JPH06212472A - Zinc electrolytic refining method and device therefor - Google Patents

Zinc electrolytic refining method and device therefor

Info

Publication number
JPH06212472A
JPH06212472A JP4176090A JP17609092A JPH06212472A JP H06212472 A JPH06212472 A JP H06212472A JP 4176090 A JP4176090 A JP 4176090A JP 17609092 A JP17609092 A JP 17609092A JP H06212472 A JPH06212472 A JP H06212472A
Authority
JP
Japan
Prior art keywords
copper conductor
current density
zinc
electrolysis
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4176090A
Other languages
Japanese (ja)
Other versions
JP3145194B2 (en
Inventor
Hiroshi Hatazawa
博 畑沢
Sukehiro Sudou
資広 須藤
Tatsumi Inamura
辰美 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Seiren KK
Original Assignee
Akita Seiren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Seiren KK filed Critical Akita Seiren KK
Priority to JP17609092A priority Critical patent/JP3145194B2/en
Publication of JPH06212472A publication Critical patent/JPH06212472A/en
Application granted granted Critical
Publication of JP3145194B2 publication Critical patent/JP3145194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To enable energizing in high current density by keeping the temp. of a copper conductor arranged at a side edge part of an electrolytic cell below a prescribed value by cooling the copper conductor with a forcedly cooling means. CONSTITUTION:Electrode plates 2 are hung in an electrolytic soln. 4 in the electrolytic cell 1 and an electrolysis is executed by energizing high electric current through the copper conductor 3. The copper conductor 3 is cooled by intermittently sprinkling water from a water tube 5 for sprinkling water. Since contacting parts are subjected to surface-oxidation and contact resistance rapidly increases to be easy to burn out by heating when the temp. of the copper conductor 3 exceeds 100 deg.C, the temp. of the copper conductor 3 is kept below 90 deg.C by forcedly cooling. Since the edge parts of the electrode plates are washed by cooling water at the same time, generation of scales such as gypsum generating from the electrolytic soln. 4 at the edge parts of the electrode plates are prevented. Consequently, operation can be run in hight current density over 500A/m<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亜鉛製練の電解採取に
おける高電流密度操業に関し、更に詳しくは銅導体の温
度コントロールを行いながらこれまでの高電流密度亜鉛
電解では上限値とされていた500A/m2 をさらに越
えて、例えば550A/m2 以上、あるいはさらに60
0A/m2 以上の高電流密度で操業する方法および装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high current density operation in electrowinning of zinc smelting, and more specifically, it has been set as an upper limit value in conventional high current density zinc electrolysis while controlling the temperature of a copper conductor. Further exceeding 500 A / m 2 , for example, 550 A / m 2 or more, or even 60
The present invention relates to a method and an apparatus for operating at a high current density of 0 A / m 2 or more.

【0002】[0002]

【従来の技術】近年、国内の亜鉛電解採取プロセスにお
いては、電力料金単価の安い夜間電力を大幅に使用して
夜間に高電流密度電解する方法が多く採用されるように
なってきた。しかし、この場合でも、一般的に用いられ
ている電流密度はせいぜい500A/m2 程度である。
そこで、更なる夜間電力の重点使用という観点から、電
流密度を一層高めて、夜間操業率をさらに上げることが
望まれていた。
2. Description of the Related Art In recent years, in the zinc electrowinning process in Japan, a method of electrolyzing at high current density at night using a large amount of nighttime electric power whose unit price is low has been widely adopted. However, even in this case, the current density generally used is at most about 500 A / m 2 .
Therefore, from the viewpoint of further intensive use of nighttime electric power, it has been desired to further increase the current density and further increase the nighttime operation rate.

【0003】しかしながら、現行の亜鉛電解法では50
0A/m2 以上の高電流密度で操業を行うと、電極板接
触部と銅導体の温度が急激に上昇するため、これらの表
面に酸化皮膜ができ易くなり、これにともなって電極板
や銅導体自体が著しく損耗するという問題が発生してい
た。また電解槽の電解液は硫酸酸性液であるため、電解
液温の上昇に伴って、水蒸気が発生して極板上に石膏等
のスケールを発生することになり、このスケールに邪魔
された一部の電極板に大電流が流れてスパークが発生す
るという問題もあった。
However, in the current zinc electrolysis method, 50
When operating at a high current density of 0 A / m 2 or more, the temperature of the electrode plate contact part and the copper conductor rises sharply, so that an oxide film is likely to form on these surfaces, and with this, the electrode plate and copper There has been a problem that the conductor itself is significantly worn. Further, since the electrolytic solution in the electrolytic cell is a sulfuric acid acid solution, as the electrolytic solution temperature rises, steam is generated and scales such as gypsum are generated on the electrode plate. There is also a problem that a large current flows through the electrode plate of the part to generate a spark.

【0004】[0004]

【発明が解決しようとする課題】上述のように従来の高
電流密度操業では、銅導体や電極板表面の酸化により接
触抵抗が急激に増加し加熱焼損し易くなるため、電流密
度はせいぜい500A/m2 程度までしか上げることが
できないのが現状であり、更に高電流密度で操業するた
めには新規な方法の開発を待たねばならなかった。
As described above, in the conventional high current density operation, the contact resistance abruptly increases due to the oxidation of the copper conductor and the surface of the electrode plate, and it is easy to burn by heating. Therefore, the current density is at most 500 A / At present, it is only possible to raise it to about m 2 , and in order to operate at a higher current density, it was necessary to wait for the development of a new method.

【0005】[0005]

【課題を解決するための手段】本発明者等は斯かる課題
を解決するために鋭意研究したところ、銅導体の温度上
昇を一定温度以下に制御する工夫をすることによって、
500A/m2 をこえる電流密度、例えば電流密度を5
50A/m2 以上、さらには600A/m2 以上にして
も特にトラブルなしに十分操業出来ることを見い出し本
発明を提供することができた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve such problems, and found that the temperature rise of the copper conductor was controlled to be below a certain temperature.
A current density exceeding 500 A / m 2 , for example, a current density of 5
It has been found that the present invention can be provided by finding out that even if it is 50 A / m 2 or more, and further 600 A / m 2 or more, it can operate sufficiently without any trouble.

【0006】すなわち本発明は、一つには、陰極として
アルミニウム板を、陽極として鉛合金板を用いて硫酸亜
鉛溶液から亜鉛を電解採取する電解法において、電槽の
側縁部に配備された銅導体を、例えば散水などによる強
制冷却手段で、連続的、断続的、または必要に応じ随時
冷却することにより、銅導体(ブス・バー)が予備試験
や理論計算等により決定した所定の温度を越えないよう
にしながら、500A/m2 をこえる高電流密度で電解
を行うことを特徴とする亜鉛電解製錬法を提供するもの
である。
That is, in one aspect, the present invention is provided in a side edge portion of a battery case in an electrolysis method for electrolytically extracting zinc from a zinc sulfate solution using an aluminum plate as a cathode and a lead alloy plate as an anode. By cooling the copper conductor continuously, intermittently, or as needed at any time by means of forced cooling, such as by spraying water, the copper conductor (bus / bar) is heated to a predetermined temperature determined by preliminary tests or theoretical calculations. The present invention provides a zinc electrolytic smelting method characterized in that electrolysis is performed at a high current density of more than 500 A / m 2 while not exceeding the limit.

【0007】上記所定の温度としては、例えば100℃
が一応の目安となることが確かめられた。すなわち10
0℃を越えないように銅導体を冷却しながら操業すれ
ば、550A/m2 以上、さらには600A/m2 以上
の高電流密度で不都合なく電解を継続できることを確認
した。上記所定温度をさらに低く、たとえば90℃とす
ればさらにトラブルが起こりにくいが、強制冷却のため
の水量等をそれだけ多くする必要がある。
The predetermined temperature is, for example, 100 ° C.
It was confirmed that is a tentative standard. Ie 10
It was confirmed that the electrolysis can be continued without a problem at a high current density of 550 A / m 2 or more, and further 600 A / m 2 or more if the copper conductor is cooled and operated so as not to exceed 0 ° C. If the above-mentioned predetermined temperature is further lowered, for example, to 90 ° C., troubles are less likely to occur, but it is necessary to increase the amount of water for forced cooling.

【0008】500A/m2 は従来の高電流密度電解に
おいて、一応上限値とされていた電流密度であり、本発
明はこの壁を破って、さらに高い超高電流密度での電解
を可能とした技術である。この故に最も広い特許請求の
範囲において、電流密度を「500A/m2 をこえる」
と規定したのであるが、具体的には550A/m2 、あ
るいは、600A/m2 という高電流密度電解を行って
満足できる結果を得ている。
500 A / m 2 is a current density which has been set as an upper limit value in the conventional high current density electrolysis, and the present invention breaks this wall and enables electrolysis at a higher ultrahigh current density. It is a technology. For this reason, in the broadest claim, the current density is “over 500 A / m 2 ”.
However, specifically, satisfactory results have been obtained by performing high current density electrolysis of 550 A / m 2 or 600 A / m 2 .

【0009】上記の通りであり、本発明の技術思想の本
質は、強制冷却手段により銅導体を適切な設定温度以下
に保つようにして操業すれば、従来の電流密度の上限値
であった500A/m2 を大幅に上回る高電流密度にお
いても、長時間安定に亜鉛電解製錬を行うことが可能で
あることの発見にある。したがって、強制冷却手段とし
て散水法を選択することは、一例に過ぎず、他の公知の
冷却手段、たとえば冷却した空気の吹きつけ法等の採用
も、もちろん可能である。冷却の目標値を100℃以
下、あるいは90℃以下とすることも、一つの具体的例
示に過ぎず発明の限定要件ではない。
As described above, the essence of the technical idea of the present invention is 500 A, which is the upper limit value of the conventional current density, when the copper conductor is operated by the forced cooling means so as to be kept below the appropriate set temperature. It was discovered that zinc electrolytic smelting can be stably performed for a long time even at a high current density significantly exceeding / m 2 . Therefore, the selection of the sprinkling method as the forced cooling means is only an example, and other known cooling means, for example, a method of blowing cooled air or the like can be adopted. Setting the cooling target value to 100 ° C. or lower, or 90 ° C. or lower is merely one specific example and is not a limiting requirement of the invention.

【0010】さらに本発明は、上記技術思想を実際の亜
鉛電解製錬に応用するための具体的装置の一例として、
請求項2に記載の装置を提供する。該装置における、両
側縁部に帯状の銅導体を配備された電解槽とは、通常の
亜鉛電解製錬において使用される電解槽のことであって
何ら特別のものではなく、銅導体の強制冷却手段の一例
として、該銅導体上に自動タイマーで冷却水を散布可能
な水管を設けたことが通常の電解槽と異なる特徴となっ
ている。実際にはさらに、電解槽と銅導体との間に仕切
板を設け、冷却水が導体下部に流出するような構造上の
配慮等もなされているが、これは、経済的に冷却効果を
高めるための工夫の一つであり、構造的な限定条件では
ない。
Furthermore, the present invention provides an example of a concrete apparatus for applying the above technical idea to actual zinc electrolytic smelting.
An apparatus according to claim 2 is provided. The electrolytic cell in which strip-shaped copper conductors are arranged on both side edges of the apparatus is an electrolytic cell used in ordinary zinc electrolytic smelting and is not special, and the copper conductor is forcibly cooled. As an example of the means, a feature that is different from a usual electrolytic cell is that a water pipe capable of spraying cooling water with an automatic timer is provided on the copper conductor. In fact, a partition plate is provided between the electrolytic cell and the copper conductor, and structural consideration is given so that cooling water flows out to the bottom of the conductor, but this enhances the cooling effect economically. This is one of the ways to do so, and is not a structurally limiting condition.

【0011】[0011]

【作用】実験によれば、銅導体の温度が100℃を越え
ると接触部の表面酸化により接触抵抗が急激に増加し加
熱焼損し易いということがわかった。本発明法では自動
タイマーに連結する水管から冷却水を任意に散布して、
通常、銅導体の温度が常時90℃以下に維持されるよう
にした。
According to the experiment, it has been found that when the temperature of the copper conductor exceeds 100 ° C., the contact resistance abruptly increases due to the surface oxidation of the contact portion, and is easily burned by heating. In the method of the present invention, the cooling water is sprayed arbitrarily from the water pipe connected to the automatic timer,
Usually, the temperature of the copper conductor is always maintained at 90 ° C or lower.

【0012】同時に電極板の端部(耳部)も上記冷却水
により洗浄されることから、電解液中の水の蒸発によっ
て電極板端部に発生する石膏等のスケールを防止するこ
ともできる。
At the same time, since the ends (ears) of the electrode plate are also washed with the cooling water, it is possible to prevent scales such as gypsum that are generated at the ends of the electrode plate due to evaporation of water in the electrolytic solution.

【0013】これらのことによって従来はせいぜい50
0A/m2 位迄の高電流密度でしか操業できなかったも
のが、600A/m2 以上の高電流密度まで上昇させる
ことが可能となり、低価格の夜間電力を有意義に利用す
ることができるようになった。
Due to these reasons, in the past, at most 50
What could only operate at high current densities up to 0 A / m 2 can now be increased to high current densities of 600 A / m 2 or more, so that low-cost nighttime electricity can be used meaningfully. Became.

【0014】以下、本発明について図面を参照して詳細
に説明するが、本発明の範囲はこれらに限定されるもの
ではない。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the scope of the present invention is not limited thereto.

【0015】[0015]

【実施例1】図1は、本発明に係る電解装置の平面図で
あり、本装置は、電解槽1中に電極板2を、すなわち陰
極としてのアルミニウム板と、陽極としての鉛合金板を
交互に電解液中に懸垂させ、高電流を銅導体3に通電し
て電解した。銅導体上には自動タイマー(図示せず)と
連動する散水用水管5としてのホースを設置した。
EXAMPLE 1 FIG. 1 is a plan view of an electrolysis apparatus according to the present invention. In this apparatus, an electrode plate 2 is provided in an electrolysis cell 1, that is, an aluminum plate as a cathode and a lead alloy plate as an anode. They were alternately suspended in an electrolytic solution, and a high current was passed through the copper conductor 3 for electrolysis. A hose was installed on the copper conductor as a water pipe 5 for sprinkling in conjunction with an automatic timer (not shown).

【0016】銅導体3に600A/m2 の電流密度で通
電させる一方、散水用水管5から電極板の静置時は2.
4m3 /hrの割合で冷却水を銅導体3上に散水して、
銅導体の温度を50℃に維持することとし、電極板の引
上げ時には散水量を5.4m3 /hrの割合で散水して
電極板表面への酸化皮膜発生とスケールによるスパーク
発生とを防止した。この結果、操業上何らのトラブルな
しにすみ、操業度を8%上昇させることができた他、夜
間電力利用率を2.8%上昇させることができた。
The copper conductor 3 is energized at a current density of 600 A / m 2 , while the electrode plate is left stationary from the water pipe 5 for sprinkling.
Cooling water is sprinkled on the copper conductor 3 at a rate of 4 m 3 / hr,
The temperature of the copper conductor was maintained at 50 ° C, and when the electrode plate was pulled up, water was sprinkled at a rate of 5.4 m 3 / hr to prevent generation of oxide film on the surface of the electrode plate and generation of sparks by scale. . As a result, the operation was completed without any trouble, and the operating rate could be increased by 8%, and the night power utilization rate could be increased by 2.8%.

【0017】[0017]

【比較例1】実施例1と同様な装置を用い、電流密度を
600A/m2 で通電を行った。ただし、実施例1と異
なり冷却水を散布することなく通電して1時間毎の銅導
体温度と電解室温の変化を調べ、図3に示した。この結
果、通電後1時間で銅導体は110℃まで上昇した。ま
た、電解室温も5時間後には30℃から45℃まで上昇
することが確認された。これに伴い銅導体並びに電極板
表面には酸化皮膜が発生していた。
[Comparative Example 1] Using the same device as in Example 1, electricity was applied at a current density of 600 A / m 2 . However, unlike Example 1, changes in copper conductor temperature and electrolysis room temperature were checked every hour by energizing without spraying cooling water, and shown in FIG. As a result, the copper conductor was heated up to 110 ° C. in 1 hour after energization. It was also confirmed that the electrolysis room temperature also increased from 30 ° C to 45 ° C after 5 hours. Along with this, an oxide film was generated on the surfaces of the copper conductor and the electrode plate.

【0018】[0018]

【発明の効果】上述のように本発明によれば、銅導体の
上昇温度を自動散水により所定温度以下に維持すること
によって高電流密度で通電することができ、安価な夜間
電流を大量に使用できる結果コスト的に有利な操業がで
きるようになった。
As described above, according to the present invention, it is possible to energize the copper conductor at a high current density by maintaining the rising temperature of the copper conductor at a predetermined temperature or less by automatic watering, and to use a large amount of inexpensive nighttime current. As a result, it became possible to operate cost-effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の平面図である。FIG. 1 is a plan view of a device of the present invention.

【図2】本発明装置の部分拡大斜視図である。FIG. 2 is a partially enlarged perspective view of the device of the present invention.

【図3】高電流密度(600A/m2 )通電における銅
導体並びに電解液温変化を示す図である。
FIG. 3 is a diagram showing changes in copper conductor and electrolytic solution temperature during energization at high current density (600 A / m 2 ).

【符号の説明】[Explanation of symbols]

1 電解槽 2 電極板 3 銅導体 4 電解液 5 散水用水管 1 Electrolyzer 2 Electrode plate 3 Copper conductor 4 Electrolyte 5 Water pipe for watering

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陰極としてアルミニウム板を、陽極とし
て鉛合金板を用いて硫酸亜鉛溶液から亜鉛を電解採取す
る電解法において、電槽の側縁部に配備された銅導体を
強制冷却手段で連続的、断続的、または必要に応じて随
時冷却することにより、銅導体が所定の温度を越えない
ようにしながら500A/m2 を越える高電流密度で電
解を行うことを特徴とする亜鉛電解製錬法。
1. In an electrolysis method for electrolytically extracting zinc from a zinc sulfate solution using an aluminum plate as a cathode and a lead alloy plate as an anode, a copper conductor provided at a side edge portion of a battery case is continuously subjected to forced cooling means. Zinc electrolytic smelting characterized by performing electrolysis at a high current density of more than 500 A / m 2 while preventing the copper conductor from exceeding a predetermined temperature by cooling periodically, intermittently or as needed. Law.
【請求項2】 両側縁部に帯状の銅導体を配備された電
解槽と該槽内に懸垂される陰極および陽極それぞれの電
極板から構成される亜鉛電解装置において、前記銅導体
上に自動タイマーで冷却水を散布可能な水管を設けたこ
とを特徴とする亜鉛電解装置。
2. A zinc electrolysis apparatus comprising an electrolytic cell having strip-shaped copper conductors on both side edges and cathode and anode electrode plates suspended in the cell, wherein an automatic timer is provided on the copper conductor. A zinc electrolysis device characterized in that a water pipe capable of spraying cooling water is provided.
JP17609092A 1992-06-10 1992-06-10 Zinc electrolytic smelting method and apparatus Expired - Lifetime JP3145194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17609092A JP3145194B2 (en) 1992-06-10 1992-06-10 Zinc electrolytic smelting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17609092A JP3145194B2 (en) 1992-06-10 1992-06-10 Zinc electrolytic smelting method and apparatus

Publications (2)

Publication Number Publication Date
JPH06212472A true JPH06212472A (en) 1994-08-02
JP3145194B2 JP3145194B2 (en) 2001-03-12

Family

ID=16007534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17609092A Expired - Lifetime JP3145194B2 (en) 1992-06-10 1992-06-10 Zinc electrolytic smelting method and apparatus

Country Status (1)

Country Link
JP (1) JP3145194B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854410A (en) * 1987-02-20 1989-08-08 Mazda Motor Corporation Method of incorporating four-wheel steering system in vehicle and four-wheel steering system
US4880072A (en) * 1987-02-06 1989-11-14 Mazda Motor Corporation Method of and apparatus for checking four-wheel steering characteristics of four-wheel-steered vehicle
JP2007100144A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Method for electrolytically refining zinc, and supporting holder used in electrolytically refining zinc
JP2015505343A (en) * 2011-12-22 2015-02-19 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Cathode power distribution system and method of using the system for power distribution
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880072A (en) * 1987-02-06 1989-11-14 Mazda Motor Corporation Method of and apparatus for checking four-wheel steering characteristics of four-wheel-steered vehicle
US4854410A (en) * 1987-02-20 1989-08-08 Mazda Motor Corporation Method of incorporating four-wheel steering system in vehicle and four-wheel steering system
JP2007100144A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Method for electrolytically refining zinc, and supporting holder used in electrolytically refining zinc
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
JP2015505343A (en) * 2011-12-22 2015-02-19 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Cathode power distribution system and method of using the system for power distribution

Also Published As

Publication number Publication date
JP3145194B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
CA1065797A (en) Electrochemical cell with bipolar electrodes
CN105088284B (en) A kind of electrolytic furnace
CN205062204U (en) Electrolytic furnace
WO2016124034A1 (en) Electrolytic furnace group
JPS62230994A (en) Electrolytic recovery of lead from scrap
JPH06212472A (en) Zinc electrolytic refining method and device therefor
CN204661841U (en) A kind of electrolytic furnace group
US3497430A (en) Electrochemical reduction of ketones to pinacols
US2390548A (en) Method of operating electrolytic
JPS6131192B2 (en)
US4061548A (en) Electrolytic hydroquinone process
JPS6240438B2 (en)
CN105887123A (en) Method for preparing PdCl2
US4024035A (en) Method for electric extraction of non-ferrous metals from their solutions
JPS57101692A (en) Horizontal electroplating method by insoluble electrode
CN207659528U (en) A kind of circuit board corrosion liquid regenerating unit
JPS6357515B2 (en)
JPS5923888A (en) Method for producing chlorine or hypochlorite from sea water
SU1062320A1 (en) Method for pickling electrically conducting tape
JPS6256238B2 (en)
JP3986175B2 (en) Method for producing nitrogen trifluoride gas
JP6473102B2 (en) Cobalt electrowinning method
JPS5798684A (en) Electrolytic production of cysteine having high purity
Ganchar et al. Anodic dissolution of iron in the process of electrolytic heating
RU2169211C1 (en) Process for producing magnesium and chlorine by electrolysis of melt salts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12