JPS5923888A - Method for producing chlorine or hypochlorite from sea water - Google Patents

Method for producing chlorine or hypochlorite from sea water

Info

Publication number
JPS5923888A
JPS5923888A JP13238782A JP13238782A JPS5923888A JP S5923888 A JPS5923888 A JP S5923888A JP 13238782 A JP13238782 A JP 13238782A JP 13238782 A JP13238782 A JP 13238782A JP S5923888 A JPS5923888 A JP S5923888A
Authority
JP
Japan
Prior art keywords
current
electrolytic
sea water
seawater
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13238782A
Other languages
Japanese (ja)
Inventor
Kenji Ueda
健二 植田
Akihiro Sakanishi
彰博 坂西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13238782A priority Critical patent/JPS5923888A/en
Publication of JPS5923888A publication Critical patent/JPS5923888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To improve electric current efficiency, by decreasing intermittently or periodically the conduction of electrolytic current in the stage of electrolyzing sea water with an electrolytic cell. CONSTITUTION:An insoluble anode 5 and a soluble cathode 6 are provided in an electrolytic cell 3, and sea water is introduced into the cell 3 through a sea water introducing pipe 1. Electric current is conducted from a power source 7 through current conductors 8, 9 to the electrodes 5, 6 to electrolyze the sea water, whereby chlorine or hypochlorite is produced. The timing when the decrease in the rate of generation of hypochlorous ions begins differs with the temp. of the sea water to be introduced. Thereupon, the pattern of the sea water temp. and electric current efficiency is beforehand stored in a control device 10 for electric current, and the output of the power source 7 is controlled by the output signal from a thermometer 2 provided to the pipe 1 with the conductor 11 to interrupt or decrease once the electrolytic current. The current efficiency is improved by repeating the abovementioned operation.

Description

【発明の詳細な説明】 酸塩を生成し,海水使用機器の海洋生物の利殖による被
害,例えば拐料腐食,海水流路の閉塞等を防止するだめ
の塩素又は次亜塩素酸塩を製造する方法に関する。
[Detailed Description of the Invention] To produce acid salts and to produce chlorine or hypochlorite to prevent damage caused by marine organisms breeding on equipment using seawater, such as corrosion of seawater and clogging of seawater channels. Regarding the method.

211ノ水の温度は冬期成いは地域によっては10℃以
下時には数℃に低下することがあり,この温度の低下は
,常温で高い電流効率を示す電極で特に電解効率,電極
の消耗に甚だしく悪影響を与える。
The temperature of 211 water can drop to several degrees Celsius in winter, when it is below 10 degrees Celsius depending on the region, and this temperature drop can have a significant impact on electrolytic efficiency and electrode wear, especially for electrodes that exhibit high current efficiency at room temperature. have a negative impact.

なお、任意の物質の電気化学当量(1クーロン又はIA
Hr当りの析出量)は決凍っており。
In addition, the electrochemical equivalent of any substance (1 coulomb or IA
The amount of precipitation per hour) is completely frozen.

例えばcttに対しては1.3228f/AHrである
For example, for ctt it is 1.3228f/AHr.

実際の電解電気量がxAHr ;発生塩素量がW2であ
ったとすれば,電流効率ηは,次式で示される。
Assuming that the actual amount of electrolyzed electricity is xAHr and the amount of chlorine generated is W2, the current efficiency η is expressed by the following equation.

η一(−) X − X 1 0 0 (%)x   
    1.3228 電流効率に及ほす海水温度の影響の1例を第1図に示す
。第2図に温度の低い場合の電流効率の経時変化の1例
を示す。第3図は電流効率と電解電圧の上昇との関係を
示す。第1図ないし第3図に示した例は白金メノキ電極
を[吏用した場合である。
η - (-) X − X 1 0 0 (%)x
1.3228 An example of the effect of seawater temperature on current efficiency is shown in Figure 1. FIG. 2 shows an example of changes in current efficiency over time at low temperatures. FIG. 3 shows the relationship between current efficiency and increase in electrolytic voltage. The examples shown in FIGS. 1 to 3 are cases in which platinum agate electrodes are used.

陽極用電極材には不溶性拐として白金属酸化物,白金属
暴利酸化物,白金族金属,鉄,マンガン、鉛酸化物等が
あるが、温度の低下は1電流効率の低下、電解電圧の上
昇等による消費電力の上昇とともに、電圧上昇による複
反応発生による電極相の損耗を来だし、四季を通じて安
定な運転が困難である。
Electrode materials for anodes include platinum metal oxides, platinum metal profiteers oxides, platinum group metals, iron, manganese, lead oxides, etc. as insoluble materials, but a decrease in temperature causes a decrease in current efficiency and an increase in electrolytic voltage. In addition to the increase in power consumption due to such factors, the rise in voltage causes multiple reactions to occur, causing wear and tear on the electrode phases, making stable operation throughout the year difficult.

本発明は、上記欠陥を解消することを目的として提案さ
れたもので、不溶性電極を備えだ電解槽を用いて海水を
電解処理し塩素又は次亜塩素酸塩を製造する方法におい
て、前記電解槽の運転時における電解電流の通電を間欠
的に又は周期的に低下させることを特徴とする海水から
塩素又は次亜、塩素酸塩を製造する方法を提供する。
The present invention was proposed for the purpose of eliminating the above-mentioned defects, and includes a method for producing chlorine or hypochlorite by electrolytically treating seawater using an electrolytic cell equipped with an insoluble electrode. Provided is a method for producing chlorine, hypochlorite, or chlorate from seawater, characterized by intermittent or periodic reduction of electrolytic current flow during operation.

本発明方法においては、海水が低温度の場合における上
記電解槽の運転に際して、電解電流の通電を間欠的に又
は周期的に低下させることにより、電流効率の低下及び
電解電圧の上昇等を防止し、ごれによって消費電力の増
加を防ぐとともに、電解電圧の上昇によって生じる複反
応発生による電極(」の損耗を効果的に防止し。
In the method of the present invention, when operating the electrolytic cell when seawater is at a low temperature, the electrolytic current is reduced intermittently or periodically to prevent a decrease in current efficiency and an increase in electrolytic voltage. In addition to preventing increases in power consumption due to dirt, it also effectively prevents wear and tear on the electrodes due to double reactions caused by increases in electrolytic voltage.

ひいては四季を通じての安定な運転を可能としたもので
ある。
In turn, this enabled stable operation throughout the four seasons.

なお本発明は例えば海洋生物付着防止装置などに適用で
きる。
Note that the present invention can be applied to, for example, a device for preventing the adhesion of marine organisms.

次に本発明方法の一実施例を図面に基いて説明する。Next, an embodiment of the method of the present invention will be explained based on the drawings.

第4図に本実施例を示す。FIG. 4 shows this embodiment.

図において、1は海水導入管、2は海水導入管lの適宜
な場所に設けられた海水温度検出器。
In the figure, 1 is a seawater inlet pipe, and 2 is a seawater temperature detector installed at an appropriate location in the seawater inlet pipe 1.

3は海水の電解槽で、海水導入管l及び電解された海水
の流出管4が接続され、かつ内部に電解用の不溶性陽極
5.不溶性陰極6.及び電流導検 線8.9を備えている。なお、電解用陽性5では例えば
チタン基材に白金、ルテニウム、)くラジウム酸化物等
の貴金属をコーテングしたもの。
Reference numeral 3 denotes a seawater electrolyzer, to which a seawater inlet pipe 1 and an electrolyzed seawater outlet pipe 4 are connected, and an insoluble anode 5 for electrolysis is installed inside. Insoluble cathode6. and a current conduction line 8.9. In addition, the electrolytic positive 5 is made by coating a titanium base material with a noble metal such as platinum, ruthenium, or radium oxide.

陰極6は例えば鉄、ステンレス鋼、/・ステロイー C
(Haynes 5tellite Co、  の商品
名)等の1酎アルカリ性金属等が使用される。7は電解
用直流電源で、電流導線8,9によって電解型枠5゜6
、!:接続されている。JOは電解電流を制御するため
の電流制御装置、11は海水温度検出器2の出力信号を
電流制御装置10に伝える導線を示す。
The cathode 6 is made of, for example, iron, stainless steel, STEROY C
(Haynes 5tellite Co, trade name) and other alkaline metals are used. 7 is a DC power source for electrolysis, and current conductors 8 and 9 connect the electrolytic formwork to 5°6.
,! :It is connected. JO is a current control device for controlling the electrolytic current, and 11 is a conductor for transmitting the output signal of the seawater temperature detector 2 to the current control device 10.

第4図に示した回路構成において、海水は電解槽3内の
電解用電極5,6で電解され陽極5表面で2次式に示す
反応により次亜塩素酸イオンを生成する。
In the circuit configuration shown in FIG. 4, seawater is electrolyzed by the electrolytic electrodes 5 and 6 in the electrolytic cell 3, and hypochlorite ions are produced on the surface of the anode 5 by a reaction expressed by the quadratic equation.

Ol+ 011−m−〇jO−+ II++ e・・・
・−(1)従来1次亜塩素イオン(aZO−)の生成効
率は第1図に示したように海水温度に影響され。
Ol+ 011-m-〇jO-+ II++ e...
-(1) Conventionally, the production efficiency of primary chlorite ions (aZO-) is affected by seawater temperature as shown in Figure 1.

15℃以下の海水温度から徐々に低下し始める。Seawater temperatures begin to gradually drop below 15°C.

この生成効率低下を詳細に検討すると、第2図に示した
ように海水温度によって、  Ct、O−の生成効率の
低下の始する時間が異なり、海水温度が10℃の場合、
電解開始後1時間後より、電流効率の低下が始まり、2
時間後に定常状態に達する。これが8℃になると、電解
開始後20分より低下し始め約1時間で定常状態に達す
る。
A detailed study of this decrease in production efficiency shows that the time at which the production efficiency of Ct and O- begins to decrease varies depending on the seawater temperature, as shown in Figure 2.When the seawater temperature is 10℃,
One hour after the start of electrolysis, the current efficiency began to decrease, and 2
Steady state is reached after an hour. When the temperature reaches 8°C, it starts to decrease 20 minutes after the start of electrolysis and reaches a steady state in about 1 hour.

この際の電流効率の低下は20%以上にもおよぶ。In this case, the current efficiency decreases by as much as 20% or more.

第2図に示した例は白金メッキ電極の1例であるが、こ
の傾向は電解電流密度、電極の種類。
The example shown in Figure 2 is an example of a platinum-plated electrode, but this tendency depends on the electrolytic current density and the type of electrode.

電解槽構造(電極間距離、海水流速等)によって異なる
It varies depending on the electrolytic cell structure (distance between electrodes, seawater flow rate, etc.).

このような傾向は実用上極めて不具合である。Such a tendency is extremely problematic in practical terms.

しかしこの現象は電解電流を一旦停止するか。However, does this phenomenon temporarily stop the electrolytic current?

極めて低い電流密度(通常lA/dm2以下)に低下し
、再び正規の電流に戻すことによって、この電流効率低
下のパターンを再現できることを本発明者等は見出した
The present inventors have discovered that this pattern of current efficiency decline can be reproduced by reducing the current density to an extremely low current density (usually less than 1A/dm2) and returning to the normal current again.

したがって海水温度と電流効率のパターンを予め第4図
中の制御回路に記憶させておき、電流効率の低下許容下
限の時間になれば電流制御装置10から制御信号を出し
て電解用直がt電源7の出力を制御して、一旦電解電流
を断又は低下するプログラムによって運転をくり返すこ
とによシ、常に電流効率の良い電解を継続することがで
きる。
Therefore, the patterns of seawater temperature and current efficiency are stored in advance in the control circuit shown in FIG. By controlling the output of 7 and repeating the operation according to a program that once cuts off or lowers the electrolytic current, electrolysis with high current efficiency can be continued.

一力電解電圧に注目すれば、第3図に示したように電流
効率の低下は電解電圧の上昇を生じる。この電解電圧の
上昇は陽極電位の上昇に基づくものである。この陽極電
位の上昇は次式でで求められる。
Focusing on the single-force electrolysis voltage, a decrease in current efficiency causes an increase in the electrolysis voltage, as shown in FIG. This increase in electrolysis voltage is based on the increase in anode potential. This increase in anode potential is determined by the following equation.

△E、>−147,cI 11.s(Eに十△EC) 
 EA −−(2)ここに △l’;A:陽極電位の上
昇分1らAc;電解摺電圧 I ;電解電流 n、s;電極間のオーミック抵抗 +>c;陰極電位 △Ec:電解電流■にもとづく陰極電位の上昇分 1らA;陽極電位 djj水の温度、電解電流が一定であれば、(2)式は
△IうA二consL  となるのが普通であるが、海
水の温度が低い場合ある時間後から電流効率の低ドが生
じ、このときの電流効率の低下と電解電圧の上昇の関係
を示したのが第3図である。この電圧の上昇変化分を検
出し、予め決められた電圧上昇値(参照値)と比較しこ
の値より大きくなれば、電解電流を一旦断とするか、低
電流値に低下し、再び規定の電流に復旧する。この/−
ケンスをくり返す。この際電解電流を完全に断とする操
作は保持時間にもよるが一次的に陰極−陽極間に逆方向
の電流が流れて陽極を痛める場合があるので、好ましい
方法は逆電流の流れない範囲の電解電圧に保持するのか
よい。
ΔE, >-147, cI 11. s (10△EC to E)
EA --(2) Here △l'; A: Increase in anode potential 1 to Ac; Electrolytic sliding voltage I; Electrolytic current n, s; Ohmic resistance between electrodes +>c; Cathode potential △Ec: Electrolytic current (2) The increase in cathode potential based on When the current efficiency is low, a low current efficiency occurs after a certain time, and FIG. 3 shows the relationship between the decrease in current efficiency and the increase in electrolytic voltage at this time. This voltage increase change is detected and compared with a predetermined voltage increase value (reference value). If it becomes larger than this value, the electrolytic current is temporarily cut off or the current is reduced to a low current value, and the specified voltage is returned to the specified value. Restoring current. This/-
Repeat the Kens. At this time, depending on the holding time, the operation of completely cutting off the electrolytic current may temporarily cause a current to flow in the opposite direction between the cathode and the anode, damaging the anode, so the preferred method is within a range where the reverse current does not flow. It is good to maintain the electrolytic voltage at .

又温度低下に対し敏感に反応し、効率低下が数分内に始
捷るような電極に対しては、一定温度以下の海水では電
解電流の低下復旧ノーケンスの始まる制御回路を組込む
ことも可能である。
In addition, for electrodes that respond sensitively to temperature drops and whose efficiency begins to decline within a few minutes, it is also possible to incorporate a control circuit in which the electrolytic current begins to drop and recover in seawater below a certain temperature. be.

第5図は本発明方法の別の実施例を示しく2)式が成立
するように電解電圧EA(検出手段32゜電解電流検出
手段33を第4図で説明した前記実施例に付加したもの
でその他の構成、即ち海水導入管21.海水温度検出器
22.電解槽2:3.海水流出管24.電解用電極25
,26゜1L解川直流電源27.電流導線28,29.
電流制御装置;(0,導線31は第4図の装置と同一で
ある。このような制御回路において、電解電流制御装置
:30内で、電解電圧EAC検出手段;う2.電解電流
検出手段33.海水温度検出器22を入力信号として前
記(2)式に相当する演算回路を組んで、陽極電位の上
昇分ΔEAを検知し。
FIG. 5 shows another embodiment of the method of the present invention, in which electrolytic voltage EA (detecting means 32° and electrolytic current detecting means 33 are added to the embodiment explained in FIG. 4) so that equation 2) holds true. Other configurations: seawater inlet pipe 21. seawater temperature detector 22. electrolytic cell 2:3. seawater outflow pipe 24. electrode for electrolysis 25
, 26° 1L Kaikawa DC power supply 27. Current conductors 28, 29.
Current control device; (0, the conducting wire 31 is the same as the device shown in FIG. 4. In such a control circuit, within the electrolysis current control device 30, an electrolysis voltage EAC detection means; . An arithmetic circuit corresponding to the above equation (2) is constructed using the seawater temperature detector 22 as an input signal to detect the increase ΔEA in the anode potential.

電解電流を制御する。電解電流制御装置3oと組合せる
電解用直流電源27はスライダック方式、  S OI
+、方式、磁気飽和リアクタ一方式等既存の製品が適用
できる。
Control electrolytic current. The electrolysis DC power supply 27 combined with the electrolysis current control device 3o is of the slideac type, S OI
Existing products such as +, type, magnetic saturation reactor, one type, etc. can be applied.

第6図は本発明方法による運転の一例を示す図で、電解
電流320 A、陽極板4枚(270X8:30 mm
 l 陰極板4枚のバイポーラ電解槽を温度]O℃で運
転した場合の例を示す。
Fig. 6 is a diagram showing an example of operation according to the method of the present invention, in which the electrolytic current is 320 A, 4 anode plates (270 x 8: 30 mm
l An example is shown in which a bipolar electrolytic cell with four cathode plates is operated at a temperature of 0°C.

電流低下のンーケンスは1時間通電、3分間電流をA低
下の場合で、この/−ケンスを行なわない場合(図中の
点線)に較べて極めて良い結果を示し、塩素発生量1.
35Kg/IIを得るには電解電流を約20係節減出来
た。電解電流の低下は電解電圧の減少をも生ずるから消
費電力の節減に寄与できる。
The current reduction test is when the current is applied for 1 hour and the current is reduced by A for 3 minutes.Compared to the case where this test is not performed (dotted line in the figure), the result is extremely good, and the amount of chlorine generated is 1.
To obtain 35 kg/II, the electrolytic current could be reduced by about 20 coefficients. A decrease in electrolysis current also causes a decrease in electrolysis voltage, which can contribute to a reduction in power consumption.

電極の種類によって電解効率の温度依存性が異なるが電
流の通電期間、低下又は停止期間の通電パターンは、−
リー1−−旧n7−\「−−N−等適宜選ぶ必要がある
The temperature dependence of electrolytic efficiency differs depending on the type of electrode, but the current conduction pattern during the current conduction period, decrease or stop period is -
Lee 1--old n7-\"--N- etc. need to be selected appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電流効率に及ぼす海水温度の影響の1例を示す
線図、第2図は海水温度が低い場合の電流効率の経時変
化の例を示す線図、第3図は電流効率と電解電圧の上昇
との関係を示す線図、第4図は本発明方法の一実施例を
示すブロック線図、第5図は本発明方法の別の実施例を
示すブロック線図、第6図は本発明方法による運転の1
例を示す線図である。 2.22・・・海水温度検出器、3.2:3  海水電
解槽、5.25・・・陽極、6.26  陰極、7゜2
7・電解用直流電源、10.30・・・電流制御装置、
:32・・電解電圧検出手段、33・・電解電流検出手
段。 増水ンλh□1八?(′Cン 71図 8% A”l (づす) 左2図 9′i 千 1 7.1′ 電解宿斤上濱介(γう 片3ヅ
Figure 1 is a diagram showing an example of the effect of seawater temperature on current efficiency, Figure 2 is a diagram showing an example of changes over time in current efficiency when seawater temperature is low, and Figure 3 is a diagram showing current efficiency and electrolysis. 4 is a block diagram showing one embodiment of the method of the present invention, FIG. 5 is a block diagram showing another embodiment of the method of the present invention, and FIG. 6 is a diagram showing the relationship with voltage rise. Operation 1 according to the method of the present invention
FIG. 3 is a diagram illustrating an example. 2.22...Seawater temperature detector, 3.2:3 Seawater electrolyzer, 5.25...Anode, 6.26 Cathode, 7゜2
7. DC power supply for electrolysis, 10.30... Current control device,
:32... Electrolysis voltage detection means, 33... Electrolysis current detection means. Increased water λh□18? ('Cn71 Figure 8% A"l (zusu) Left 2 figure 9'i 1,171 7.1'

Claims (1)

【特許請求の範囲】[Claims] 不溶性電極を備えた電解槽を用いて海水を電解処理し塩
素又は次亜塩素酸塩を製造する方法において2 前記電
解槽の運転時における電解電流の通電を間欠的に又は周
期的に低下させることを特徴とする海水から塩素又は次
亜塩素酸塩を製造する方法。
In a method for producing chlorine or hypochlorite by electrolytically treating seawater using an electrolytic cell equipped with an insoluble electrode, 2. Intermittently or periodically reducing the electrolytic current flow during operation of the electrolytic cell. A method for producing chlorine or hypochlorite from seawater, characterized by:
JP13238782A 1982-07-29 1982-07-29 Method for producing chlorine or hypochlorite from sea water Pending JPS5923888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13238782A JPS5923888A (en) 1982-07-29 1982-07-29 Method for producing chlorine or hypochlorite from sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13238782A JPS5923888A (en) 1982-07-29 1982-07-29 Method for producing chlorine or hypochlorite from sea water

Publications (1)

Publication Number Publication Date
JPS5923888A true JPS5923888A (en) 1984-02-07

Family

ID=15080193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13238782A Pending JPS5923888A (en) 1982-07-29 1982-07-29 Method for producing chlorine or hypochlorite from sea water

Country Status (1)

Country Link
JP (1) JPS5923888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091838A (en) * 2012-10-31 2014-05-19 Chlorine Engineers Corp Ltd Reverse current prevention method for ion exchange membrane electrolytic cell
JP2017500439A (en) * 2013-10-07 2017-01-05 リオキシン ディスカバリーズ グループ インコーポレイテッド Redox signaling gel formulation
US10472723B2 (en) 2015-01-06 2019-11-12 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Method of preventing reverse current flow through an ion exchange membrane electrolyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091838A (en) * 2012-10-31 2014-05-19 Chlorine Engineers Corp Ltd Reverse current prevention method for ion exchange membrane electrolytic cell
JP2017500439A (en) * 2013-10-07 2017-01-05 リオキシン ディスカバリーズ グループ インコーポレイテッド Redox signaling gel formulation
US10543230B2 (en) 2013-10-07 2020-01-28 Rdg Holding, Inc. Redox signaling gel formulation
US10472723B2 (en) 2015-01-06 2019-11-12 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Method of preventing reverse current flow through an ion exchange membrane electrolyzer

Similar Documents

Publication Publication Date Title
AU2008236636B2 (en) Method and system of electrolytic treatment
AU2018217852B2 (en) Pulsed electrolysis with reference to the open circuit voltage
CA1107677A (en) Rejuvenation of the efficiency of seawater electrolysis cells by periodic removal of anodic deposits
CN101423267B (en) Maintenance free long life electrolysis anti-soil apparatus
Kelsall Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell
EP0043854B1 (en) Aqueous electrowinning of metals
US20020139689A1 (en) Electrode coating and method of use in a reverse polarity electrolytic cell
Fernandes et al. Influence of frequency of alternating current on the electrochemical dissolution of mild steel and nickel
WO2013078004A1 (en) In situ regeneration of diamond electrodes after anodic oxidation
US4470894A (en) Nickel electrodes for water electrolyzers
JPS5923888A (en) Method for producing chlorine or hypochlorite from sea water
US20120137882A1 (en) Method For Treating Hydrocarbon Fluids Using Pulsting Electromagnetic Wave in Combination With Induction Heating
JPS6240438B2 (en)
JP2001149940A (en) Bath water quality improvement device
JPH06212472A (en) Zinc electrolytic refining method and device therefor
JPS6213589A (en) Method and apparatus for preventing inverse current in electrolytic cell
JP3906110B2 (en) Electrolysis equipment
Yanagase et al. The production of hypochlorite by direct electrolysis of sea water-influence of electrode gap
JPS591361B2 (en) Electrochemical device with oxygen electrode
SE434853B (en) PROCEDURE FOR THE PREPARATION OF ALKALIMETAL CHLORATES AVERAGE ELECTROLYSIS OF ALKALIMETAL CHLORIDES WITH METAL ANODES
JPS5839919B2 (en) How to adjust the pH of electrolytic nickel plating solution
JP2003064489A (en) Method for preventing corrosion of reinforced concrete
JPH0739877A (en) Multistage electrosyzed ionized water forming device
SU591531A1 (en) Method of obtaining alkaline metal hypochloride
JPH03267389A (en) Electrolytic ozonizer