JPH06246268A - Method and device for producing electrolyte - Google Patents

Method and device for producing electrolyte

Info

Publication number
JPH06246268A
JPH06246268A JP5031973A JP3197393A JPH06246268A JP H06246268 A JPH06246268 A JP H06246268A JP 5031973 A JP5031973 A JP 5031973A JP 3197393 A JP3197393 A JP 3197393A JP H06246268 A JPH06246268 A JP H06246268A
Authority
JP
Japan
Prior art keywords
water
electrolyzed
raw water
electrolytic
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5031973A
Other languages
Japanese (ja)
Other versions
JP3201860B2 (en
Inventor
Shiyuuji Yamaguchi
秋二 山口
Masayuki Ukon
雅幸 右近
Daiji Misawa
代治 三沢
Masakazu Arisaka
政員 有坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INTETSUKU KK
Original Assignee
NIPPON INTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INTETSUKU KK filed Critical NIPPON INTETSUKU KK
Priority to JP03197393A priority Critical patent/JP3201860B2/en
Priority to ES94301179T priority patent/ES2115156T3/en
Priority to EP94301179A priority patent/EP0612694B1/en
Priority to DE69409996T priority patent/DE69409996T2/en
Priority to CA002116045A priority patent/CA2116045C/en
Priority to MYPI94000414A priority patent/MY131555A/en
Priority to TW083101444A priority patent/TW310347B/zh
Priority to AU55274/94A priority patent/AU677618B2/en
Priority to BR9400627A priority patent/BR9400627A/en
Priority to KR1019940003119A priority patent/KR0133975B1/en
Priority to CN94102044A priority patent/CN1055904C/en
Priority to US08/199,840 priority patent/US5445722A/en
Publication of JPH06246268A publication Critical patent/JPH06246268A/en
Application granted granted Critical
Publication of JP3201860B2 publication Critical patent/JP3201860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To provide a method and device for producing electrolyte wherein an acid solution having such a pH value as to produce a high sterilizing effect is obtained inexpensively with a small electric power and stably in a large amt. and an alkali solution can also be produced. CONSTITUTION:The feed passage of raw water to an electrolytic bath 1 is provided with a flow amt. control valve 9 and a supply means, for adding brine to this passage, consisting of a brine storing tank 12, a constant feed pump 13 and a pouring device 14 and, after passage through the valve 9 and the supply means, the raw water is sent into the electrolytic bath 1 to be electrolyzed. Alkali and acid solutions are carried out through their respective pipes 17 and 18 and then through their respective three-way valves 19 and 20 provided in these pipes and neutralizing water is carried out through pipe 21. The acid solution pipe is provided with an ORP sensor 23 and a flow meter 22 and the detecting signal is input in CPU 24 to control the flow amt. control valve 9 and regulate the constant feed pump 13 in a timely manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水の電気分解によって
洗浄水,殺菌水等として有用な酸性水及び飲料水となる
アルカリ水を生成する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing acidic water useful as washing water, sterilizing water and the like and alkaline water to be drinking water by electrolyzing water.

【0002】[0002]

【従来の技術】食品とか医療の分野において、電解水を
洗浄用水とか消毒,殺菌用の水として使用することは、
一般には知られているが、PH値の低い水を安定して多
量に得ることは容易でない。従来の電解水生成装置は、
電解槽内を隔膜によって陰極室と陽極室とに分け、各々
の室内に電極を挿入し、室内に供給した原水を電極間の
通電によって電気分解することにより、陰極室にアルカ
リ水,陽極室に酸性水を電解生成する。またこの電解水
のPHを調整するのに、電解吐出水を再び電解槽に循環
させたり、電解電圧を増大制御することが行なわれてい
る。
2. Description of the Related Art In the fields of food and medicine, it is not possible to use electrolyzed water as cleaning water or water for disinfection and sterilization.
Although generally known, it is not easy to stably obtain a large amount of water having a low PH value. The conventional electrolyzed water generator is
The inside of the electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, electrodes are inserted into each chamber, and the raw water supplied into the chamber is electrolyzed by the electric current flowing between the electrodes, so that alkaline water can be converted into alkaline water and anode chambers. Electrolyze acidic water. In addition, in order to adjust the pH of this electrolyzed water, electrolytically discharged water is circulated again in the electrolyzer or the electrolysis voltage is controlled to be increased.

【0003】[0003]

【発明が解決しようとする課題】このような電解水成装
置によって、PH値の低い水は陽極室から吐出する酸性
水によって得られるが、連続的に大量の電解水を安定に
作り出すことは困難である。通常東京近郊における水道
水の電気伝導率(EC)は100〜200μS/cm前
後、PHは6.5〜8程度であって、電解槽に大電流を
通電するためには、印加電圧を上昇させなければならな
いが、電圧の上昇によってガスが発生したり放電が発生
して、電極面を損傷したりする。また、原水の電気伝導
度を高めるために、原水中に食塩水を添加して電解する
ことも行なはれているが、電気伝導度の変動によって電
解電流が増減変化し、このため安定して一定の電解特
性、PH、電気伝導度等を有する電解水が多量に得られ
なかった。特に給水を開始する電解初期には変動が激し
かった。
With such an electrolyzing water producing apparatus, water having a low PH value can be obtained by the acidic water discharged from the anode chamber, but it is difficult to continuously produce a large amount of electrolyzing water. Is. Generally, the electric conductivity (EC) of tap water in the suburbs of Tokyo is around 100 to 200 μS / cm and the PH is around 6.5 to 8, and in order to pass a large current to the electrolytic cell, the applied voltage should be raised. Although it has to be done, the increase in voltage may generate gas or discharge, which may damage the electrode surface. In addition, in order to increase the electric conductivity of the raw water, it is also possible to add salt solution to the raw water for electrolysis, but the fluctuation of the electric conductivity causes an increase or decrease in the electrolysis current, which stabilizes the electrolysis. Therefore, a large amount of electrolyzed water having a certain electrolytic characteristic, PH, electric conductivity, etc. was not obtained. In particular, the fluctuation was severe at the beginning of electrolysis when water supply was started.

【0004】そこで本発明は、殺菌効果の高いPH3以
下、好ましくは1.5〜2.6程度の酸性水が、低電力
で、大量に安定して得られる、また同時にアルカリ水の
生成ができる電解水の生成を目的とする。
Therefore, according to the present invention, acidic water having a high sterilizing effect of pH 3 or less, preferably about 1.5 to 2.6, can be stably obtained in a large amount with low power, and at the same time, alkaline water can be produced. The purpose is to generate electrolyzed water.

【0005】[0005]

【課題を解決するための手段】電気分解によって電解水
を生成する電解槽へ原水の供給を開始してから流量計の
検出により原水もしくは吐出水の流量が所定の設定値に
達したとき、前記供給原水中に塩素系電解質水溶液を供
給添加し、該塩素系電解質を添加した原水の前記電解槽
における電解状態もしくは電解吐出水の電解度合をセン
サにより検出してそれが所定値に達したとき、電解吐出
水流路のバルブを開くようにしたことを特徴とする電解
水の生成方法である。また、前記電解槽に供給する原水
の供給路もしくは電解槽から吐出する吐出水流路に流量
制御手段を設け、前記電解槽に供給する原水中に塩素系
電解質水溶液を供給添加する供給手段を設け、前記原水
供給路もしくは電解槽から吐出する電解吐出水流路に流
量計を設け、更に前記電解槽における電解状態もしくは
電解吐出水の電解度合を検出する検知センサを設け、且
つ前記電解槽へ原水の供給を開始してから、前記流量計
の検出および流量制御手段の制御により原水もしくは吐
出水の流量が所定の設定値に達したとき、前記供給手段
を作動させて前記供給原水中に塩素系電解質水溶液を供
給添加し、該塩素系電解質を添加した原水の前記電解槽
における電解状態もしくは電解吐出水の電解度合を前記
検知センサによる検出および前記流量制御手段の制御に
より電解度合が所定値に達したとき、前記電解吐出水流
路のバルブを開くように制御するCPU制御装置を設け
たことを特徴とする電解水の生成装置である。
[Means for Solving the Problems] When the flow rate of raw water or discharge water reaches a predetermined set value by detection of a flow meter after starting the supply of raw water to an electrolytic cell for producing electrolyzed water by electrolysis, When a chlorine-based electrolyte aqueous solution is supplied and added to the raw water to be supplied, and when it reaches a predetermined value by detecting with a sensor the electrolytic state of the raw water to which the chlorine-based electrolyte is added or the degree of electrolysis of the electrolytic discharge water, A method for producing electrolyzed water is characterized in that a valve of an electrolyzed discharge water channel is opened. Further, a flow rate control means is provided in a supply path of raw water supplied to the electrolytic cell or a discharge water flow path discharged from the electrolytic cell, and a supply means for supplying and adding a chlorine-based electrolyte aqueous solution to the raw water supplied to the electrolytic cell is provided. A flow meter is provided in the electrolytic water discharge passage for discharging from the raw water supply passage or the electrolytic tank, and a detection sensor for detecting the electrolytic state in the electrolytic tank or the electrolytic degree of the electrolytic discharge water is provided, and the raw water is supplied to the electrolytic tank. After the start, when the flow rate of the raw water or the discharge water reaches a predetermined set value by the detection of the flow meter and the control of the flow rate control means, the supply means is operated to operate the chlorine-based electrolyte aqueous solution in the supply raw water. Is added to detect the electrolysis state of the raw water to which the chlorine-based electrolyte is added in the electrolysis tank or the electrolysis degree of electrolysis discharge water by the detection sensor and the flow rate control. When the electrolytic degree by the control means reaches a predetermined value, a generator of the electrolytic water, characterized in that a CPU control unit for controlling to open the valve of the electrolytic discharge water flow path.

【0006】[0006]

【作用】本発明は、電解槽内に水道水等の原水を供給
し、陰陽極電極間への通電によって電気分解し、電解槽
内陰極室にアルカリ水,陽極室に酸性水を連続的に生成
し吐出利用する。前記電解槽に供給する原水中に塩素系
電解質水溶液を供給混合して原水の電気伝導度を高め、
低電圧で大電流通電を可能とし、原水に対して強い電解
作用を与える。強い電解によってPH値を下げ、生成す
る酸性水中には塩素,次亜塩素酸とか殺菌性の高い酸素
を多量に含有させる。電解槽へ原水の供給を開始してか
ら流量計の測定により原水もしくは吐出水の流量が所定
の設定値に達したとき、原水中に塩素系電解質水溶液を
供給添加し、この添加原水の電解槽における電解状態も
しくは電解吐出水の電解度合をセンサにより検知してそ
れが所定置に達したとき、電解吐出水流路のバルブを開
いて電解水を流出させる。さらに、電解水生成中は流量
計、および検知センサの検出信号によって流量制御し、
所望する電解水の生成を続ける。
According to the present invention, raw water such as tap water is supplied into the electrolytic cell and electrolyzed by energizing between the negative and positive electrodes, and alkaline water is continuously supplied to the cathode chamber in the electrolytic cell and acidic water is continuously supplied to the anode chamber. Generate and use discharge. To increase the electrical conductivity of the raw water by supplying and mixing the chlorine-based electrolyte aqueous solution into the raw water to be supplied to the electrolytic cell,
It enables energization of large current at low voltage and gives strong electrolysis to raw water. The PH value is lowered by strong electrolysis, and a large amount of chlorine, hypochlorous acid, and highly sterilizing oxygen are contained in the generated acidic water. When the flow rate of raw water or discharge water reaches a predetermined set value after starting the supply of raw water to the electrolyzer, the chlorine-based electrolyte aqueous solution is supplied and added to the raw water. When the sensor detects the electrolysis state or the degree of electrolysis of the electrolyzed discharge water and reaches a predetermined position, the valve of the electrolysis discharge water flow path is opened to allow the electrolyzed water to flow out. Furthermore, during electrolyzed water generation, the flow rate is controlled by the flow meter and the detection signal from the detection sensor.
Continue to produce the desired electrolyzed water.

【0007】[0007]

【実施例】下図面の一実施例により本発明を説明する。
図1において、電解槽1は密閉構造になり、室内を隔膜
2によって分割し、一方に陰極電極3を挿入した陰極室
31、他方に陽極電極4を挿入して陽極室41とする。
陰極電極3及び陽極電極4には所定の設定電圧を印加す
る電解電源5から電解電流の通電が行なわれる。また、
電解槽1には上部に陰極室31に通じる供給口1a,陽
極室41に通じる供給口1bが設けられ、この各々の供
給口から原水が供給される。また電解水の吐出のために
電解槽1上部には陰極室31に連通して吐出口1c,陽
極室41に通じて吐出口1dが形成してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to an embodiment of the drawings below.
In FIG. 1, the electrolytic cell 1 has a closed structure, and the inside of the chamber is divided by a diaphragm 2. A cathode chamber 31 having a cathode electrode 3 inserted into one side thereof and an anode electrode 4 inserted into the other side thereof are referred to as an anode chamber 41.
An electrolytic current is applied to the cathode electrode 3 and the anode electrode 4 from an electrolytic power source 5 that applies a predetermined set voltage. Also,
A supply port 1a leading to the cathode chamber 31 and a supply port 1b leading to the anode chamber 41 are provided in the upper part of the electrolytic cell 1, and raw water is supplied from each of these supply ports. In order to discharge the electrolyzed water, a discharge port 1c communicating with the cathode chamber 31 and a discharge port 1d communicating with the anode chamber 41 are formed above the electrolytic cell 1.

【0008】電解槽1に供給される原水は水道水等が利
用され、水道の蛇口から加圧供給される原水をストレー
ナ6から減圧弁7で所定の水圧にする。この水圧調整
は、圧力計8の測定に応じて調整する。水圧調整された
原水は流量制御バルブ9及び流量計10により所要流量
に制御する。このようにして水圧,流量を所定に調整し
た原水を電解槽1に供給するが、その途中で電気伝導度
(EC値)を調整する。
Tap water or the like is used as the raw water supplied to the electrolysis tank 1, and the raw water supplied under pressure from the tap of the water supply is brought to a predetermined water pressure from the strainer 6 by the pressure reducing valve 7. This water pressure adjustment is adjusted according to the measurement of the pressure gauge 8. The raw water whose water pressure has been adjusted is controlled to a required flow rate by a flow control valve 9 and a flow meter 10. The raw water whose water pressure and flow rate are adjusted in this way is supplied to the electrolytic cell 1, and the electric conductivity (EC value) is adjusted during the process.

【0009】電気伝導度の調整は塩素系電解質水溶液の
添加混合によって行なう。電解質に、例えば食塩が用い
られ、食塩水11がタンク12に貯水され、これを定量
ポンプ13によって食塩水注入装置14に供給する。タ
ンク12内の貯水は水位計15によって監視される。供
給された食塩水は注入装置14によって通過する原水中
に定量注入される。注入食塩水は更に図示しない混合装
置によって攪拌混合することがよく、充分に混合した状
態で配管16から電解槽1に供給される。
The electrical conductivity is adjusted by adding and mixing a chlorine-based electrolyte aqueous solution. For example, salt is used as the electrolyte, and the salt solution 11 is stored in the tank 12, which is supplied to the saline injection device 14 by the metering pump 13. The water level in the tank 12 is monitored by the water level gauge 15. The supplied saline solution is quantitatively injected into the raw water passing through by the injection device 14. It is preferable that the injected saline solution is further stirred and mixed by a mixing device (not shown), and is supplied to the electrolytic cell 1 from the pipe 16 in a sufficiently mixed state.

【0010】供給原水は、電解槽1の入口で分流し、供
給口1aから陰極室31に、他は供給口1bから陽極室
41に供給される。電解槽1で電解生成されたアルカリ
水は陰極室吐出口1cから吐出し、酸性水は陽極吐出口
1dから吐出する。アルカリ水は吐出口1cに連通する
配管17を、また酸性水は吐出口1dに連通する管路1
8を通って外部に流出する。管路17,18の途中には
各々三方弁19,20が設けられ、分岐した合流水は合
流管21から排出される。酸性水の流路18に設けられ
た分流状態を測定する流量計22、同流路に設けられた
酸性水の酸化還元電位を測定するORPセンサ23の、
いずれの検出信号もCPU24に入力し、演算処理によ
り各部の制御が行われると共に、表示板25への信号表
示を行なう。
The raw water to be supplied is split at the inlet of the electrolytic cell 1 and is supplied to the cathode chamber 31 from the supply port 1a and the other to the anode chamber 41 from the supply port 1b. The alkaline water electrolytically generated in the electrolytic cell 1 is discharged from the cathode chamber discharge port 1c, and the acidic water is discharged from the anode discharge port 1d. Alkaline water is connected to the discharge port 1c through the pipe 17, and acidic water is connected to the discharge port 1d through the pipe line 1.
It passes through 8 and flows out. Three-way valves 19 and 20 are provided in the middle of the pipelines 17 and 18, respectively, and the branched combined water is discharged from the combining pipe 21. A flowmeter 22 provided in the flow path 18 of the acidic water for measuring the split state, and an ORP sensor 23 provided in the flow path for measuring the oxidation-reduction potential of the acidic water,
Any of the detection signals is input to the CPU 24, each part is controlled by arithmetic processing, and a signal is displayed on the display plate 25.

【0011】以上の装置における作動を図2のフローチ
ャートを用いて説明する。フローチャートは検出器によ
る測定,測定信号の比較演算処理及びそれによる制御を
CPU24によって順次処理制御される状態を説明す
る。先づ水道の蛇口を開き、或いは給水ポンプを駆動し
て給水を開始させると、原水はストレーナ6,減圧弁7
を通り所定の水圧に制御される。この水圧はステップ1
でスタートしてから制御された水圧をステップ2で測定
し、所定の水圧が出ていけなければ否定Nで逆戻りし、
水圧が出ていれば肯定Yで前に進み、ステップ3でメモ
リした流量下限データQ1 を選択し、次のステップ4に
おいて、流量計10から、さらに分流状態を測定する流
量計22からの検出信号Qを比較する。比較結果のQ>
1 が否定Nであれば、ステップ6に進んで流量制御バ
ルブ9を開けて原水流量の増加制御し、Q>Q1 が肯定
Yであれば、次のステップ5において流量上限データQ
2 を選択し、ステップ7でQ<Q2 の比較をする。Q<
2 が否定Nであれば流量が大き過ぎるからステップ8
において制御バルブ9を狭めて流量減少制御をする。ま
たQ<Q2 が肯定Yであれば、スタート時に振らついた
原水流量が所定の設定範囲に安定したことになり、この
時点で、次のステップ9において供給原水に対して食塩
水の添加を始める。食塩水の注入によって供給原水の電
気伝導度の調整制御を行なう。
The operation of the above apparatus will be described with reference to the flowchart of FIG. The flow chart illustrates a state in which the CPU 24 sequentially controls the measurement by the detector, the comparison calculation processing of the measurement signals, and the control by the comparison calculation processing. When you first open the tap of the water supply or drive the water supply pump to start water supply, the raw water is strainer 6, pressure reducing valve 7
The water pressure is controlled to a predetermined level. This water pressure is step 1
Measure the controlled water pressure in step 2 after starting with, and if the prescribed water pressure does not come out, go back with negative N,
If the water pressure is generated, the process proceeds to the affirmative Y to move forward, and the flow rate lower limit data Q 1 stored in step 3 is selected. Compare the signal Q. Q of comparison result>
If Q 1 is negative N, the flow proceeds to step 6 to open the flow control valve 9 to control the increase of the raw water flow rate, and if Q> Q 1 is affirmative Y, in the next step 5, the flow rate upper limit data Q
2 is selected, and in step 7, Q <Q 2 is compared. Q <
If Q 2 is negative N, the flow rate is too large, so step 8
At, the control valve 9 is narrowed to control the flow rate reduction. If Q <Q 2 is affirmative, it means that the flow rate of raw water fluctuated at the start was stabilized within a predetermined set range. At this time, in the next step 9, salt water was added to the raw water supply. start. The electric conductivity of the raw water supply is adjusted and controlled by injecting saline solution.

【0012】タンク12内に貯水される食塩水は、例え
ば10%程度の溶液とし、これをポンプ13によって定
量供給する。食塩水注入装置14は定量制御されて流れ
る原水に食塩水をパルス的に点滴注入するとか、原水流
路にベンチュリ部を形成して、負圧によって所定量の塩
水注入をすることによって塩分を一定にし、電気伝導度
を一定に調整した原水を作ることができる。注入塩水は
混合装置等で充分攪拌混合された状態で電解槽1に流入
し、電極3,4間の通電によって電気分解処理される。
電極3,4間の通電制御は所定の設定電圧を印加する電
源5により通電されるが、電気分解は食塩水の添加によ
り電気伝導度を増大させてあるから低電圧で大電流を流
すことが容易で、電源ワット数を少なくして容易に強い
電解作用を働かせることができ、しかも原水流量制御に
よって一定比率で食塩水を添加混合することができ、電
気伝導度を一定に制御した供給水の電解により安定した
一定の電解作用を働かせることができる。
The saline solution stored in the tank 12 is, for example, a solution of about 10%, and the solution is quantitatively supplied by the pump 13. The saline solution injecting device 14 performs a pulsed drip injection of saline solution into the raw water that is quantitatively controlled, or forms a venturi portion in the raw water flow path and injects a predetermined amount of salt water by negative pressure to keep the salt content constant. It is possible to make raw water with constant electric conductivity. The injected salt water flows into the electrolytic cell 1 in a state of being sufficiently stirred and mixed by a mixing device or the like, and is electrolyzed by energization between the electrodes 3 and 4.
The power supply between the electrodes 3 and 4 is controlled by the power source 5 which applies a predetermined set voltage. However, since the electrolysis increases the electrical conductivity by adding saline, a large current can be passed at a low voltage. It is easy, the power wattage can be reduced and a strong electrolysis effect can be easily exerted, and salt water can be added and mixed at a constant ratio by controlling the flow rate of raw water, and the electric conductivity of water can be controlled to a constant level. A stable and constant electrolytic action can be exerted by electrolysis.

【0013】電解槽1内の電気分解は隔膜2を通しての
電解であり、電解による陽イオンは隔膜2を通して陰極
室31に、また陰イオンは陽極室41に集まる電気浸透
作用を受け、陽極室41にはCl- 等の陰イオンを多量に
含んだPH値の低い酸性水が得られる。この酸性水は流
量当りの大きい電気量の電解作用を受けることにより電
気伝導度が高まりPH値の低い強酸性水となる。一方陰
極室31にはアルカリ水が生成されて吐出口1cから管
路17を通って外に排水される。また陽極室41の酸性
水は管路18を通って流出する。いずれも管路17,1
8に挿入した三方弁19,20によって排水管21に合
流して排水される。
The electrolysis in the electrolytic cell 1 is electrolysis through the diaphragm 2, and the cations due to the electrolysis are subjected to the electroosmotic action of collecting in the cathode chamber 31 and the anion in the anode chamber 41 through the diaphragm 2, and the anode chamber 41 is subjected to the electroosmosis. As a result, acidic water containing a large amount of anions such as Cl − and having a low PH value can be obtained. The acidic water is electrolyzed with a large amount of electricity per flow rate, so that the electrical conductivity is increased and the acidic water becomes a strong acidic water having a low PH value. On the other hand, alkaline water is generated in the cathode chamber 31 and discharged from the discharge port 1c to the outside through the pipe line 17. Further, the acidic water in the anode chamber 41 flows out through the conduit 18. Pipe lines 17, 1
The three-way valves 19 and 20 inserted in 8 join the drain pipe 21 for drainage.

【0014】酸性水の導出管路18にはORPセンサ2
3が設けてある。このORPセンサ23によって電解酸
性水の酸化還元電位が検出され、検出信号はCPU24
に供給される。ここで、図2のフローチャートのステッ
プ10において、ORP下限値O1 が選択され、次のス
テップ11において、ORPセンサ23からの検出信号
Oが比較され、O>O1 が否定Nであれば、ステップ8
に戻って流量制御バルブ9を絞る方向に制御し、この制
御によって原水供給量を減少させることにより陽極室4
1を流れる水の流量当りの電気量が増大でき、この電気
量の増大によって電気分解の強度を高め、酸化還元電位
の増大をはかる。またステップ11においてO>O1
肯定Yであれば、次のステップ12においてORP上限
値O2 を*択し、ステップ13においてO<O2 の比較
をし、否定Nであればステップ6に戻ってバルブ8を広
げる方向に制御し、原水流量の増加をはかり、流量に対
する電気量を減少させて所定量の電解が行われるよう制
御する。またO<O2 の比較が肯定Yであれば、次のス
テップ14で三方弁20を開いて電解酸性水の利用流出
を制御する。
An ORP sensor 2 is provided in the acid water outlet conduit 18.
3 is provided. The ORP sensor 23 detects the oxidation-reduction potential of the electrolyzed acidic water, and the detection signal is the CPU 24.
Is supplied to. Here, in step 10 of the flowchart of FIG. 2, the ORP lower limit value O 1 is selected, and in the next step 11, the detection signal O from the ORP sensor 23 is compared, and if O> O 1 is negative N, Step 8
The flow rate control valve 9 is controlled so as to narrow the flow rate, and the raw water supply amount is reduced by this control to reduce the flow rate of the anode chamber 4.
The quantity of electricity per flow rate of the water flowing through 1 can be increased, and the increase in the quantity of electricity enhances the strength of electrolysis and increases the redox potential. If O> O 1 is affirmative in step 11, the ORP upper limit value O 2 is selected * in the next step 12, O <O 2 is compared in step 13, and if negative N, the process proceeds to step 6. The valve 8 is controlled so as to return and the valve 8 is widened to increase the flow rate of the raw water and reduce the amount of electricity with respect to the flow rate so that a predetermined amount of electrolysis is performed. If the comparison of O <O 2 is affirmative, the three-way valve 20 is opened in the next step 14 to control the use and outflow of the electrolytic acid water.

【0015】このような各ステップでのCPU24によ
る演算処理,制御状態は刻々表示板25にディスプレイ
して知らせることができ、又、CPU24にはORPセ
ンサ23,流量計10,22及び水位計15等から検出
測定信号が入力され、且つ表示板25に表示される。
The arithmetic processing and control state by the CPU 24 at each step can be displayed and displayed on the display plate 25 every moment, and the ORP sensor 23, the flow meters 10, 22 and the water level meter 15 etc. can be notified to the CPU 24. The detection measurement signal is input from and is displayed on the display plate 25.

【0016】以上のようにして、原水の供給を開始して
から原水の流量が変動する間は食塩水の添加をしなよう
にし、流量が安定したところで食塩水の添加を始め、原
水量に対して定量供給される食塩水の混合比を流量制御
によって一定に制御し、常に一定の電気伝導度に制御し
た原水を電解槽1に供給して電解するから低電圧で大電
流の電解作用を安定して与えることができ、電解作用に
変動なく安定した極めて高効率の電解イオン水の生成を
することができる。また電解槽1内を流通する原水流量
によって流量当りの電気量が変化するが、流量制御によ
って電気量の制御をし、一定の安定した電気分解を行な
うことができる。そして電解吐出水の酸化還元電位をO
RPセンサ23によって検出しながら、それが設定範囲
になるよう微細に流量制御して電解するから所定に制御
された電解水が安定して得られる。またORPセンサ2
3の測定にもとずいて三方弁20を開いて酸性水の流出
を行なうようにしたから、電解度合、即ち酸化還元電
位,電気伝導度,PH値、イオン濃度等が所定の設定範
囲内にある電解水のみを安定して取り出すことができ
る。
As described above, salt water is not added during the fluctuation of the flow rate of raw water after starting the supply of raw water. On the other hand, the mixing ratio of the saline solution, which is supplied in a fixed amount, is controlled to be constant by controlling the flow rate, and the raw water whose electric conductivity is constantly controlled is supplied to the electrolyzer 1 for electrolysis, so that a low-voltage and large-current electrolysis action is achieved. It is possible to stably give electrolytic water, and it is possible to generate electrolytic ion water with extremely high efficiency and stable electrolysis. Further, although the amount of electricity per flow rate changes depending on the flow rate of raw water flowing in the electrolytic cell 1, the amount of electricity can be controlled by controlling the flow rate, and constant and stable electrolysis can be performed. Then, the redox potential of the electrolytic discharge water is set to O
While being detected by the RP sensor 23, the flow rate is finely controlled so that it falls within the set range and electrolysis is performed, so that electrolyzed water controlled in a predetermined manner can be stably obtained. Also ORP sensor 2
Based on the measurement of 3, the three-way valve 20 was opened to allow the acidic water to flow out, so that the degree of electrolysis, that is, the redox potential, the electric conductivity, the PH value, the ion concentration, etc., were within the predetermined setting ranges. Only certain electrolyzed water can be stably taken out.

【0017】図3は、電解槽1の他の実施例で、隔膜2
によって中心部を陰極室31、その外側を陽極室41、
さらに、その外側を陰極室31に分割し、各々の室内に
陰極電極3、陽極電極4を挿入し、流量制御された原水
を供給する給水管16を途中で分岐16a,16bし、
分岐管16aを陽極室41に、分岐管16bを陰極室3
1に導通し、陽極室41を配管18に、陰極室31を配
管17に連通して各々電解水を吐出させる。また食塩水
の供給添加を分岐管16bに設けた注入装置14によっ
て供給する。食塩水の供給量はタンク12内の食塩水1
1をバルブ131の開閉度によって定量供給する。この
装置によれば、食塩水の添加供給を分岐管16bから電
解槽1内の陰極室31に供給するようにしたので、陰極
室31では電解反応が促進し、陽極室41側では高効率
で強い酸性水の生成が行なわれる。また、陽極室41に
は原水のみが供給されるので、電極消耗が極めて少なく
なり、電解効率を高めることができる。
FIG. 3 shows another embodiment of the electrolytic cell 1, in which the diaphragm 2 is used.
The central part is the cathode chamber 31, the outside is the anode chamber 41,
Further, the outside thereof is divided into a cathode chamber 31, the cathode electrode 3 and the anode electrode 4 are inserted into each chamber, and a water supply pipe 16 for supplying raw water whose flow rate is controlled is branched 16a, 16b on the way,
The branch pipe 16a is used as the anode chamber 41, and the branch pipe 16b is used as the cathode chamber 3
1, the anode chamber 41 is connected to the pipe 18 and the cathode chamber 31 is connected to the pipe 17 to discharge electrolyzed water. Further, the salt water supply is added by the injection device 14 provided in the branch pipe 16b. The amount of saline solution supplied is 1 saline solution in the tank 12.
1 is supplied quantitatively according to the opening / closing degree of the valve 131. According to this apparatus, since the added supply of saline is supplied from the branch pipe 16b to the cathode chamber 31 in the electrolytic cell 1, the electrolytic reaction is promoted in the cathode chamber 31 and the anode chamber 41 side is highly efficient. Strong acidic water is produced. Further, since only the raw water is supplied to the anode chamber 41, the electrode consumption is extremely reduced, and the electrolysis efficiency can be improved.

【0018】なお以上の電解槽1に供給する原水の流量
制御を行うCPU24の制御は、基準設定値の変更によ
り、それに応じた原水流量計制御が行なわれ、例えば陽
極室41の流量を減少すれば、流れる水の流量当りの電
気量が増加でき、この電気量の増加によって電気分解強
度を高め、電気伝導度の高いPH値の低い強酸性水を得
ることができ、流量制御によって任意の酸性水が得られ
る。この電解水生成は三方弁19を開いてアルカリ水を
流出させて飲料水等に利用する場合も全く同様で、流量
制御によって安定したアルカリ水が効率よく多量に生成
でき、任意にPH制御したアルカリ水の生成ができる。
なおこのアルカリ水の生成においてはORPセンサ23
をアルカリ水の導出路17に設け、また流量計22を設
けることができる。
The control of the CPU 24 for controlling the flow rate of the raw water supplied to the electrolytic cell 1 is performed by changing the reference set value to control the flow rate of the raw water in accordance with the change of the reference set value. For example, the amount of electricity per flow rate of flowing water can be increased. By increasing the amount of electricity, the electrolysis strength can be increased, and strongly acidic water with high PH and low PH value can be obtained. Water is obtained. This electrolyzed water generation is exactly the same when the three-way valve 19 is opened and the alkaline water is discharged to be used as drinking water or the like. By controlling the flow rate, a stable alkaline water can be efficiently produced in a large amount, and the pH can be arbitrarily controlled. Can generate water.
It should be noted that the ORP sensor 23 is used to generate the alkaline water.
Can be provided in the outlet 17 of the alkaline water, and a flow meter 22 can be provided.

【0019】また酸性水あるいはアルカリ水の電解度合
の検出には、ORPセンサの他に電解水の電気伝導度を
測定するECセンサを設けることができ、またPH計を
設けて電解水のPH値を検出しながら原水の流量制御を
することができる。また電解槽1により電解する前の原
水の電気伝導度を一方のECセンサで検出し、電解槽1
を通過して電解された後の電解水の電気伝導度を他のE
Cセンサで検出し、この電解前と後の電解水の検出EC
値の差をCPU24で比較演算して求め、この電気伝導
度の増加分を信号として所定の設定値に適合しているか
どうかの判別処理をするとともに制御信号を発生して流
量制御バブル9の制御をすることができる。その他電解
水の電解度合の検出には、他に原水の水質もしくは添加
電解質によって生成するCl- ,ClO2 - ,ClO3 - ,ClO4 - ,O2
- ,OH- ,Na+ ,K+ ,Mg++ ,Ca++ ,H + 等のイオンを検出す
るイオン濃度検出器,O2,2H2等のガス濃度検出器,ガス
圧検出器或はこれらの単独もしくは複数検出器の組合せ
等を利用することができる。
The degree of electrolysis of acidic water or alkaline water
In addition to the ORP sensor, the electrical conductivity of electrolyzed water can be detected
An EC sensor for measurement can be provided, and a PH meter
Installed to control the flow rate of raw water while detecting the PH value of electrolyzed water
can do. In addition, the raw material before electrolysis in the electrolyzer 1
The electric conductivity of water is detected by one of the EC sensors, and electrolysis tank 1
The electric conductivity of electrolyzed water after being electrolyzed through
EC detected by C sensor and detection of electrolyzed water before and after this electrolysis
The CPU 24 compares and calculates the difference in value,
Does the signal meet the specified set value using the increase in the signal as a signal?
Whether or not the control signal is generated
The quantity control bubble 9 can be controlled. Other electrolysis
In addition, the quality of raw water or addition
Cl produced by the electrolyte-, ClO2 -, ClO3 -, ClOFour -, O2
-, OH-, Na+, K+, Mg++ , Ca++ , H+ To detect ions such as
Ion concentration detector, O2, 2H2Gas concentration detector, gas, etc.
Pressure detector or combination of these detectors or multiple detectors
Etc. can be used.

【0020】電解状態は前記のように電解槽1から吐出
した電解イオン水の電解度合を測定する以外に電解槽1
内で電解中の電解電圧,電解電流,インピーダンスの変
化,その他の変化成分等の検出によっても測定すること
ができる。図4は電解電流の変化を検出する実施例で、
比較増幅器26を用い、これに信号を加える。即ち電源
5から陰陽極電極3,4間に電解電流を通電する回路に
検出抵抗27を挿入し、流れる電流によって電圧降下し
た電圧信号を比較器26の−信号端子に加え、+端子に
ダイオード28及び抵抗29で設定した基準電圧を印加
して比較することにより、その比較増幅信号をCPU2
4に入力する。CPU24はこの入力信号の判定によっ
て電解槽1内における電解状態を検出し、常に設定した
電気分解による電解水が得られるように流量制御バルブ
9を制御する。これにより所定のPH値等を有する酸性
水,アルカリ水を生成することができる。
The electrolysis condition is as described above except that the degree of electrolysis of the electrolyzed ion water discharged from the electrolysis tank 1 is measured.
It can also be measured by detecting the electrolysis voltage, electrolysis current, impedance change, and other change components during electrolysis. FIG. 4 shows an embodiment for detecting a change in electrolytic current.
A signal is added to the comparator amplifier 26. That is, the detection resistor 27 is inserted in a circuit for passing an electrolytic current between the power source 5 and the negative and positive electrodes 3, 4, the voltage signal dropped by the flowing current is applied to the-signal terminal of the comparator 26, and the diode 28 is applied to the + terminal. And the reference voltage set by the resistor 29 is applied and compared, so that the comparison amplified signal is sent to the CPU 2
Enter in 4. The CPU 24 detects the electrolysis state in the electrolysis tank 1 by the determination of the input signal, and controls the flow control valve 9 so that the electrolyzed water by the set electrolysis is always obtained. This makes it possible to generate acidic water and alkaline water having a predetermined PH value and the like.

【0021】CPU24による検出制御は、前記のよう
な各センサからの信号、他のセンサからの信号のいずれ
かを選択し、或は各信号を別々に演算処理して制御信号
を出力してもよく、また各センサの信号の和,差,積等
により演算処理して制御信号を出力し、各部制御をする
ことができる。例えば酸性水の流量は管路18に設けた
流量計22によって検出し、アルカリ水の流量は流量計
10−流量計22によって測定される如く、各流量計1
0、22の測定信号によって流量制御をすることができ
る。
The detection control by the CPU 24 is performed by selecting either the signal from each sensor as described above or the signal from another sensor, or by processing each signal separately and outputting the control signal. Of course, it is possible to control each part by calculating the sum, difference, product, etc. of the signals of each sensor and outputting a control signal. For example, the flow rate of the acidic water is detected by the flow meter 22 provided in the conduit 18, and the flow rate of the alkaline water is measured by the flow meter 10-flow meter 22 so that each flow meter 1
The flow rate can be controlled by measuring signals 0 and 22.

【0022】またCPU24による制御は、前記した電
解開始時の制御のみでなく、連続した電解水生成中も各
センサからの検出信号にもとずいて流量制御をする。例
えばORPセンサ23の検出制御に限らず、ECセンサ
による電解前と後のEC差が設定値より大であれば、現
状を維持し、設定値より小であれば、流量制御バルブ9
を絞るように制御し電解槽1への原水の流入量を減少さ
せることによって、陰極室31,陽極室41での電解作
用を流量に対する電気量を増加させる制御によって強い
電解作用を与え、これによって吐出口1c,1dから吐
出するアルカリ水,酸性水の電気伝導度を高める。
The control by the CPU 24 controls not only the above-described control at the start of electrolysis but also the flow rate control based on the detection signal from each sensor during the continuous generation of electrolyzed water. For example, not only the detection control of the ORP sensor 23, if the EC difference before and after electrolysis by the EC sensor is larger than the set value, the current state is maintained, and if it is smaller than the set value, the flow control valve 9
By controlling so as to reduce the flow rate of raw water into the electrolytic cell 1, the electrolytic action in the cathode chamber 31 and the anode chamber 41 is controlled by increasing the amount of electricity with respect to the flow rate, thereby giving a strong electrolytic action. The electric conductivity of alkaline water and acidic water discharged from the discharge ports 1c and 1d is increased.

【0023】また、注入装置14によって定量添加する
食塩水の混合量も原水流量の減少によって相対的に高ま
り、これにより電解作用が高まり、またこれにより次亜
塩素酸等の殺菌性剤の生成を高めることができる。した
がって、このCPU24の検出制御が続けられつことに
よって電解槽1に連通する導出管17,18からは安定
した電気伝導度,PH値等を有する所要の電解水を連続
的に得ることができる。
Further, the mixing amount of the saline solution, which is quantitatively added by the injection device 14, is relatively increased due to the decrease of the raw water flow rate, whereby the electrolytic action is enhanced, and the production of the bactericidal agent such as hypochlorous acid is thereby caused. Can be increased. Therefore, by continuing the detection control of the CPU 24, required electrolyzed water having stable electric conductivity, PH value and the like can be continuously obtained from the outlet pipes 17 and 18 communicating with the electrolytic cell 1.

【0024】以上のようにして水を電解槽に流して電解
処理するとき、原水に食塩水を加えて電解することによ
り電解電流が流れ易く、低電圧で大電流による強い電解
作用を働かせることができ、電解吐出水の電気伝導度を
高めることができる。また陽極室41への原水の流量を
流量制御バルブ9の正逆制御による流量制御によって電
源を制御することなく一定電源によって電解電気量の制
御が任意にでき、酸性水の電解度を高め電気伝導度を高
めることができる。この電気伝導度の増加はPH値の低
下に相関関係し、容易に目的とする低PH値の酸性水を
生成することができる。かつまた、強い電解作用によっ
て水の酸化還元電位が増加して強い殺菌効果が付与され
る。これはアルカリ水の生成においても流量制御によっ
て任意のPH値の飲料水の生成が効率良く行なえる。
When water is passed through the electrolytic cell for electrolysis as described above, by adding salt water to the raw water for electrolysis, the electrolysis current easily flows and a strong electrolysis action due to a large current can be exerted at a low voltage. Therefore, the electric conductivity of the electrolytically discharged water can be increased. Further, the flow rate of the raw water to the anode chamber 41 can be arbitrarily controlled by a constant power source without controlling the power source by controlling the flow rate by the forward / reverse control of the flow rate control valve 9, thereby increasing the electrolysis degree of the acidic water and conducting the electricity. You can increase the degree. This increase in electrical conductivity correlates with a decrease in PH value, and it is possible to easily produce the target acidic water having a low PH value. In addition, the strong electrolysis action increases the redox potential of water and imparts a strong bactericidal effect. Even in the production of alkaline water, the drinking water having an arbitrary PH value can be efficiently produced by controlling the flow rate.

【0025】次に実験例を説明すると、原水100lに
対して10%食塩水1lの混合率で混合し、この食塩混
合の原水を電解槽に供給して電解した。電解槽への通電
条件は16V,30Aとし陰極室及び陽極室に流入する
原水の流量を制御してPH2.6の酸性水が毎分3.6
l得られた。PH値は電解の開始当初から安定してい
た。なお比較のために電解槽の電圧制御により酸性水の
生成を行なったときは、1lの酸性水を生成するのに約
1KWの電力を消費した。
Explaining an experimental example, 100 l of raw water was mixed at a mixing ratio of 1 l of 10% saline, and the mixed raw water was supplied to an electrolytic cell for electrolysis. The conditions for energizing the electrolytic cell were 16 V and 30 A, and the flow rate of raw water flowing into the cathode chamber and the anode chamber was controlled so that pH 2.6 acidic water was 3.6 per minute.
1 was obtained. The PH value was stable from the beginning of electrolysis. For the purpose of comparison, when the acidic water was produced by controlling the voltage of the electrolytic cell, about 1 kW of electric power was consumed to produce 1 liter of acidic water.

【0026】このように本発明によれば、所要の低PH
値の酸性水が安定して得られ、容易に多量に連続して生
成できる。また、生成酸性水のPH値を前記2,6より
高めてPH3程度にする場合は流量を増加させるだけで
よく、流量制御しながら所要の電気量にして酸性水の生
成量を更に増加させることができる。また、以上は酸性
水の生成について説明したが、アルカリ水を利用する場
合も同様で、流量制御によってアルカリ水のPH制御を
容易にすることができる。この場合も多量のアルカリ水
を低電気量で容易に得られる。
As described above, according to the present invention, the required low PH is obtained.
A stable amount of acidic water can be obtained, and a large amount can be easily produced continuously. Further, when the pH value of the generated acidic water is raised to above pH 2 and 6 to be about PH3, it is sufficient to increase the flow rate, and further increase the generated amount of acidic water by controlling the flow rate to the required amount of electricity. You can Although the production of acidic water has been described above, the same applies to the case of using alkaline water, and the pH control of alkaline water can be facilitated by controlling the flow rate. Also in this case, a large amount of alkaline water can be easily obtained with a low electricity amount.

【0027】また、流量制御は、吐出水側で行ってもよ
く、酸性水もしくはアルカリ水の吐出水流路に流量制御
手段を設けて行なう。流量制御はアナログ的制御でもよ
いが、デジタル制御の方が容易にでき、モータバルブに
よってパルス的に制御するとか、振動バルブにより振動
数の制御によって安定した精密制御が可能である。ま
た、原水に添加する塩素系電解質はNaCl以外にKCl,HCl,
HClO,HClO3,KClO3,NaClO3 等を単独もしくは複合して利
用することができ、原水流量に対して一定濃度で均一混
合できるように所定濃度の水溶液にして用いる。水溶液
は筒状容器等に詰めてカートリッジにして利用すること
ができる。これの注入もパルス的に点滴注入することに
より混入制御が正確にできる。
The flow rate may be controlled on the discharge water side, and the flow rate control means is provided in the discharge water flow path of the acidic water or the alkaline water. The flow rate control may be analog control, but digital control can be performed more easily, and stable precision control can be performed by pulse control by a motor valve or frequency control by a vibration valve. In addition to NaCl, the chlorine-based electrolyte added to raw water is KCl, HCl,
HClO, HClO 3 , KClO 3 , NaClO 3 or the like can be used alone or in combination, and used as an aqueous solution of a predetermined concentration so that it can be uniformly mixed at a constant concentration with respect to the flow rate of raw water. The aqueous solution can be packed in a cylindrical container or the like and used as a cartridge. This injection can also be accurately controlled by injecting pulses in a pulse manner.

【0028】[0028]

【発明の効果】以上のように本発明によれば、水の電解
が電解質の混合により容易で、電気量ワット数を低下さ
せて多量の電解水を安価に連続的に得られる。また、原
水の流量制御によって、定量ポンプによる電解質の添加
混合量及び設定電圧の電解電源による電解電気量の制御
が任意に所定値に制御できる。そして、電解水の生成を
開始させてから流量計による測定によって原水流量が所
定値に達したとき電解質水の添加混合をし、所定混合率
による所定電気伝導度を得るようにし、且つ電解槽にお
ける電解状態もしくは電解吐出水の電解度合をセンサ検
出によって流量制御しながら、それが所定値に制御され
た状態で酸性水もしくはアルカリ水の導出管路の弁を開
いて流出させるようにしたから、電解開始から連続して
電気伝導度、PH値等が所定の設定範囲内に制御された
電解水のみを、安定して取り出すことができる。また、
電解水の電気伝導度,PH調整が原水流量の制御によっ
て容易にでき、PH3以下の酸性水が安定して容易に生
成できる。また、塩素の混入により水中に塩素,次亜塩
素酸とか殺菌性の高い酸素を多量に含む洗浄用殺菌効果
の高い酸性水の生成が容易にできる。また、装置の構成
は、原水もしくは吐出水の流量を流量制御手段により流
量計及び電解度合検知センサの検出に基づいて制御する
だけで、従来のように電解電源の制御、電解質水の添加
量の制御を行わないので、極めて簡単になり、多量の電
解水が容易に得られる効果がある。
As described above, according to the present invention, the electrolysis of water is facilitated by mixing the electrolyte, the wattage of electricity is reduced, and a large amount of electrolyzed water can be continuously obtained at a low cost. Further, by controlling the flow rate of the raw water, the amount of the electrolyte added and mixed by the metering pump and the amount of electrolysis electricity by the electrolysis power source of the set voltage can be arbitrarily controlled to predetermined values. Then, after starting the generation of electrolyzed water, when the raw water flow rate reaches a predetermined value by measurement with a flow meter, electrolyte water is added and mixed to obtain a predetermined electric conductivity at a predetermined mixing ratio, and in the electrolytic cell While controlling the flow rate by the sensor detection of the electrolysis state or the electrolysis degree of the electrolysis discharge water, the valve of the outlet line of the acidic water or the alkaline water was opened to let it flow out while it was controlled to a predetermined value. It is possible to stably take out only the electrolyzed water whose electric conductivity, PH value and the like are continuously controlled within a predetermined set range from the start. Also,
The electric conductivity and pH of the electrolyzed water can be easily adjusted by controlling the flow rate of the raw water, and acidic water of PH3 or less can be stably and easily produced. Further, by mixing chlorine, it is possible to easily generate acidic water having a high sterilizing effect for cleaning, which contains a large amount of chlorine, hypochlorous acid, or highly sterilizing oxygen in water. In addition, the apparatus configuration is such that the flow rate control means controls the flow rate of the raw water or the discharge water based on the detection of the flow meter and the electrolytic degree detection sensor. Since no control is performed, there is an effect that it becomes extremely simple and a large amount of electrolyzed water can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1の実施例を説明するフローチャート。FIG. 2 is a flowchart illustrating the embodiment of FIG.

【図3】本発明の他の実施例の一部構成図。FIG. 3 is a partial configuration diagram of another embodiment of the present invention.

【図4】本発明の他の実施例の一部構成図。FIG. 4 is a partial configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 隔膜 3,4 電極 31 陰極室 41 陽極室 5 電解電源 9 流量制御バルブ 10,22 流量計 11 食塩水 12 タンク 13 定量ポンプ 14 食塩水注入装置 16,17,18,21 配管 19,20 三方弁 23 ORPセンサ 24 CPU 25 表示板 DESCRIPTION OF SYMBOLS 1 Electrolyte tank 2 Diaphragm 3,4 Electrode 31 Cathode chamber 41 Anode chamber 5 Electrolytic power source 9 Flow control valve 10,22 Flow meter 11 Saline solution 12 Tank 13 Metering pump 14 Saline injection device 16, 17, 18, 21 Piping 19, 20 three-way valve 23 ORP sensor 24 CPU 25 display board

フロントページの続き (72)発明者 有坂 政員 埼玉県川越市今福中台2779番地1 日本イ ンテック株式会社内Continuation of front page (72) Inventor Masakazu Arisaka 2779 Imafuku Nakadai, Kawagoe City, Saitama Prefecture Japan Intec Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電解槽内を隔膜によって陰極室と陽極室
とに分割して各々に電極を設け、前記電解槽内に供給さ
れる原水を陰陽極電極間への通電によって陰極室にアル
カリ水,陽極室に酸性水を連続的に電解生成するに当た
り、前記電解槽へ原水の供給を開始してから流量計の検
出により原水もしくは吐出水の流量が所定の設定値に達
したとき、前記供給原水中に塩素系電解質水溶液を供給
添加し、該塩素系電解質を添加した原水の前記電解槽に
おける電解状態もしくは電解吐出水の電解度合をセンサ
により検出して、それが所定値に達したとき電解吐出水
流路のバルブを開くようにしたことを特徴とする電解水
の生成方法。
1. An electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm and electrodes are provided on each of the cells, and the raw water supplied to the electrolytic cell is supplied to the cathode chamber with alkaline water by energizing the cathode and anode electrodes. , When the acidic water is continuously electrolyzed in the anode chamber, when the flow rate of the raw water or the discharge water reaches a predetermined set value by the detection of the flow meter after starting the supply of the raw water to the electrolyzer, the supply is performed. A chlorine-based electrolyte aqueous solution is supplied and added to the raw water, and an electrolytic state in the electrolytic cell of the raw water to which the chlorine-based electrolyte is added or the degree of electrolysis of the discharged water is detected by a sensor, and when it reaches a predetermined value, electrolysis is performed. A method for producing electrolyzed water, characterized in that a valve of a discharge water channel is opened.
【請求項2】 電解槽を隔膜によって陰極室と陽極室と
に分割して各々に電極を設け、前記電解槽内に供給され
る原水を陰陽極電極間への通電によって陰極室にアルカ
リ水,陽極室に酸性水を連続的に電解生成し電解吐出水
流路のバルブを開閉して流出利用するようにした装置に
おいて、前記電解槽に供給する原水の供給路もしくは電
解槽から吐出する吐出水流路に流量制御手段を設け、前
記電解槽に供給する原水中に塩素系電解質水溶液を供給
添加する供給手段を設け、前記原水供給路もしくは電解
槽から吐出する吐出水流路に流量計を設け、更に前記電
解槽における電解状態もしくは電解吐出水の電解度合を
検出する検知センサを設け、且つ前記電解槽へ原水の供
給を開始してから前記流量計の検出および前記流量制御
手段の制御により原水もしくは吐出水の流量が所定の設
定値に達したとき、前記供給手段を作動させて前記供給
原水中に塩素系電解質水溶液を供給添加し、該塩素系電
解質を添加した原水の前記電解槽における電解状態もし
くは電解吐出水の電解度合を前記検知センサによる検出
および前記流量制御手段の制御により電解度合が所定値
に達したとき、前記電解吐出水流路のバルブを開くよう
に制御するCPU制御装置を設けたことを特徴とする電
解水の生成装置。
2. An electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm and electrodes are provided on each of them, and the raw water supplied into the electrolytic cell is supplied with alkaline water to the cathode chamber by energizing the cathode and anode electrodes. In an apparatus in which acidic water is continuously electrolyzed in an anode chamber and an electrolytic discharge water flow path valve is opened / closed to be used for outflow utilization, a raw water supply path to be supplied to the electrolytic cell or a discharge water flow path to be discharged from the electrolytic cell A flow rate control means, a supply means for supplying and adding a chlorine-based electrolyte aqueous solution to the raw water to be supplied to the electrolytic cell, and a flow meter provided in the raw water supply path or a discharge water flow path discharged from the electrolytic cell, further A detection sensor for detecting the electrolysis state in the electrolysis tank or the electrolysis degree of electrolyzed discharge water is provided, and the raw water is detected by the flow meter and controlled by the flow control means after starting the supply of raw water to the electrolysis tank. When the flow rate of water or discharge water reaches a predetermined set value, the supply means is operated to supply and add a chlorine-based electrolyte aqueous solution to the supply raw water, and the raw water in which the chlorine-based electrolyte is added is added to the electrolytic tank. A CPU controller for controlling the valve of the electrolytic discharge water channel to open when the electrolytic degree or the electrolytic degree of the electrolytic discharge water reaches a predetermined value by the detection by the detection sensor and the control of the flow rate control means. An electrolyzed water generating device characterized by being provided.
【請求項3】 検知センサとして、電解吐出水の酸化還
元電位を測定するORPセンサを設けたことを特徴とす
る請求項2記載の電解水の生成装置。
3. The electrolyzed water generating apparatus according to claim 2, wherein an ORP sensor for measuring an oxidation-reduction potential of electrolyzed discharge water is provided as the detection sensor.
【請求項4】 検知センサとして、電解吐出水の電気伝
導度を測定するECセンサを設けたことを特徴とする請
求項2記載の電解水の生成装置。
4. The electrolyzed water generating apparatus according to claim 2, wherein an EC sensor for measuring the electric conductivity of the electrolyzed discharge water is provided as the detection sensor.
【請求項5】 検知センサとして、電解吐出水のPHを
測定するPH計を設けたことを特徴とする請求項2記載
の電解水の生成装置。
5. The electrolyzed water producing apparatus according to claim 2, wherein a PH meter for measuring the PH of electrolyzed discharged water is provided as the detection sensor.
【請求項6】 検知センサとして、電解吐出水のイオン
濃度を測定するイオン濃度計を設けたことを特徴とする
請求項2記載の電解水の生成装置。
6. The electrolyzed water generating apparatus according to claim 2, wherein an ion concentration meter for measuring the ion concentration of the electrolyzed discharge water is provided as the detection sensor.
【請求項7】 検知センサとして、電解吐出水のガス濃
度を測定するガス濃度計を設けたことを特徴とする請求
項2記載の電解水の生成装置。
7. The electrolyzed water generating apparatus according to claim 2, wherein a gas concentration meter for measuring the gas concentration of the electrolyzed discharge water is provided as the detection sensor.
JP03197393A 1993-02-22 1993-02-22 Method and apparatus for producing electrolyzed water Expired - Fee Related JP3201860B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP03197393A JP3201860B2 (en) 1993-02-22 1993-02-22 Method and apparatus for producing electrolyzed water
EP94301179A EP0612694B1 (en) 1993-02-22 1994-02-18 Method and device for producing electrolytic water
DE69409996T DE69409996T2 (en) 1993-02-22 1994-02-18 Method and device for producing electrolytic water
ES94301179T ES2115156T3 (en) 1993-02-22 1994-02-18 PROCEDURE AND DEVICE TO PRODUCE ELECTROLYTIC WATER.
MYPI94000414A MY131555A (en) 1993-02-22 1994-02-21 Method and device for producing electrolytic water
TW083101444A TW310347B (en) 1993-02-22 1994-02-21
CA002116045A CA2116045C (en) 1993-02-22 1994-02-21 Method and device for producing electrolytic water
AU55274/94A AU677618B2 (en) 1993-02-22 1994-02-21 Method and device for producing electrolytic water
BR9400627A BR9400627A (en) 1993-02-22 1994-02-21 Process and device for producing electrolytic water
KR1019940003119A KR0133975B1 (en) 1993-02-22 1994-02-22 Method amd device for producing electrlytic water
CN94102044A CN1055904C (en) 1993-02-22 1994-02-22 Method and apparatus for generation of electrolyte
US08/199,840 US5445722A (en) 1993-02-22 1994-02-22 Method and device for producing electrolytic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03197393A JP3201860B2 (en) 1993-02-22 1993-02-22 Method and apparatus for producing electrolyzed water

Publications (2)

Publication Number Publication Date
JPH06246268A true JPH06246268A (en) 1994-09-06
JP3201860B2 JP3201860B2 (en) 2001-08-27

Family

ID=12345899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03197393A Expired - Fee Related JP3201860B2 (en) 1993-02-22 1993-02-22 Method and apparatus for producing electrolyzed water

Country Status (1)

Country Link
JP (1) JP3201860B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238275A (en) * 1993-02-15 1994-08-30 Matsushita Electric Works Ltd Alkali ion water preparation device
JPH0839068A (en) * 1994-07-29 1996-02-13 Hoshizaki Electric Co Ltd Electrolytic water making apparatus
JPH09285788A (en) * 1996-04-22 1997-11-04 Hoshizaki Electric Co Ltd Electrolytic water generating device and electrolytic water generating system including the same
JPH1157711A (en) * 1997-08-08 1999-03-02 Hoshizaki Electric Co Ltd Electrolytic water producer
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
WO2001027037A1 (en) * 1999-10-14 2001-04-19 Ecoaid Corp. Apparatus for producing high-concentration electrolytic water
JP2001170635A (en) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd Water reforming device
JP2003164874A (en) * 2001-12-03 2003-06-10 Sanyo Aqua Technology Co Ltd Apparatus for removing object to be removed of fluid, apparatus for making pure water and method of making pure water
KR100491175B1 (en) * 2002-08-29 2005-05-24 대한민국 A solution for sterilizing pathogenic bacteria in fish and a method for producing the same , and a method for neutralizing thereof
WO2018135077A1 (en) * 2017-01-18 2018-07-26 株式会社日本トリム Electrolyzed water generation device
JP2019098202A (en) * 2017-11-29 2019-06-24 ホシザキ株式会社 Electrolytic water generator
WO2023145505A1 (en) * 2022-01-31 2023-08-03 株式会社アクト Generation device
JP2023111835A (en) * 2022-01-31 2023-08-10 株式会社アクト generator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238275A (en) * 1993-02-15 1994-08-30 Matsushita Electric Works Ltd Alkali ion water preparation device
JPH0839068A (en) * 1994-07-29 1996-02-13 Hoshizaki Electric Co Ltd Electrolytic water making apparatus
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JPH09285788A (en) * 1996-04-22 1997-11-04 Hoshizaki Electric Co Ltd Electrolytic water generating device and electrolytic water generating system including the same
JPH1157711A (en) * 1997-08-08 1999-03-02 Hoshizaki Electric Co Ltd Electrolytic water producer
WO2001027037A1 (en) * 1999-10-14 2001-04-19 Ecoaid Corp. Apparatus for producing high-concentration electrolytic water
JP4590668B2 (en) * 1999-12-21 2010-12-01 パナソニック株式会社 Water reformer
JP2001170635A (en) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd Water reforming device
JP2003164874A (en) * 2001-12-03 2003-06-10 Sanyo Aqua Technology Co Ltd Apparatus for removing object to be removed of fluid, apparatus for making pure water and method of making pure water
KR100491175B1 (en) * 2002-08-29 2005-05-24 대한민국 A solution for sterilizing pathogenic bacteria in fish and a method for producing the same , and a method for neutralizing thereof
WO2018135077A1 (en) * 2017-01-18 2018-07-26 株式会社日本トリム Electrolyzed water generation device
JP2018114449A (en) * 2017-01-18 2018-07-26 株式会社日本トリム Electrolyzed water-generating device
JP2019098202A (en) * 2017-11-29 2019-06-24 ホシザキ株式会社 Electrolytic water generator
WO2023145505A1 (en) * 2022-01-31 2023-08-03 株式会社アクト Generation device
JP2023111510A (en) * 2022-01-31 2023-08-10 株式会社アクト generator
JP2023111835A (en) * 2022-01-31 2023-08-10 株式会社アクト generator

Also Published As

Publication number Publication date
JP3201860B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JPH06246268A (en) Method and device for producing electrolyte
JPH06246269A (en) Device for producing electrolyte
JP2810262B2 (en) Control device for continuous electrolytic ionized water generator
JP3234025B2 (en) Electrolyzed water generator
US20120267256A1 (en) Independent production of electrolyzed acidic water and electrolyzed basic water
EP2569254A1 (en) Device for producing an electrochemically activated solution by means of an electrolysis process
JP3292930B2 (en) Electrolyzed water generator
JP3275108B2 (en) Electrolyzed water generator
JPH06312184A (en) Electrolytic water forming apparatus
JP2002001341A (en) Electrolytic sodium hypochlorite generator
JPH06246265A (en) Device for producing electrolyte
JPH08229564A (en) Production of acidic water and device therefor
JPH06312185A (en) Electrolytic water forming apparatus
JP3612902B2 (en) Electrolyzed water generator
JP2991016B2 (en) Continuous ion-rich water generation method and apparatus
JP4068267B2 (en) Electrolyzed water generator
JPH06238281A (en) Sterilization system for water tank
JPH08215684A (en) Ionic water making apparatus
JP3648867B2 (en) Alkaline ion water conditioner
JPH07328639A (en) Oxidation potential water forming device
JPH0938652A (en) Producing device of strong acid water
JP3508409B2 (en) Electrolyzed water generator
JP3192182B2 (en) Control device for continuous electrolytic ionized water generator
JP7381808B1 (en) Electrolyzed water generator and control method for electrolyzed water generator
JP3921568B2 (en) Multifunctional electrolyzed water generating apparatus and electrolyzed water generating method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees