JPS607773A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS607773A
JPS607773A JP11639083A JP11639083A JPS607773A JP S607773 A JPS607773 A JP S607773A JP 11639083 A JP11639083 A JP 11639083A JP 11639083 A JP11639083 A JP 11639083A JP S607773 A JPS607773 A JP S607773A
Authority
JP
Japan
Prior art keywords
film
region
emitter
insulating film
contact window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11639083A
Other languages
Japanese (ja)
Inventor
Takeshi Tsubata
武 鍔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11639083A priority Critical patent/JPS607773A/en
Publication of JPS607773A publication Critical patent/JPS607773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To eliminate short-circuiting between a base region and an electrode which is provided on an emitter region by a method wherein an SiO2 film and an Si3N4 film which is so thin as impurity ions easily penetrate therethrough are laminatedly deposited on a semiconductor substrate where the base region has been formed, and an Si3N4 film in the proximity of an emitter-contact window is projected. CONSTITUTION:A P type base region 2 is diffusion-grown on the surface layer portion of an N type semiconductor substrate 1. An SiO2 film 3 and a thin Si3N4 film 4 are laminatedly deposited on the entire surface including the region 2. A photoresist film 5, which has an emitter-contact window 6 and a base-contact window 7, is then provided on the film 4. Windows 6 and 7 are formed in the film 4 by etching and at the same time a film 3 exposed inside the window 6 is side-etched by means of a separately provided mask, thereby making the film 4 projected. Thereafter, As<+> ions are implanted and an N type region 9 is formed inside the window 6. An electrode 10 is provided at the central portion of the region 9, whereby short-circuiting between the electrode 10 and the region 2 is prevented due to a space formed below the projected film 4.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、バイポーラトランジスタのエミッタ形成方法
を改良した半心体装誼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a half-core device which is an improved method for forming an emitter of a bipolar transistor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にマイク負波トランジスタの高周波4′!性を向上
させる為には、エミッタ・ベース間距し−1やエミツタ
幅の短縮化をはがル、エミッタ・ペース接合深さを浅く
する事が必要である。エミッタ・ペース間距離の短縮化
には、従来エミッタ・コンタクト窓とペース・コンタク
ト窓の相対的な位置をマスク合せ技術で形成していたも
のをセルファライン(自己整合)方式により形成するこ
とが、又、浅いエミッタ・ペース接合を均一よく形成す
る為には、エミッタ領域及びペース領域をイオン注入法
にょシ形成する事が近年多く行なわれている。
In general, the high frequency of the microphone negative wave transistor is 4'! In order to improve the performance, it is necessary to shorten the emitter-base distance by -1 and the emitter width, and to make the emitter-paste junction depth shallower. To shorten the emitter-pace distance, the relative positions of the emitter-contact window and the pace-contact window, which were conventionally formed using mask alignment technology, can now be formed using a self-alignment method. Furthermore, in order to uniformly form a shallow emitter-paste junction, it has recently become common practice to form the emitter region and the paste region by ion implantation.

以下l・ランジスタの従来の製造方法を第1図より第3
図−までの工程断面図を用いて説明する。
The conventional manufacturing method for L transistors is shown below from Figure 1 to Figure 3.
This will be explained using the process cross-sectional diagrams shown in FIG.

第1図乃至第3図は、従来のマイクロ波NPN型バイポ
ーラトランジスタの製造工程を示す断IIn図であり、
第1図はイオン注入法によるP型ベース領域を形成後に
、エミッタ・コンタクト窓及びペース・コンタクト窓の
シリコン窒化膜(5t3N4)を除去したN壓半導体基
板の断面図である。第2図は、エミッタ・コンタクト窓
のシリコン酸化1(sto2)を除去し、砒素イオンの
イオン注入工程の断面図である。第3図はペース・コン
タクト窓のシリコン酸化膜(Sin2)を除去し、エミ
ッタ電極及びペース電極を形成した断面図である。
1 to 3 are cross-sectional views showing the manufacturing process of a conventional microwave NPN bipolar transistor,
FIG. 1 is a cross-sectional view of an N-type semiconductor substrate from which the silicon nitride film (5t3N4) of the emitter contact window and the space contact window has been removed after forming a P-type base region by ion implantation. FIG. 2 is a cross-sectional view of the step of removing the silicon oxide 1 (sto2) of the emitter contact window and implanting arsenic ions. FIG. 3 is a cross-sectional view after removing the silicon oxide film (Sin2) of the space contact window and forming an emitter electrode and a space electrode.

まず第1図において、N型半導体基板1上にシリコン酸
化膜(S102)3を熱酸化法により1000Xの厚さ
に成長させる。その後、図示しないがそのシリコン酸化
膜(bio2) J上に、ホトレジスト膜を被着し、写
真蝕刻法により、そノホトレジスト膜を所定の・ぐター
ンに形成スる。
First, in FIG. 1, a silicon oxide film (S102) 3 is grown to a thickness of 1000× on an N-type semiconductor substrate 1 by thermal oxidation. Thereafter, although not shown, a photoresist film is deposited on the silicon oxide film (bio2) J, and the photoresist film is formed in a predetermined pattern by photolithography.

その後、そのノやターニングされたホトレジスト膜をマ
スクにN型半導体基板1に、P壓イオンとなる、例えば
ボロン(B+)のイオン注入を行い、P型ベース領域2
を形成する。そのP i’Jベース領域2は、アニール
を行い活性化さぜる。
Thereafter, using the turned photoresist film as a mask, ions such as boron (B+), which will become P ions, are implanted into the N-type semiconductor substrate 1, and the P-type base region 2 is implanted into the N-type semiconductor substrate 1.
form. The P i'J base region 2 is activated by annealing.

次にシリコン窒化膜(813N4)4をシリコン酸化膜
(5102) 3上に気相成長法により例えば1000
Xの厚さに成長させる。その後、丙び写真蝕刻法により
第1図のごとくエミッタ・コンタクト窓6、ベース・コ
ンタクト窓7となる位置のホトレジスト膜5をセルファ
ライン方式の為に同時に開孔する。その後、パターニン
グされたホトレジスト膜5をマスク導、周知のプラズマ
・エツチング法により、シリコン窒化膜(813N4)
4をエツチングする。その後、図示しないが、ホトレジ
スト膜を被着し、エミッタ・コンタクト窓6のみをノや
ターニングにより開孔する。その後、第2図に示すよう
に、エミッタ・コンタクト窓6のシリコン酸化膜(51
02) Jを弗酸系エツチング液例えば弗化アンモニウ
ム(NH,F)によりエツチングする。しかる後、シリ
コン酸化膜(8102) 3とシリコン窒化膜(5i3
N4) 4をマスクにP型ベース領域2にN壓イオンと
なる例えば砒素イオン(As” ) 8を、例えば加速
エネルギー50 keV 、ドーズ量3×1015cr
n−2の条件でイオン注入を行Vh 、N fJJJエ
ミッタ領域9を形成する。このN型エミッタ領域9は1
000℃数十分のアニールにより活性化させる。次に図
示しないが、写真蝕刻法によりベース・コンタクト窓7
のみを開孔する。次いで周知の真空蒸冴法によシ、N型
半導体基板1上に例えば、白金を、例えば300Xの厚
さに被着する。その後、500℃士数分のアニールニよ
シ白金シリザイドのオーミック・コンタクト層をエミッ
タ・コンタクト窓6とベース・コンタクト窓7のN型半
導体基板1上に形成する。
Next, a silicon nitride film (813N4) 4 is deposited on the silicon oxide film (5102) 3 to a thickness of, for example, 1000 by vapor phase growth.
Grow to a thickness of X. Thereafter, as shown in FIG. 1, holes are simultaneously formed in the photoresist film 5 at positions that will become the emitter contact window 6 and the base contact window 7 for the self-line method by photolithography. Thereafter, the patterned photoresist film 5 is etched using a mask and a silicon nitride film (813N4) is etched using a well-known plasma etching method.
Etch 4. Thereafter, although not shown, a photoresist film is deposited, and only the emitter contact window 6 is opened by drilling or turning. Thereafter, as shown in FIG. 2, the silicon oxide film (51
02) Etch J using a hydrofluoric acid etching solution such as ammonium fluoride (NH,F). After that, a silicon oxide film (8102) 3 and a silicon nitride film (5i3) are formed.
Using N4) 4 as a mask, for example, arsenic ions (As") 8, which become N ions, are applied to the P-type base region 2 at an acceleration energy of 50 keV and a dose of 3 x 1015 cr.
Ion implantation is performed under the conditions of n-2 to form a Vh, NfJJJ emitter region 9. This N type emitter region 9 is 1
Activation is performed by annealing at 000°C for several minutes. Next, although not shown, the base contact window 7 is formed by photolithography.
Drill only the hole. Next, for example, platinum is deposited on the N-type semiconductor substrate 1 to a thickness of, for example, 300× by a well-known vacuum evaporation method. Thereafter, an ohmic contact layer of platinum silicide is annealed at 500° C. and then formed on the N-type semiconductor substrate 1 in the emitter contact window 6 and the base contact window 7.

その後、第3図のごとくN型半導体基板1上に、チタン
・白金・金を順次真空蒸着法により被着し、写真蝕刻法
によりエミッタ電極10及びペース電極1ノを形成する
Thereafter, as shown in FIG. 3, titanium, platinum, and gold are sequentially deposited on the N-type semiconductor substrate 1 by vacuum evaporation, and an emitter electrode 10 and a pace electrode 1 are formed by photolithography.

さて、ここで第3図のN 、H2エミッタ領域9に注目
すると、ベース領域と反対6 fli ’jLIIとな
る拡散源から拡散によりエミッタ領域を形成する場合に
は、横方向拡散距離は深さ方間の拡散距離に対して、拡
4+される濃度にもよるが、それは7割から8割である
。それに対し、イオン注入法によりエミッタ領域を形成
した場合には、横方向不純物製度広が9は、前記に比べ
小さい。
Now, focusing on the N, H2 emitter region 9 in FIG. 3, when forming the emitter region by diffusion from a diffusion source opposite to the base region, the lateral diffusion distance is Depending on the concentration of the diffusion distance, it is 70% to 80%. On the other hand, when the emitter region is formed by ion implantation, the lateral impurity density spread 9 is smaller than that described above.

その為にシリコン窒化#4のエミッタ・コンタクト窓6
の開孔幅に対し、エミッタ領域9の横方向不純物濃度分
布の幅が、同等が、わずかに広いだけにすぎず、電極形
成工程において、第3図のエミッタ・ペース妬絡点12
ケ生じやすくなる為、エミッタ・コンタクト窓数の多い
マイク四波出力トランジスタ等においては、素子特性の
不安定、あるいは素子歩留υを著しく低下させる原因に
なっている。結局、従来の方法テハ、シリコン窒([(
813N4)のパシベーション効果を上げるため、シリ
コン窒化膜(Si2H4)厚を太きくシ、かつベース幅
のコントロールを正確にするため、工Sワタ接合深さを
浅く、即ち、砒素イオン注入エネルギーを小さくする傾
向にあった。このため、シリコン窒化膜(813N4)
が砒素イオン注入のマスクとなっていた。
For this purpose, silicon nitride #4 emitter contact window 6
The width of the lateral impurity concentration distribution in the emitter region 9 is only slightly wider than the opening width of the emitter region 9.
This is a cause of unstable device characteristics or a significant decrease in device yield υ in microphone four-wave output transistors with a large number of emitter contact windows. In the end, the conventional method TEHA, silicon nitride ([(
In order to increase the passivation effect of 813N4), the thickness of the silicon nitride film (Si2H4) is increased, and in order to accurately control the base width, the depth of the S/S junction is decreased, that is, the arsenic ion implantation energy is decreased. It was a trend. For this reason, silicon nitride film (813N4)
was used as a mask for arsenic ion implantation.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の事情に鑑みてなされたもので、エミッ
タ・ペース短絡点の発生を抑え、素子特性の安定化と、
歩留りを改善する半導体装置の製造方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and suppresses the occurrence of emitter-pace short circuit points, stabilizes element characteristics,
An object of the present invention is to provide a method for manufacturing a semiconductor device that improves yield.

〔発明の概要〕[Summary of the invention]

本発明は、ペース領域を有する半導体基板表面上に、第
1の絶縁膜としてシリコン酸化膜、第2の絶縁膜として
シリコン窒化膜を順次着層形成し、このシリコン窒化膜
の厚さを薄く形成し、イオン注入する不純物イオンとし
ての砒素イオンが前記シリコン窒化膜を通過し、エミッ
タ・コンタクト′窓のシリコン窒化膜のひさし状部分下
のペース領域を反対導電凰にせしめるようエミッタ領域
を形成する事を特徴とする半導体装置の製造方法である
The present invention involves sequentially depositing a silicon oxide film as a first insulating film and a silicon nitride film as a second insulating film on the surface of a semiconductor substrate having a space region, and forming the silicon nitride film thinly. Then, an emitter region is formed so that arsenic ions as impurity ions to be ion-implanted pass through the silicon nitride film, and the paste region under the eaves-like portion of the silicon nitride film of the emitter contact window becomes an opposite conductive window. A method of manufacturing a semiconductor device is characterized in that:

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図乃至第6図は、本発明実施例によるマイクロ波N
PN型バイポーラトランジスタの製造工程を示す断面図
である。第4図は、イオン注入法によるP型ベース領域
を形成後に、エミ。
4 to 6 show microwave N according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of a PN-type bipolar transistor. FIG. 4 shows an emitter layer after forming a P-type base region by ion implantation.

り・コンタクト窓及びペース・コンタクト窓のシリコン
窒化膜(813N4 )を除去したN型半導体基板の断
面図である。第5図は、エミッタ・コンタクト窓のシリ
コン酸化k (s! 02 )を除去し、砒素イオンの
イオン注入を行う工程の断面図である。第6図は、ペー
ス・コンタクト窓のシリコン酸化膜を除去し、エミッタ
電極及びペース電極を形成した断面図である。
FIG. 3 is a cross-sectional view of an N-type semiconductor substrate from which the silicon nitride film (813N4) of the spacer contact window and the spacer contact window has been removed. FIG. 5 is a cross-sectional view of the step of removing the silicon oxide k (s! 02 ) of the emitter contact window and implanting arsenic ions. FIG. 6 is a cross-sectional view after removing the silicon oxide film of the space contact window and forming an emitter electrode and a space electrode.

第4図において、N型半導体基板1上にシリコン酸化膜
(SiO□)3を熱酸化法により、例えば、1500X
の厚さに成長させる。この厚さは後述する、例えは、砒
素イオン(As+)を例えば、エネルギー100 ke
V 、ドーズ量3X10 cmのイオン注入条件に対し
て十分なマスクとなるようにする。その後、図示しない
が、シリコン酸化1に! (bx02)s上に、ホトレ
ジスト膜を被着し、写真蝕刻法により、そのホトレジス
ト膜を所定のノやターンに形成する。次にそのパターニ
ングされたホトレノス)Illをマスクに、N型半導体
基板1に、P型イオンとなる、例えばボロンイオン(B
+)を、例えば、加速エネルギー60 keV 、ドー
ズ基1.5X10z の条件で、イオン注入を行い、P
型ベース領域2を形成する。そのP型ベース領域2ば、
900℃、30分のアニールを行い、活性化させる。次
にシリコン酸化膜(S102)3上に、シリコン窒化膜
(S13N4)4を気相成長法により、例えば500X
の厚さに成長させる。この厚さは、後述する砒素イオン
(As+)のイオン注入条件に対して、十分砒素イオン
(As+)が通過するようにする。
In FIG. 4, a silicon oxide film (SiO□) 3 is deposited on an N-type semiconductor substrate 1 by a thermal oxidation method, for example, at 1500×
Grow to a thickness of . This thickness will be described later. For example, when arsenic ions (As+) are
V and a dose of 3×10 cm to provide a sufficient mask for ion implantation conditions. After that, although not shown, silicon oxidation 1 is applied! A photoresist film is deposited on (bx02)s, and the photoresist film is formed into predetermined grooves and turns by photolithography. Next, using the patterned photorenoids (Ill) as a mask, a boron ion (B
+), for example, by ion implantation under the conditions of acceleration energy 60 keV and dose group 1.5 x 10z,
A mold base region 2 is formed. The P-type base region 2b,
Activation is performed by annealing at 900° C. for 30 minutes. Next, a silicon nitride film (S13N4) 4 is deposited on the silicon oxide film (S102) 3 by a vapor phase growth method, e.g.
Grow to a thickness of . This thickness is set so that arsenic ions (As+) can sufficiently pass through the ion implantation conditions for arsenic ions (As+), which will be described later.

その後、写真蝕刻法により第4図のごとくエミッタ・コ
ンタクト窓6及びペース・コンタクト窓7となる位置の
ホトレジスト膜5をセルファライン方式の為に同時に開
孔する。その後、そのパターニングされたホトレジスト
換5をマスクに周知のプラズマ・エツチング法によりシ
リコン窒化膜(bxsN4 ) 4をエツチングする。
Thereafter, as shown in FIG. 4, holes are simultaneously formed in the photoresist film 5 at positions that will become the emitter contact window 6 and the space contact window 7 for the self-line method by photolithography. Thereafter, using the patterned photoresist film 5 as a mask, the silicon nitride film (bxsN4) 4 is etched by a well-known plasma etching method.

その後、図示しないが、ホトレジスト膜を塗布し、エミ
ッタ・コンタクト窓6のみのホトレジスト膜を開孔する
。この時の開口部は、シリコン窒化BX (5i3N4
) 4が、エツチングのマスクとなる為に、エミッタ・
コンタクト窓6より、いく分広くてよい。その後、エミ
ッタ・コンタクト窓6のシリコンa化1換(5102)
 、9を弗酸系エツチング法、例えば、弗化アンモニウ
ム(NH4F)によりエツチングする。この時i<1第
5図の如く、シリコン酸化膜(8102) 3のエミッ
タ・コンタクト窓6の開孔部に対して、シリコン窒化膜
(5t3N4) 4の開孔部がひさし状の構造となる様
オーバーエツチングする。その後、P型ベース領域2に
、N型イオンとなる、例えば砒素イオン(As+) 8
を、例えば、加速エネルギー100 keV 、ドーズ
Q 3 X 10”’cm−20奈件で、イオン注入を
行い、N型エミッタ領域9を形成する。そのN型エミッ
タ領域9は、1000℃、数十分のアニールによ)活性
化させる。その後、図示しないが、ペース・コンタクト
窓7のみ、レジスト膜を開孔する。この時の開孔部は、
前述した理由により、ペース・コンタクト窓7よりいく
分広くてよい。その後、弗酸系エツチング液、例えば、
弗化アンモニウム(NI(4F)によシ、エツチングす
る。次いで、周知の真空蒸着法によシ、N型半導体基板
1上に、例えば白金を例えば300Xの厚さに被着し、
500℃。
Thereafter, although not shown, a photoresist film is applied, and only the emitter contact window 6 is opened in the photoresist film. The opening at this time is silicon nitride BX (5i3N4
) 4 is the emitter mask to serve as an etching mask.
It may be somewhat wider than the contact window 6. After that, convert the emitter contact window 6 to silicon a (5102)
, 9 are etched by a hydrofluoric acid etching method, for example, ammonium fluoride (NH4F). At this time, i<1 As shown in FIG. 5, the opening of the silicon nitride film (5t3N4) 4 forms an eaves-like structure relative to the opening of the emitter contact window 6 of the silicon oxide film (8102) 3. over etching. Thereafter, arsenic ions (As+) 8, which become N-type ions, are added to the P-type base region 2.
For example, ion implantation is performed at an acceleration energy of 100 keV and a dose of Q 3 x 10'''cm-20 to form an N-type emitter region 9. After that, although not shown, a hole is opened in the resist film only for the pace contact window 7. At this time, the hole is
It may be somewhat wider than pace contact window 7 for the reasons discussed above. After that, use a hydrofluoric acid etching solution, for example,
Etching is performed using ammonium fluoride (NI (4F)). Then, by a well-known vacuum evaporation method, for example, platinum is deposited on the N-type semiconductor substrate 1 to a thickness of, for example, 300×,
500℃.

15分のアニールによシ白金シリサイドのオーミック・
コンタクト層を、エミッタ・コンタクト窓6とペース・
コンタクト窓7ON型半導体基板1上に形成する。その
後、第6図のごとく、N型半導体基板1上にチタン・白
金・金を順次真空蒸着法によ多形成し、エミッタ電極1
0及びペース電極1ノを形成する。
After 15 minutes of annealing, the platinum silicide ohmic
The contact layer is connected to the emitter contact window 6 and the paste layer.
A contact window 7 is formed on the ON type semiconductor substrate 1. Thereafter, as shown in FIG. 6, titanium, platinum, and gold are sequentially formed on the N-type semiconductor substrate 1 by vacuum evaporation, and the emitter electrode 1
0 and a pace electrode 1 are formed.

従来、エミッタ・コンタクト窓6の周辺部にエミッタ・
ペース接合領域が倉出して電極形成工程によシ、第3図
のエミッタ・ペース短絡点12が発生していたが、本発
明で(は、第6図のごとく、エミッタ・コンタクト窓6
のO・さし状のシリコン窒化膜4の直下に、エミッタ領
域が形成され、電極形成工程にさいて、ひさし状のシリ
コン窒化膜4の直下に金属が被着しても、エミッタ・ベ
ース短絡点は発生ぜず、素子特性の安定化と素子歩留り
を改善することができる。
Conventionally, an emitter was placed around the emitter contact window 6.
The emitter-pace short-circuit point 12 shown in FIG. 3 was generated when the paste bonding area was exposed during the electrode forming process, but in the present invention (as shown in FIG. 6), the emitter-pace short circuit point 12 was generated.
An emitter region is formed directly under the O-shaped silicon nitride film 4, and even if metal is deposited directly under the canopy-shaped silicon nitride film 4 during the electrode formation process, emitter-base shorting will not occur. No spots occur, and device characteristics can be stabilized and device yields can be improved.

尚、前記した例に限らず、ペース領域及びエミッタ領域
を形成する為の不純物イオンの種類、イオン注入の加速
エネルギ°−、ドーズ量の糸外、更に、基板表面上の第
1絶縁膜及び第2絶縁膜の’IM顛と厚さ、電極材料は
、’fh n’f 請求の範囲内において選択され、集
積回路等にも応用できることは勿論である。
In addition, the examples are not limited to those described above, and the types of impurity ions for forming the pace region and the emitter region, the acceleration energy of ion implantation, the outsideness of the dose, and the first insulating film on the substrate surface and the first insulating film on the substrate surface. 2. The IM size and thickness of the insulating film and the electrode material are selected within the scope of the claims, and it goes without saying that the present invention can also be applied to integrated circuits and the like.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によりば、半2n体基板上に形
成される第1の絶縁膜上の第2の絶縁膜の厚さを薄く形
成し、不純物イオンがその第2の絶縁膜を通過し、エミ
ッタ・コンタクト窓の第2の絶縁膜のひさし状部分下の
ペース領域を反対導電&にぜしめるよう、エミッタ領域
を ゛形成することにより、エミッタ・コンタクト窓の
ひさし状の第2の絶縁膜の直下にエミッタ領域が形成さ
れ、電極形成工程において、ひさし状の第2の絶縁膜の
直下に、金属が被矯しても、エミッタ・ベース短絡点は
発生せず、素子特性の安定化と素子歩留υを改善するこ
とができる半導体装置の製造方法を提供することができ
る。
As described above, according to the present invention, the second insulating film on the first insulating film formed on the semi-2n substrate is formed thin, and impurity ions pass through the second insulating film. Then, by forming the emitter region so as to make the space region under the eave-like portion of the second insulating film of the emitter contact window conductive in the opposite manner, the second eave-like insulating film of the emitter contact window The emitter region is formed directly under the film, and even if metal is applied directly under the eave-shaped second insulating film during the electrode formation process, no emitter-base short circuit occurs, and the device characteristics are stabilized. Accordingly, it is possible to provide a method for manufacturing a semiconductor device that can improve the device yield υ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、従来の半導体装置の製造方法を示す
断面図、第4図〜第6図は、本発明の一実施例を示す断
面図である。 1・・・Nu半心体基板、2・・・P型ベース領域、3
・・・シリコン酸化膜(S102)、4・・・シリコン
窒化膜(81,N4) 、s・・・ホトレジスト膜、6
・・・エミ、、り・コンタクト窓、7・・・ペース・コ
ンタクト窓、8・・・砒素イオン(As”)、9・・・
N型エミッタ領域、10・・・エミッタ電極、11・・
・ペース電極、12・・・エミッタ・ペース炉m 点。
1 to 3 are cross-sectional views showing a conventional method of manufacturing a semiconductor device, and FIGS. 4 to 6 are cross-sectional views showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Nu half-core substrate, 2... P-type base region, 3
...Silicon oxide film (S102), 4...Silicon nitride film (81, N4), s...Photoresist film, 6
...Emi, contact window, 7...Pace contact window, 8...Arsenic ion (As''), 9...
N-type emitter region, 10... emitter electrode, 11...
・Pace electrode, 12... Emitter pace furnace m points.

Claims (1)

【特許請求の範囲】[Claims] ペース領域を有する半導体基板表面上に第1の絶縁膜を
形成する工程と、この第1の絶縁膜上に第2の絶縁膜を
形成する工程と、この第2の絶縁膜の開孔窓をマスクに
前記第1の絶縁膜をサイドエッチをする程度にエツチン
グすることにより前記第1の絶縁膜に対し前記第2の絶
縁膜の開孔窓端部が、ひさし状となる構造を有するエミ
ッタ領域形成用窓を前記ペース領域上に開孔する工程と
、前記第1の絶縁膜単体では十分なマスクとなるが前記
第2の絶縁膜単体ではマスクとならずに前記ペース領域
が反対導電型となるように、前記半導体基板中へ不純物
をイオン注入して前記第2の絶縁膜の前記ひさし状部分
直下にあたる前記ペース領域が反対導電型となるようエ
ミッタ領域を形成する工程と、前記ペース領域上にペー
ス・コンタクト窓を開孔する工程と、前記半導体:!l
!:板上にエミッタ電極及びペース電極を形成する工程
とを具備することを特徴とする半導体装置の製造方法。
A step of forming a first insulating film on a surface of a semiconductor substrate having a space region, a step of forming a second insulating film on this first insulating film, and a step of forming an opening window of this second insulating film. an emitter region having a structure in which the first insulating film is etched to the extent of side-etching using a mask, so that an end portion of the opening window of the second insulating film forms an eave-like shape with respect to the first insulating film; a step of opening a formation window on the pace region, and a step in which the first insulating film alone serves as a sufficient mask, but the second insulating film alone does not serve as a mask, and the pace region becomes of the opposite conductivity type. a step of implanting impurity ions into the semiconductor substrate to form an emitter region so that the space region directly under the eave-shaped portion of the second insulating film has an opposite conductivity type; The process of drilling a pace contact window in the semiconductor:! l
! : A method for manufacturing a semiconductor device, comprising the step of forming an emitter electrode and a pace electrode on a plate.
JP11639083A 1983-06-28 1983-06-28 Manufacture of semiconductor device Pending JPS607773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11639083A JPS607773A (en) 1983-06-28 1983-06-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11639083A JPS607773A (en) 1983-06-28 1983-06-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS607773A true JPS607773A (en) 1985-01-16

Family

ID=14685836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11639083A Pending JPS607773A (en) 1983-06-28 1983-06-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS607773A (en)

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JP3098848B2 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
JPH073813B2 (en) Field effect transistor and bipolar transistor structure manufacturing method, integrated circuit manufacturing method, semiconductor device manufacturing method, and semiconductor structure manufacturing method
JP3346348B2 (en) Method for manufacturing semiconductor device
US4809055A (en) Semiconductor device having an electrode and a method of manufacturing the same
JPH0581051B2 (en)
JPS607773A (en) Manufacture of semiconductor device
JPH09186170A (en) Manufacture of bipolar transistor
JPH0366815B2 (en)
JPS63284854A (en) Semiconductor device and its manufacture
JPS58142573A (en) Semiconductor integrated circuit and preparation thereof
JPS6022506B2 (en) Manufacturing method for semiconductor devices
JP3055781B2 (en) Semiconductor device and manufacturing method thereof
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPH02122669A (en) Manufacture of semiconductor device
JPH0330293B2 (en)
JPS6077460A (en) Manufacture of semiconductor device
JPH05198747A (en) Manufacture of semiconductor device
JPH0567623A (en) Manufacture of semiconductor device
JPH0555585A (en) Manufacture of insulated-gate field-effect transistor
JPS63111667A (en) Manufacture of semiconductor device
JPH0677158A (en) Manufacture of semiconductor device
JPS60223160A (en) Manufacture of bipolar transistor
JPH05175217A (en) Manufacture of semiconductor device
JPH03224238A (en) Manufacture of bipolar transistor