JPH0739877A - Multistage electrosyzed ionized water forming device - Google Patents

Multistage electrosyzed ionized water forming device

Info

Publication number
JPH0739877A
JPH0739877A JP5189789A JP18978993A JPH0739877A JP H0739877 A JPH0739877 A JP H0739877A JP 5189789 A JP5189789 A JP 5189789A JP 18978993 A JP18978993 A JP 18978993A JP H0739877 A JPH0739877 A JP H0739877A
Authority
JP
Japan
Prior art keywords
ionized water
electrolytic
electrolytic cell
water
next stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5189789A
Other languages
Japanese (ja)
Inventor
Motoharu Sato
元春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP5189789A priority Critical patent/JPH0739877A/en
Publication of JPH0739877A publication Critical patent/JPH0739877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To provide a multistage electrolyzed ionized water forming device where the electrolysis efficiency of water is improved to reduce power consumption and also the generation of excess chlorine is prevented to make electrodes have long life and further electrolyzed ionized water of a required pH value is obtained. CONSTITUTION:Water flowing in an electrolysis vessel 1a at the prestage side is electrolyzed in the electrolyzer 1a, where acidic ionized water is formed on the anodic plate 5a side and on the other hand, alkaline ionized water is formed on the cathodic plate 5b side. Here, for example, when the acidic ionized water is caused to flow in an electrolysis vessel 1b at the next stage, water solution of sodium chloride is added to the acidic ionized water from a halogenide addition device 10. In this way, the electrolysis efficiency of the acidic ionized water is improved in the electrolyzer 1b at the next stage and strong acidic ionized water is efficiently electrolyzed with a little power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は前段の電解槽で生成した
電解イオン水を更に次段の電解槽で電解しPH値の異な
る多種類の電解イオン水を生成する多段式電解イオン水
生成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage electrolytic ionized water producing apparatus for producing electrolyzed ionized water produced in a preceding electrolytic bath in a subsequent electrolytic bath to produce various kinds of electrolytic ionized water having different PH values. It is about.

【0002】[0002]

【従来の技術】従来、この種の多段式電解イオン水生成
装置として特開平1ー262985号公報に開示された
ものが知られている。
2. Description of the Related Art Conventionally, as this type of multi-stage electrolytic ionized water generator, one disclosed in JP-A-1-262985 is known.

【0003】この多段式電解イオン生成装置は一対の陽
極と陰極を対向配置した電解槽を複数有し、この各電解
槽を直列に配管接続したものである。
This multi-stage electrolytic ion generator has a plurality of electrolytic cells in which a pair of anodes and cathodes are opposed to each other, and the electrolytic cells are connected in series by piping.

【0004】この多段式電解イオン水生成装置によれ
ば、各電極間に電圧を印加するとともに、前段の電解槽
から次段の電解槽に向かって原水例えば水道水を流すと
きは、この水道水が前段の電解槽で電解され陽極側では
酸性イオン水が生成され、他方、陰極側ではアルカリイ
オン水が生成される。ここで、例えばこの酸性イオン水
を次段の電解槽に流すときは、この酸性イオン水が次段
の電解槽内で更に電解される。これにより、次段の電解
槽の陽極側で酸性イオン水のPH値が更に低下し強酸性
イオン水が生成される。
According to this multi-stage electrolyzed ionized water generator, when a voltage is applied between the electrodes and raw water such as tap water is made to flow from the electrolytic bath at the previous stage to the electrolytic bath at the next stage, this tap water is used. Is electrolyzed in the preceding electrolyzer to produce acidic ionized water on the anode side, while alkaline ionized water is produced on the cathode side. Here, for example, when the acidic ionized water is flown into the electrolytic cell of the next stage, the acidic ionized water is further electrolyzed in the electrolytic cell of the next stage. As a result, the PH value of the acidic ionized water further decreases on the anode side of the electrolytic cell at the next stage, and strongly acidic ionized water is produced.

【0005】これとは逆に、前段の電解槽で生成された
アルカリイオン水を次段の電解槽に給送するときは次段
の電解槽の陰極側にPH値の高い強アルカリイオン水が
生成される。
On the contrary, when the alkaline ionized water produced in the electrolytic cell at the previous stage is fed to the electrolytic cell at the next stage, strong alkaline ionized water having a high PH value is supplied to the cathode side of the electrolytic bath at the next stage. Is generated.

【0006】[0006]

【発明が解決しようとする課題】このように、前記従来
の多段式電解イオン水生成装置では、前段の電解槽では
さほど強くない酸性イオン水及びアルカリイオン水が生
成される一方、次段では強酸性イオン水或いは強アルカ
リイオン水が生成され、PH値の異なる各種のイオン水
が生成される。
As described above, in the conventional multi-stage electrolytic ion water producing apparatus, while the acidic electrolyzed water and the alkaline ionized water which are not so strong are produced in the electrolytic cell in the previous stage, the strong acid is produced in the next stage. Soluble ion water or strong alkaline ion water is generated, and various ion water having different PH values are generated.

【0007】しかしながら、この多段式電解イオン水生
成装置では強酸性イオン水或いは強アルカリイオン水を
得るためには、水それ自体が電解しにくいものであるた
め、所定レベル以上の電圧を印加しなければならず、電
力消費量が非常に多くなるという問題点を有していた。
However, in order to obtain strongly acidic ionized water or strongly alkaline ionized water with this multi-stage electrolytic ionized water generator, the water itself is difficult to electrolyze, so a voltage above a predetermined level must be applied. However, there is a problem that the power consumption becomes very large.

【0008】また、次段の電解槽で生成される強酸性イ
オン水或いは強アルカリイオン水は、印加される電圧レ
ベルが一定でも電解槽に流れる流量が異なるとき、その
イオン水のPH値も変化し、所望のPH値のイオン水を
得ることができないという欠点を有していた。特に、次
段の電解槽に流通するイオン水の流量が少ないときは、
塩素が多量に発生して電極を腐食させ、電極の寿命を短
くするという欠点を有していた。
Further, the strongly acidic ionized water or the strongly alkaline ionized water produced in the electrolytic cell at the next stage also changes the pH value of the ionized water when the flow rate flowing to the electrolytic cell is different even when the applied voltage level is constant. However, it has a drawback that ionic water having a desired PH value cannot be obtained. Especially when the flow rate of ionized water flowing to the next-stage electrolyzer is low,
It has a drawback that a large amount of chlorine is generated to corrode the electrode and shorten the life of the electrode.

【0009】本発明の目的は前記従来の課題に鑑み、水
の電解効率を向上させて消費電力の低減を図るととも
に、過剰な塩素の発生を防止して電極の長寿命化を図
り、更には所望のPH値のイオン水を得ることができる
多段式電解イオン水生成装置を提供することにある。
In view of the above conventional problems, an object of the present invention is to improve the electrolysis efficiency of water to reduce power consumption, prevent excessive chlorine generation, and prolong the life of the electrode. It is an object of the present invention to provide a multi-stage electrolytic ionized water generator capable of obtaining ionized water having a desired PH value.

【0010】[0010]

【課題を解決するための手段】本発明は前記課題を解決
するため、請求項1の発明は、陽極及び陰極が対向して
配置された電解槽を複数直列に配管接続し、該各電極間
に電圧を印加するとともに電解用の水を前段側の電解槽
から次段側の電解槽に順次流して電解イオン水を生成す
る多段式電解イオン水生成装置において、前記前段側の
電解槽から前記次段側の電解槽に流れる電解イオン水に
塩化ナトリウム等のハロゲン化物を添加するハロゲン化
物添加装置を設けたことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a plurality of electrolytic cells in which an anode and a cathode are arranged so as to face each other, connected in series by piping, and between the electrodes. In a multi-stage electrolytic ion water generator for generating electrolytic ion water by sequentially flowing water for electrolysis while applying a voltage to the electrolytic cell on the front stage side to the electrolytic bath on the next stage side from the electrolytic bath on the front stage side It is characterized in that a halide addition device for adding a halide such as sodium chloride to electrolytic ionized water flowing to the electrolytic cell on the next stage side is provided.

【0011】請求項2の発明は、請求項1記載の多段式
電解イオン水生成装置において、前記前段側の電解槽か
ら前記次段側の電解槽に流れる電解液と前記ハロゲン化
物添加装置から供給されるハロゲン化物とを混合する混
合室を設けるとともに、該混合室の下流側にはこの混合
液を整流する整流部材を設けたことを特徴とする。
According to a second aspect of the present invention, in the multi-stage electrolytic ionized water producing device according to the first aspect, the electrolytic solution flowing from the electrolytic bath on the front stage side to the electrolytic bath on the next stage side and the halide addition device are supplied. And a rectifying member for rectifying the mixed liquid is provided downstream of the mixing chamber.

【0012】請求項3の発明は、請求項1又は請求項2
記載の多段式電解イオン水生成装置において、前記ハロ
ゲン化物を供給或いは停止させる電磁弁と、前記次段側
の電解槽から流れ出た電解イオン水のPH値を検出する
PHセンサと、該PHセンサの検出信号に基づき該電磁
弁のデューティー比を可変する制御手段とを備えたこと
を特徴とする。
The invention according to claim 3 is claim 1 or claim 2.
In the multi-stage electrolytic ionized water generator described, a solenoid valve for supplying or stopping the halide, a PH sensor for detecting a PH value of electrolytic ionized water flowing out from the electrolytic cell on the next stage side, and a PH sensor for the PH sensor And a control means for varying the duty ratio of the solenoid valve based on the detection signal.

【0013】請求項4の発明は、請求項1又は請求項2
記載の多段式電解イオン水生成装置において、前記ハロ
ゲン化物を供給或いは停止させる電磁弁と、前記次段側
の電解槽に流れる電解イオン水の量を検出する流量セン
サと、該流量センサの検出信号に基づき該電磁弁のデュ
ーティー比を可変する制御手段とを備えたことを特徴と
する。
The invention of claim 4 is the invention of claim 1 or claim 2.
In the multi-stage electrolytic ionized water generator described, a solenoid valve for supplying or stopping the halide, a flow sensor for detecting the amount of electrolytic ionized water flowing in the electrolytic bath on the next stage side, and a detection signal of the flow sensor. Control means for varying the duty ratio of the solenoid valve based on the above.

【0014】[0014]

【作用】請求項1の発明によれば、前段側の電解槽に流
れた水はこの電解槽内で電解され、陽極側には酸性イオ
ン水が生成され、他方、陰極側にはアルカリイオン水が
生成される。ここで、例えばこの酸性イオン水を次段の
電解槽に流すとき、この酸性イオン水にハロゲン化物添
加装置から例えば塩化ナトリウム水溶液を添加する。こ
れにより、次段の電解槽内で酸性イオン水の電解効率が
向上し、少ない電力で効率よく強酸性イオン水を電解で
きる。
According to the first aspect of the present invention, the water flowing into the electrolytic cell on the upstream side is electrolyzed in this electrolytic cell to generate acidic ionized water on the anode side, while alkaline ionized water is generated on the cathode side. Is generated. Here, for example, when the acidic ionized water is flown to the electrolytic cell of the next stage, for example, an aqueous sodium chloride solution is added to the acidic ionized water from the halide addition device. As a result, the electrolysis efficiency of the acidic ionized water is improved in the electrolytic cell at the next stage, and the strongly acidic ionized water can be efficiently electrolyzed with a small amount of electric power.

【0015】また、強アルカリイオン水を生成するとき
は、この前段側の電解槽で生成されたアルカリイオン水
を次段側の電解槽に給送すれば良く、ここで、上記と同
様にアルカリイオン水に塩化ナトリウムを添加すればア
ルカリイオン水の電解効率が向上する。
Further, when the strong alkaline ionized water is produced, the alkaline ionized water produced in the electrolytic cell on the preceding stage side may be fed to the electrolytic cell on the next stage side. Addition of sodium chloride to ionized water improves the electrolysis efficiency of alkaline ionized water.

【0016】請求項2の発明によれば、前段側の電解槽
から給送されたイオン水を一旦混合室に集水し、この混
合室にハロゲン化物添加装置からの塩化ナトリウム水溶
液を添加する。これにより、イオン水と塩化ナトリウム
水溶液が効率よく混合する。この混合した電解イオン水
は更に整流部材で整流され、次段側の電解槽内に均一に
給送される。
According to the second aspect of the present invention, the ionic water fed from the electrolytic cell on the upstream side is once collected in the mixing chamber, and the aqueous sodium chloride solution from the halide adding device is added to this mixing chamber. Thereby, the ionized water and the sodium chloride aqueous solution are efficiently mixed. The mixed electrolyzed ionized water is further rectified by the rectifying member and uniformly fed into the electrolytic bath on the next stage side.

【0017】請求項3の発明によれば、次段側の電解槽
で電解された酸性イオン水のPH値をPHセンサで検知
する。ここで、このPH値が設定されたPH値より高い
ときは、電磁弁のデューティー比を高くし、他方、これ
とは逆に低いときはデューティー比を低くする。これに
より、設定されたPH値の酸性イオン水が生成される。
According to the third aspect of the present invention, the PH value of the acidic ionized water electrolyzed in the electrolytic cell on the next stage is detected by the PH sensor. Here, when the PH value is higher than the set PH value, the duty ratio of the solenoid valve is increased, while when it is low, the duty ratio is decreased. As a result, acidic ionized water having the set PH value is generated.

【0018】他方、次段側の電解槽にアルカリイオン水
が流通しているときでこのPH値が設定されたPH値よ
り高いときは、電磁弁のデューティー比を低く、他方、
これとは逆に低いときはデューティー比を高くする。こ
れにより、設定されたPH値のアルカリイオン水が生成
される。
On the other hand, when the alkaline ionized water is flowing through the electrolytic cell on the next stage and the PH value is higher than the set PH value, the duty ratio of the solenoid valve is lowered, and on the other hand,
On the contrary, when it is low, the duty ratio is increased. As a result, alkaline ionized water having the set PH value is generated.

【0019】請求項4の発明によれば、次段側の電解槽
に流れる電解イオン水の量が流量センサにより検出され
る。流量センサで検出された流量が設定流量より多いと
きは、該電磁弁のデューティー比を高くし、他方、検出
流量が設定流量より少ないときはデューティー比を低く
する。
According to the invention of claim 4, the flow sensor detects the amount of electrolytic ionized water flowing in the electrolytic cell on the next stage side. When the flow rate detected by the flow rate sensor is higher than the set flow rate, the duty ratio of the solenoid valve is increased, while when the detected flow rate is lower than the set flow rate, the duty ratio is decreased.

【0020】[0020]

【実施例】図1乃至図6は本発明に係る多段式電解イオ
ン水生成装置の第1実施例を示すもので、図1は多段式
電解イオン水生成装置の断面図である。
1 to 6 show a first embodiment of a multi-stage electrolytic ion water producing apparatus according to the present invention, and FIG. 1 is a sectional view of the multi-stage electrolytic ion water producing apparatus.

【0021】図中、1aは前段の電解槽、1bは次段の
電解槽であり、各電解槽1a,1bは同一の構成となっ
ている。この各電解槽1a,1bは上ケース2aと下ケ
ース2bとをネジ3で締結して、内部に例えば水道水が
流通する電解室4が形成されている。この電解室4の上
下には陽極板5aと陰極板5bとを対応して設置してお
り、この各板5a,5bに直流電流を通電している。ま
た、この電解室4の上流側には水道水を導入する水流入
口6を有する一方、下流側には断面三角形状の分流体7
が固定されており、この分流体7の下側には陽極板5a
側に生成された酸性イオン水を排出する酸性イオン水排
水口8aを設け、また、分流体7の上側には陰極板5b
側に生成されたアルカリイオン水を排出するアルカリイ
オン水排水口8bを設けている。この前段の電解槽1a
の酸性イオン水排水路8aは次段の電解槽1bの水流入
口6に配管9にて連結し、前段の電解槽1aの酸性イオ
ン水が次段の電解槽1bの電解室4内に流れるようにな
っている。
In the figure, 1a is an electrolyzer at the previous stage, 1b is an electrolyzer at the next stage, and the electrolyzers 1a and 1b have the same structure. Each of the electrolytic cells 1a and 1b is formed by fastening an upper case 2a and a lower case 2b with a screw 3 to form an electrolytic chamber 4 in which tap water flows, for example. An anode plate 5a and a cathode plate 5b are installed above and below the electrolysis chamber 4 so as to correspond to each other, and a direct current is supplied to each of the plates 5a and 5b. Further, a water inlet 6 for introducing tap water is provided on the upstream side of the electrolysis chamber 4, while a splitting fluid 7 having a triangular cross section is provided on the downstream side.
Is fixed, and the anode plate 5a is provided below the divided fluid 7.
An acidic ionized water drainage port 8a for discharging the generated acidic ionized water is provided on the side, and the cathode plate 5b is provided on the upper side of the divided fluid 7.
An alkaline ionized water drain port 8b for discharging the generated alkaline ionized water is provided on the side. This front-stage electrolytic cell 1a
The acidic ionized water drainage channel 8a is connected to the water inlet 6 of the electrolytic cell 1b of the next stage by a pipe 9 so that the acidic ionized water of the electrolytic cell 1a of the previous stage flows into the electrolytic chamber 4 of the electrolytic cell 1b of the next stage. It has become.

【0022】各電解槽1a,1bを連結する配管9の途
中にはハロゲン化物添加装置10が接続している。この
ハロゲン化物添加装置10はハロゲン化物、例えば塩化
ナトリウム(NaCl)の水溶液を貯溜するタンク11
を有している。この塩化ナトリウムは図2に示すよう
に、その添加量が多くなるに従って水の電解効率が向上
し、これにより、強酸性イオン水及び強アルカリイオン
水を少ない電力で生成する機能を有している。また、こ
のタンク11内をフィルタ12を通じて大気に開放する
一方、手動調整弁13及び電磁弁14を通じて配管9に
接続しており、タンク11の塩化ナトリウム水溶液を手
動調整弁13及び電磁弁14を通じて配管9に自然流下
するようになっている。
A halide addition device 10 is connected in the middle of a pipe 9 connecting the electrolytic cells 1a and 1b. This halide addition device 10 is a tank 11 for storing an aqueous solution of a halide such as sodium chloride (NaCl).
have. As shown in FIG. 2, this sodium chloride has a function of increasing the electrolysis efficiency of water as the amount of the sodium chloride added increases, and as a result, has a function of generating strong acidic ionized water and strong alkaline ionized water with less electric power. . The tank 11 is opened to the atmosphere through the filter 12 and is connected to the pipe 9 through the manual adjusting valve 13 and the solenoid valve 14, and the sodium chloride aqueous solution in the tank 11 is connected through the manual adjusting valve 13 and the solenoid valve 14. It is designed to naturally flow down to 9.

【0023】このように構成された多段式電解イオン水
生成装置は次段の電解槽1bの酸性イオン水排水口8a
にPH値を検出するPHセンサ15を設置しており、こ
のPHセンサ15の検出信号に基づき電磁弁14のデュ
ーティー比をマイクロCPU等から構成される制御手段
16で制御している。ここで、このデューティー比とは
電磁弁14の開時間を電磁弁14の開閉全時間で除算し
たものであり、このデューティー比が高くなるに従って
ハロゲン化物添加装置10の塩化ナトリウムの供給量が
多くなり、これとは逆に、デューティー比が低くなるに
従って塩化ナトリウム水溶液の供給量が少なくなる。
The thus-configured multi-stage electrolytic ionized water generator is the acidic ionized water drainage port 8a of the electrolytic cell 1b of the next stage.
A PH sensor 15 for detecting a PH value is installed in the control unit 16, and the duty ratio of the solenoid valve 14 is controlled by a control unit 16 including a micro CPU or the like based on a detection signal of the PH sensor 15. Here, the duty ratio is obtained by dividing the opening time of the solenoid valve 14 by the total opening and closing time of the solenoid valve 14, and as the duty ratio becomes higher, the supply amount of sodium chloride in the halide addition device 10 increases. On the contrary, the supply amount of the sodium chloride aqueous solution decreases as the duty ratio decreases.

【0024】本実施例に係る多段式電解イオン水生成装
置の作用を図1及び図3に基づき説明する。即ち、電解
用の水道水が前段の電解槽1aの水流入口6を通じて電
解室4内に流れ、この水道水が各電極板5a,5b間に
印加された電圧により電解され、陽極板5a側には酸性
イオン水が生成され、他方、陰極板5b側にはアルカリ
イオン水が生成される。この酸性イオン水は分流体7に
より酸性イオン水排水口8a側に流れ、他方、アルカリ
イオン水はこれまた分流体7により分流されアルカリイ
オン水排出口8bから排出される。
The operation of the multistage electrolytic ionized water producing apparatus according to this embodiment will be described with reference to FIGS. 1 and 3. That is, tap water for electrolysis flows into the electrolysis chamber 4 through the water inlet 6 of the electrolyzer 1a at the preceding stage, the tap water is electrolyzed by the voltage applied between the electrode plates 5a and 5b, and the electrolyzed water flows to the anode plate 5a side. Produces acidic ionized water, while alkaline ionized water is produced on the cathode plate 5b side. The acidic ionized water flows to the acidic ionized water drainage port 8a side by the divided fluid 7, while the alkaline ionized water is also divided by the divided fluid 7 and discharged from the alkaline ionized water outlet 8b.

【0025】この酸性イオン水は配管9を通じて次段の
電解槽1bの水流入口6に流れる。ここで、この配管9
にはハロゲン化物添加装置10の塩化ナトリウム水溶液
が供給されており、この酸性イオン水は塩化ナトリウム
水溶液が添加されたものとなっている。
This acidic ionized water flows through the pipe 9 to the water inlet 6 of the electrolytic cell 1b at the next stage. Here, this piping 9
Is supplied with the sodium chloride aqueous solution of the halide addition device 10, and the acidic ionized water is the one to which the sodium chloride aqueous solution is added.

【0026】この添加酸性イオン水は次段の電解槽1b
で再度電解されアルカリイオン水と酸性イオン水が生成
されるが、この酸性イオン水が塩化ナトリウムが添加さ
れているため、その電解効率が向上し、少ない電力でP
H値の低い強酸性イオン水が生成される。ここで、この
酸性イオン水はPHセンサ15によりPH値L1が検出
され(S1)、このPH値L1が設定PH値Lより高い
とき(S2)、即ち酸性濃度が低いときは電磁弁14の
デューティー比を高くし(S3)、塩化ナトリウムの添
加量を増加させる。これとは逆に、このPH値L1が設
定PH値Lより低いとき(S2)、即ち酸性濃度が高い
ときは電磁弁14のデューティー比を低くし(S4)、
塩化ナトリウムの添加量を減少させる。これにより、酸
性イオン水の電解効率が更に向上し所望の強酸性イオン
水が生成される。
This added acidic ionized water is used in the electrolytic cell 1b of the next stage.
Alkaline ionized water and acidic ionized water are generated by electrolysis in the above. However, since the acidic ionized water is added with sodium chloride, its electrolysis efficiency is improved and P
Strongly acidic ionized water having a low H value is produced. Here, the PH value L1 of the acidic ionized water is detected by the PH sensor 15 (S1). When the PH value L1 is higher than the set PH value L (S2), that is, when the acidic concentration is low, the duty of the solenoid valve 14 is reduced. The ratio is increased (S3) and the amount of sodium chloride added is increased. On the contrary, when the PH value L1 is lower than the set PH value L (S2), that is, when the acid concentration is high, the duty ratio of the solenoid valve 14 is lowered (S4),
Reduce the amount of sodium chloride added. As a result, the electrolysis efficiency of the acidic ionized water is further improved and desired strongly acidic ionized water is produced.

【0027】図4は前記した強酸性イオン水の生成作用
をデューティー比の変化とPH値の変化で表したもので
ある。この図から明かなように強酸性イオン水の生成初
期ではそのデューティー比が高く酸性イオン水の電解効
率を上昇させ、PH値を低下させる一方、PH値が下が
って所定値に達したときはそのデューティー比を低く維
持して、所定の強酸性イオン水を生成するようにしてい
る。
FIG. 4 shows the action of generating the strongly acidic ionized water by the change of the duty ratio and the change of the PH value. As is clear from this figure, the duty ratio is high in the early stage of the production of strongly acidic ionized water, and the electrolysis efficiency of acidic ionized water is increased to decrease the PH value, while when the PH value decreases to a predetermined value, the The duty ratio is kept low to generate a predetermined strongly acidic ionized water.

【0028】図5は前記した強酸性イオン水の生成作用
をPH値と消費電力で表したグラフであり、従来例を破
線で示し、本実施例を実線で示している。この図5から
明かなように、PH値3の強酸性イオン水を生成するた
めに消費される従来の電力W1と本実施例の電力W2と
を比較するに、 W1>W2 となっており、これにより省エネが可能となる。
FIG. 5 is a graph showing the above-mentioned action of generating strongly acidic ionized water in terms of PH value and power consumption, in which the conventional example is shown by a broken line and the present example is shown by a solid line. As is apparent from FIG. 5, when comparing the conventional electric power W1 consumed for generating strongly acidic ionized water having a PH value of 3 and the electric power W2 of the present embodiment, W1> W2, This enables energy saving.

【0029】図6は前記した強酸性イオン水の生成作用
をPH値の変化と塩素発生量の変化とで表したグラフ
で、実線Aは本実施例に係る酸性イオン水の特性変化を
示し、一点鎖線Bは本実施例に係る塩素発生量の変化を
示し、破線Cは従来例における流量小のときの酸性イオ
ン水の特性変化を示し、破線Dは従来例における流量大
のときの酸性イオン水の特性変化を示し、破線Eは従来
例における流量小のときの塩素発生量の変化を示し、破
線Fは従来例における流量大のときの塩素発生量の変化
を示している。
FIG. 6 is a graph showing the above-mentioned action of forming strongly acidic ionized water by changing the PH value and the amount of chlorine generated, and the solid line A shows the characteristic change of the acidic ionized water according to this embodiment. A one-dot chain line B shows a change in the chlorine generation amount according to the present embodiment, a broken line C shows a characteristic change of acidic ionized water when the flow rate is small in the conventional example, and a broken line D is acidic ion water when the flow rate is large in the conventional example. The change in the characteristics of water is shown, the broken line E shows the change in the chlorine generation amount when the flow rate is small in the conventional example, and the broken line F shows the change in the chlorine generation amount when the flow rate is large in the conventional example.

【0030】この各グラフから明かなように、酸性イオ
ン水の流量が少ないときはPH値が低くなり、他方、塩
素発生量が多くなる。これとは逆に、酸性イオン水の流
量が多いときはPH値が高くなり、他方、塩素発生量が
少なくなる。ここで、強酸性イオン水を生成するに当た
り、各電極板5a,5bの保護という点からは塩素の発
生を極力防止し、かつ、所定のPH値を求める必要があ
る。本実施例では酸性イオン水に塩化ナトリウム水溶液
を添加することにより電解効率が向上し、流量が少ない
ときでも塩素の発生が抑制されるため、この要求が完全
に満足される。
As is clear from these graphs, when the flow rate of acidic ionized water is low, the PH value is low, while the chlorine generation amount is high. On the contrary, when the flow rate of acidic ionized water is high, the PH value is high, while the chlorine generation amount is low. Here, in generating the strongly acidic ionized water, it is necessary to prevent generation of chlorine as much as possible and to obtain a predetermined PH value from the viewpoint of protecting the electrode plates 5a and 5b. In this embodiment, the addition of sodium chloride aqueous solution to acidic ionized water improves the electrolysis efficiency and suppresses the generation of chlorine even when the flow rate is small, so that this requirement is completely satisfied.

【0031】図7は本発明に係る多段式電解イオン水生
成装置の第2実施例を示すもので、この実施例の特徴は
前段の電解槽1aの酸性イオン水排水路8aと次段の電
解槽1bとの水流入口6とを一体に形成した点にある。
FIG. 7 shows a second embodiment of the multi-stage electrolytic ionized water producing apparatus according to the present invention. The feature of this embodiment is that the acidic ionized water drainage channel 8a of the electrolytic bath 1a of the preceding stage and the electrolytic solution of the next stage are electrolyzed. The point is that the tank 1b and the water inlet 6 are integrally formed.

【0032】即ち、前段の電解槽1aの酸性イオン水排
水路8aと次段の電解槽1bの電解室4とを連通させ、
この連通部分に混合室17を形成している。また、この
混合室17には前記第1実施例と同様のハロゲン化物添
加装置10が接続しており、この混合室17に流入した
酸性イオン水と塩化ナトリウム水溶液とを混同するよう
になっている。この混合された添加酸性イオン水は小孔
が穿設した2個の整流板18を通じて次段の電解槽1b
の電解室4に流れる。
That is, the acidic ionized water drainage channel 8a of the electrolytic bath 1a of the previous stage and the electrolytic chamber 4 of the electrolytic bath 1b of the next stage are connected to each other,
The mixing chamber 17 is formed in this communicating portion. Further, the same halide addition device 10 as in the first embodiment is connected to the mixing chamber 17, so that the acidic ionized water and the sodium chloride aqueous solution that have flowed into the mixing chamber 17 are confused with each other. . The mixed acidic ionized water thus mixed is passed through two rectifying plates 18 each having a small hole, and the electrolytic bath 1b of the next stage is passed through.
Flow into the electrolysis chamber 4.

【0033】この実施例によれば、各電解槽1a,1b
が一体となり、コンパクトとなっているし、また、混合
室17及び各整流板18を通じて酸性イオン水と塩化ナ
トリウム水溶液とが均一に混合し、電解効率の不均一化
を防止できる。なお、その他の構成、作用は前記第1実
施例と同様である。
According to this embodiment, each electrolytic cell 1a, 1b
Is integrated and is compact, and acidic ionized water and sodium chloride aqueous solution are uniformly mixed through the mixing chamber 17 and each rectifying plate 18, so that nonuniformity of electrolysis efficiency can be prevented. The other configurations and operations are similar to those of the first embodiment.

【0034】図8及び図9は本発明に係る多段式電解イ
オン水生成装置の第3実施例を示すもので、図8は制御
ブロック図、図9は制御フローチャートである。前記第
1及び第2実施例では強酸性イオン水のPH値を検出し
て電磁弁14のデューティー比を制御しているが、前記
第1実施例の図6で説明したように、流量が多いときは
PH値が高く、他方、流量が少ないときはPH値が低く
なる特性を利用して本実施例では酸性イオン水の流量を
検出して電磁弁14のデューティー比を制御している。
8 and 9 show a third embodiment of the multi-stage electrolytic ionized water producing apparatus according to the present invention. FIG. 8 is a control block diagram and FIG. 9 is a control flow chart. In the first and second embodiments, the PH value of the strongly acidic ionized water is detected and the duty ratio of the solenoid valve 14 is controlled. However, as explained in FIG. 6 of the first embodiment, the flow rate is large. In this embodiment, the PH value is high, and on the other hand, the PH value is low when the flow rate is low. In this embodiment, the flow rate of the acidic ionized water is detected to control the duty ratio of the solenoid valve 14.

【0035】即ち、前記第1実施例のPHセンサ15と
同様の位置、即ち次段の電解槽1bの酸性イオン水排水
口8aに流量センサ19を設置し、この流量センサ19
の検出信号に基づき電磁弁14のデューティー比をマイ
クロCPU構成の制御手段20により制御している。こ
の制御を図9に基づいて説明するに、この酸性イオン水
は流量センサ19によりその流量Q1が検出され(S
1)、この流量Q1が設定流量Qより多い(S2)、即
ちPH値が高いときは電磁弁14のデューティー比を高
くし(S3)、塩化ナトリウムの添加量を増加させる。
これとは逆に、この流量Q1が設定流量Qより少ないと
き(S2)、即ちPH値が低いときは電磁弁14のデュ
ーティー比を低くし(S4)、塩化ナトリウムの添加量
を減少させる。これにより、酸性イオン水の電解効率が
更に向上し所望の強酸性イオン水が生成される。この流
量検出によるデューティー比制御は水道水の流量が大き
く変化するときに特に有効である。その他の構成、作用
は前記第1実施例と同様である。
That is, the flow sensor 19 is installed at the same position as the PH sensor 15 of the first embodiment, that is, at the acidic ionized water drainage port 8a of the electrolytic cell 1b at the next stage.
The duty ratio of the solenoid valve 14 is controlled by the control means 20 having a micro CPU based on the detection signal of. This control will be described with reference to FIG. 9. The flow rate Q1 of the acidic ionized water is detected by the flow rate sensor 19 (S
1) When the flow rate Q1 is larger than the set flow rate Q (S2), that is, when the PH value is high, the duty ratio of the solenoid valve 14 is increased (S3) and the amount of sodium chloride added is increased.
On the contrary, when the flow rate Q1 is smaller than the set flow rate Q (S2), that is, when the PH value is low, the duty ratio of the solenoid valve 14 is lowered (S4) and the amount of sodium chloride added is reduced. As a result, the electrolysis efficiency of the acidic ionized water is further improved and desired strongly acidic ionized water is produced. The duty ratio control by detecting the flow rate is particularly effective when the flow rate of tap water changes greatly. Other configurations and operations are similar to those of the first embodiment.

【0036】なお、前記各実施例では、酸性イオン水を
各電解槽1a,1bで2度電解することにより、前段の
電解槽1aで通常のアルカリイオン水(PH7〜10;
飲料水に最適)が生成され、次段の電解槽1bでは強酸
性イオン水(PH3以下;殺菌液に最適)が生成される
が、各電極板5a,5bへの通電を逆にするときは、ア
ルカリイオン水が2度に亘って電解され、強アルカリイ
オン水(PH11以上)が生成される。
In each of the above-described embodiments, the acidic ionized water is electrolyzed twice in each of the electrolyzers 1a and 1b, so that normal alkaline ionized water (PH7 to 10;
(Ideal for drinking water) is produced, and strongly acidic ionized water (PH3 or less; optimal for sterilizing liquid) is produced in the electrolytic cell 1b at the next stage, but when the electricity to the electrode plates 5a and 5b is reversed, , Alkaline ionized water is electrolyzed twice, and strong alkaline ionized water (PH11 or more) is generated.

【0037】[0037]

【発明の効果】以上説明したように、請求項1の発明に
よれば、前段側の電解槽で電解された電解イオン水にハ
ロゲン化物が添加されるため、次段の電解槽における電
解効率が向上し、少ない電力で強酸性或いはアルカリイ
オン水を効率よく生成できるし、また、過大な塩素ガス
の発生も防止できる。
As described above, according to the first aspect of the invention, since the halide is added to the electrolyzed ionized water electrolyzed in the electrolytic cell in the preceding stage, the electrolytic efficiency in the electrolytic cell in the next stage is improved. It is possible to improve, efficiently generate strong acidic or alkaline ionized water with a small amount of electric power, and prevent generation of excessive chlorine gas.

【0038】請求項2の発明によれば、前段側の電解槽
から給送された電解イオン水と塩化ナトリウム水溶液が
効率よく混合し、更に整流部材で整流され次段側の電解
槽内に均一に給送されるため、次段の電解槽における電
解イオン水の電解効率が更に向上する。
According to the second aspect of the present invention, the electrolytic ion water and the sodium chloride aqueous solution fed from the electrolytic cell on the upstream side are efficiently mixed and further rectified by the rectifying member to be uniformly distributed in the electrolytic cell on the next stage. Therefore, the electrolysis efficiency of the electrolyzed ionized water in the next-stage electrolyzer is further improved.

【0039】請求項3の発明によれば、次段側の電解槽
で電解されたイオン水のPH値をPHセンサで検知し、
この検知信号に基づき電磁弁のデューティー比を制御す
るため、所望のPH値の電解イオン水が常時得られる。
According to the third aspect of the invention, the PH sensor detects the PH value of the ionized water electrolyzed in the electrolytic cell on the next stage,
Since the duty ratio of the solenoid valve is controlled based on this detection signal, electrolytic ion water having a desired PH value can always be obtained.

【0040】請求項4の発明によれば、次段側の電解槽
に流れる電解イオン水の量が流量センサにより検出さ
れ、この検知信号に基づき電磁弁のデューティー比を制
御するため、所望のPH値の電解イオン水が常時得られ
る。
According to the fourth aspect of the invention, the flow sensor detects the amount of electrolyzed ionized water flowing in the electrolytic cell on the next stage side, and the duty ratio of the solenoid valve is controlled based on this detection signal. Value of electrolyzed ionic water is always available.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る多段式電解イオン水生成装置
の断面図
FIG. 1 is a sectional view of a multi-stage electrolytic ionized water generator according to a first embodiment.

【図2】PH値の変化と塩化ナトリウムの添加量との関
係を表したグラフ
FIG. 2 is a graph showing the relationship between changes in PH value and the amount of sodium chloride added.

【図3】第1実施例に係る多段式電解イオン水生成装置
の駆動制御を示すフローチャート
FIG. 3 is a flowchart showing drive control of the multistage electrolytic ionized water generator according to the first embodiment.

【図4】強酸性イオン水の生成作用をデューティー比の
変化とPH値の変化で表したグラフ
FIG. 4 is a graph showing the action of generating strongly acidic ionized water by changing the duty ratio and changing the PH value.

【図5】PH値の変化と消費電力の変化との関係を表し
たグラフ
FIG. 5 is a graph showing the relationship between changes in PH value and changes in power consumption.

【図6】強酸性イオン水の生成作用をPH値の変化と塩
素発生量の変化で表したグラフ
FIG. 6 is a graph showing the action of generating strongly acidic ionized water as a change in PH value and a change in chlorine generation amount.

【図7】第2実施例に係る多段式電解イオン水生成装置
の断面図
FIG. 7 is a sectional view of a multi-stage electrolytic ionized water generator according to a second embodiment.

【図8】第3実施例に係る多段式電解イオン水生成装置
の制御ブロック図
FIG. 8 is a control block diagram of a multistage electrolytic ionized water generator according to a third embodiment.

【図9】第3実施例に係る多段式電解イオン水生成装置
の駆動制御を示すフローチャート
FIG. 9 is a flowchart showing drive control of a multi-stage electrolytic ionized water generator according to a third embodiment.

【符号の説明】[Explanation of symbols]

1a…前段側の電解槽、1b…次段側の電解槽、5a…
陽極板、5b…陰極板、10…ハロゲン化物添加装置、
14…電磁弁、15…PHセンサ、16…制御手段、1
7…混合室、18…整流板。
1a ... Electrolyzer on the front stage side, 1b ... Electrolyzer on the next stage side, 5a ...
Anode plate, 5b ... Cathode plate, 10 ... Halide addition device,
14 ... Solenoid valve, 15 ... PH sensor, 16 ... Control means, 1
7 ... mixing chamber, 18 ... straightening plate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽極及び陰極が対向して配置された電解
槽を複数直列に配管接続し、該各電極間に電圧を印加す
るとともに電解用の水を前段側の電解槽から次段側の電
解槽に順次流して電解イオン水を生成する多段式電解イ
オン水生成装置において、 前記前段側の電解槽から前記次段側の電解槽に流れる電
解イオン水に塩化ナトリウム等のハロゲン化物を添加す
るハロゲン化物添加装置を設けたことを特徴とする多段
式電解イオン水生成装置。
1. An electrolytic cell having an anode and a cathode opposed to each other is connected in series by piping to apply a voltage between the electrodes, and water for electrolysis is supplied from the electrolytic cell on the front stage side to the electrolytic cell on the next stage side. In a multi-stage electrolytic ion water generator that sequentially flows into an electrolytic cell to generate electrolytic ion water, a halide such as sodium chloride is added to electrolytic ion water flowing from the electrolytic cell on the preceding stage side to the electrolytic cell on the next stage side. A multi-stage electrolytic ionized water generator characterized in that a halide addition device is provided.
【請求項2】 前記前段側の電解槽から前記次段側の電
解槽に流れる電解液と前記ハロゲン化物添加装置から供
給されるハロゲン化物とを混合する混合室を設けるとと
もに、該混合室の下流側にはこの混合液を整流する整流
部材を設けたことを特徴とする請求項1記載の多段式電
解イオン水生成装置。
2. A mixing chamber is provided for mixing an electrolytic solution flowing from the electrolytic bath at the front stage side to the electrolytic bath at the next stage side with a halide supplied from the halide adding device, and downstream of the mixing chamber. The multi-stage electrolytic ionized water production apparatus according to claim 1, wherein a rectifying member for rectifying the mixed liquid is provided on the side.
【請求項3】 前記ハロゲン化物を供給或いは停止させ
る電磁弁と、前記次段側の電解槽から流れ出た電解イオ
ン水のPH値を検出するPHセンサと、該PHセンサの
検出信号に基づき該電磁弁のデューティー比を可変する
制御手段とを備えたことを特徴とする請求項1又は請求
項2記載の多段式電解イオン水生成装置。
3. A solenoid valve for supplying or stopping the halide, a PH sensor for detecting a PH value of electrolyzed ionized water flowing out from the electrolytic cell at the next stage, and the electromagnetic sensor based on a detection signal of the PH sensor. The multistage electrolytic ionized water production apparatus according to claim 1 or 2, further comprising a control means for varying a duty ratio of the valve.
【請求項4】 前記ハロゲン化物を供給或いは停止させ
る電磁弁と、前記次段側の電解槽に流れる電解イオン水
の量を検出する流量センサと、該流量センサの検出信号
に基づき該電磁弁のデューティー比を可変する制御手段
とを備えたことを特徴とする請求項1又は請求項2記載
の多段式電解イオン水生成装置。
4. A solenoid valve for supplying or stopping the halide, a flow sensor for detecting the amount of electrolytic ionized water flowing in the electrolytic cell on the next stage side, and a solenoid valve for the solenoid valve based on a detection signal of the flow sensor. The multistage electrolytic ionized water production apparatus according to claim 1 or 2, further comprising: a control unit that varies a duty ratio.
JP5189789A 1993-07-30 1993-07-30 Multistage electrosyzed ionized water forming device Pending JPH0739877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5189789A JPH0739877A (en) 1993-07-30 1993-07-30 Multistage electrosyzed ionized water forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5189789A JPH0739877A (en) 1993-07-30 1993-07-30 Multistage electrosyzed ionized water forming device

Publications (1)

Publication Number Publication Date
JPH0739877A true JPH0739877A (en) 1995-02-10

Family

ID=16247235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5189789A Pending JPH0739877A (en) 1993-07-30 1993-07-30 Multistage electrosyzed ionized water forming device

Country Status (1)

Country Link
JP (1) JPH0739877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081096A3 (en) * 1999-09-01 2001-05-16 Nihon Trim Co. Limited Electrolytic reduced water, anti-cancer drug, and producing method and apparatus thereof
KR100439997B1 (en) * 2001-04-17 2004-07-14 김성규 Apparatus creating electrolysed-water by multi-step and non-diaphram
WO2019202666A1 (en) 2018-04-17 2019-10-24 三菱電機株式会社 Apparatus control system and apparatus control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081096A3 (en) * 1999-09-01 2001-05-16 Nihon Trim Co. Limited Electrolytic reduced water, anti-cancer drug, and producing method and apparatus thereof
US6475371B1 (en) 1999-09-01 2002-11-05 Nihon Trim Co., Ltd. Method and apparatus for producing electrolytic reduced water
EP1512670A1 (en) * 1999-09-01 2005-03-09 Nihon Trim Co. Limited Electrolytic reduced water, anti-cancer drug, and producing method and apparatus thereof
KR100439997B1 (en) * 2001-04-17 2004-07-14 김성규 Apparatus creating electrolysed-water by multi-step and non-diaphram
WO2019202666A1 (en) 2018-04-17 2019-10-24 三菱電機株式会社 Apparatus control system and apparatus control method

Similar Documents

Publication Publication Date Title
JPH09512861A (en) Electrolytic cell producing mixed oxidant gas
TWI707067B (en) Method and device for producing electroplating solution or electroplating replenishing solution for insoluble anode acid copper electroplating process
JP3500173B2 (en) Electrolyzed water production equipment
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
KR20020081122A (en) Apparatus for refining alkali solution and method for the same
JP4031877B2 (en) Hypochlorous acid aqueous solution generator
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JPH0739877A (en) Multistage electrosyzed ionized water forming device
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JP3571258B2 (en) Electrolyzed water generator
JPH06312185A (en) Electrolytic water forming apparatus
JP3893693B2 (en) Electrolyzed water production equipment
JPH07155764A (en) Device for producing acidic ionized water
JP4068267B2 (en) Electrolyzed water generator
JPH06246266A (en) Device for producing electrolyte
JP7212978B1 (en) electrolytic device
JPH06312189A (en) Electrolytic sterilized water making apparatus
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP3297828B2 (en) Electrolyzed water generator and method for controlling chloride ion concentration in the electrolyzed water generator
JP2005279519A (en) Apparatus for producing electrolytic water
JP2953648B2 (en) Electrolyzed water generator
JP2002361253A (en) Cleaning water, method for manufacturing cleaning water and device therefor
JPH11253956A (en) Electrolytic cell
JP3521896B2 (en) Water treatment method for cooling water system
KR200339730Y1 (en) manufacturing apparatus of electrolyzed-reduced water