every 29.5 minutes in the positive direction of the energization method. The effective current efficiency of tank B is 9
It was 6.2%.

【0022】C槽は29分10秒毎に30秒間停電した
後、20秒間逆転した。C槽の有効電流効率は97.7
%となった。
The tank C was turned off every 29 minutes and 10 seconds for 30 seconds and then reversed for 20 seconds. Effective current efficiency of tank C is 97.7.
%.

【0023】通電は240時間実施し、通電中毎日ショ
ート発生の有無を点検した。また、通電終了後、電気銅
外観を目視にて90点満点で評価した。表1に成績を示
すように切り替え時に停電を行ったC槽の長周期通電の
操業成績が優れていることが確認された。
Power was supplied for 240 hours, and it was checked every day during the power supply whether or not a short circuit occurred. After the completion of energization, the appearance of electrolytic copper was visually evaluated on a 90-point scale. As shown in the results in Table 1, it was confirmed that the operation performance of the long-period energization of the tank C, which had a power failure at the time of switching, was excellent.

【0024】[0024]

【表1】 [通電方法による操業成績への影響] 通電方法 外観 ショート率 電流効率 有効電流効率 (点) (%) (%) (%) A 短周期 PR 59 3.81 86.8 90.5 B 長周期 PR 67 6.83 93.0 96.2 C 長周期 PPR 72 1.43 94.3 97.7[Table 1] [Effect of energization method on operating results] Energization method Appearance Short-circuit rate Current efficiency Effective current efficiency (points) (%) (%) (%) A Short cycle PR 59 3.81 86.8 90.5 B long period PR 67 6.83 93.0 96.2 C long period PPR 72 1.43 94.3 97.7

【0025】[実施例2]実施例1は銅電解のものであ
るが、同様のPPR電解をニッケルのメタル電解、金電
解、鉛電解とに適用したところ、同様な効果を得た。
[Embodiment 2] Although Embodiment 1 is of copper electrolysis, when the same PPR electrolysis was applied to nickel metal electrolysis, gold electrolysis, and lead electrolysis, similar effects were obtained.

【0026】[0026]

【発明の効果】本発明は以上のように構成されているの
で、高電流密度による操業において、電流効率の低下防
止と外観向上の両方が実現でき、生産性と品質を向上で
きる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to prevent the deterioration of current efficiency and improve the appearance in the operation at high current density, and improve the productivity and quality.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25C 1/20 C25C 1/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C25C 1/20 C25C 1/20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電流を定期的に逆転しながら通電する金
属の電解精製において、正方向の通電の後で帯電層が消
失するまでの時間停電した後に逆方向の通電を行うこと
を特徴とする通電方法。
1. In electrolytic refining of a metal, in which an electric current is periodically applied while reversing the electric current, the electric current is applied in the reverse direction after a power failure for a period of time until the charge layer disappears after applying the electric current in the positive direction. How to energize.
【請求項2】 一定時間が30秒以上〜100秒未満で
ある請求項1に記載の通電方法。
2. The energization method according to claim 1, wherein the constant time is 30 seconds or more and less than 100 seconds.
【請求項3】 電流方向の切り替えを15分〜1時間に
1回の割合で行うことにより、アノード不動態の発生を
防止し、かつ、電流効率の低下を最小に抑えることを特
徴とする請求項1に記載の通電方法。
3. The switching of the current direction is performed once every 15 minutes to 1 hour to prevent the occurrence of anode passivation and to minimize the decrease in current efficiency. The energization method according to Item 1.
【請求項4】 金属が銅またはニッケル、金、銀、鉛、
亜鉛である請求項1〜3のいずれかに記載の通電方法。
4. The metal is copper or nickel, gold, silver, lead,
The energization method according to claim 1, which is zinc.
JP8027773A 1996-02-15 1996-02-15 Energization method in electrolytic refining Pending JPH09217190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8027773A JPH09217190A (en) 1996-02-15 1996-02-15 Energization method in electrolytic refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8027773A JPH09217190A (en) 1996-02-15 1996-02-15 Energization method in electrolytic refining

Publications (1)

Publication Number Publication Date
JPH09217190A true JPH09217190A (en) 1997-08-19

Family

ID=12230304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8027773A Pending JPH09217190A (en) 1996-02-15 1996-02-15 Energization method in electrolytic refining

Country Status (1)

Country Link
JP (1) JPH09217190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074463A (en) * 2009-09-30 2011-04-14 Pan Pacific Copper Co Ltd Method for electrolytically refining copper
JP2017214612A (en) * 2016-05-31 2017-12-07 国立大学法人九州大学 Electrolytic refining method for copper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074463A (en) * 2009-09-30 2011-04-14 Pan Pacific Copper Co Ltd Method for electrolytically refining copper
JP2017214612A (en) * 2016-05-31 2017-12-07 国立大学法人九州大学 Electrolytic refining method for copper

Similar Documents

Publication Publication Date Title
JPH01294368A (en) Preparation of electrolyte for redox flow battery
US4169775A (en) Protection of the low hydrogen overvoltage catalytic coatings
US4140596A (en) Process for the electrolytic refining of copper
US2706213A (en) Primary cells
JPS61290669A (en) Operation of zinc-halogen secondary battery
JPH09217190A (en) Energization method in electrolytic refining
WO1990015171A1 (en) Process for electroplating metals
JP4593038B2 (en) Method for producing cobalt sulfate solution
USRE34191E (en) Process for electroplating metals
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
JP3761074B2 (en) Method for electrolytic purification of copper
JP3063636B2 (en) Copper electrolytic refining method
CA1174199A (en) Bipolar refining of lead
JPH0978282A (en) Long period pulse electrolytic operation in electrolytic copper refining
JPH1068096A (en) Complex current application method in electrolytic refining
JPS6334851A (en) Zinc dendrite control method
JPH11200082A (en) Electrolysis method of cooper
JPH06212472A (en) Zinc electrolytic refining method and device therefor
JP2017214612A (en) Electrolytic refining method for copper
SU447457A1 (en) Intermittent-current electrolyzer power supply method
JP6473102B2 (en) Cobalt electrowinning method
JPH06212470A (en) Titanium alloy anode electrode for electrolysis of manganese dioxide
RU2152668C1 (en) Method for shaping electrodes of lead storage batteries
JPH11165174A (en) Method for controlling energization of ionic water generator
JP2012092447A (en) Electrolytic extracting method of cobalt