JPS6074669A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6074669A
JPS6074669A JP58182041A JP18204183A JPS6074669A JP S6074669 A JPS6074669 A JP S6074669A JP 58182041 A JP58182041 A JP 58182041A JP 18204183 A JP18204183 A JP 18204183A JP S6074669 A JPS6074669 A JP S6074669A
Authority
JP
Japan
Prior art keywords
strip
shaped
film
shaped isolation
isolation insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58182041A
Other languages
Japanese (ja)
Inventor
Noriaki Sato
佐藤 典章
Takaharu Nawata
名和田 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58182041A priority Critical patent/JPS6074669A/en
Publication of JPS6074669A publication Critical patent/JPS6074669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/10ROM devices comprising bipolar components

Abstract

PURPOSE:To contrive to increase the density and the integration of a BIC memory and a mask ROM by prevention of the positional slippage of the element-forming region of a memory device and an electrode contact window by a method wherein the write is performed by conduction of a P type region and an Al film wiring via diode, and the readout is performed by application of a forward bias between the wiring and the band form region and then by detection of its current. CONSTITUTION:A plurality of arrays of the first band form isolation oxide film 12 arranged in the direction of X at intervals d1 corresponding to the dimension of the window are formed on the surface of an N type Si substrate 11 having a specific resistance of e.g. approx. 10 [OMEGA-cm]. Next, with this film 12 as a mask, B<+> is ion-implanted to the surface of the element-forming region. Then, a plurality of lines of the second band form isolation oxide films 14 arranged at intervals d2 corresponding to the dimension of the contact window in the direction of Y rectangularly intersecting with the first band form isolation oxide film is formed on the substrate with a similar oxidation resistant film as a mask. As<+> is activated and re-distributed by heat treatment, and an island form N<+> type region 16 of a fixed depth is formed in a band form P type region 13 under an aperture 15. An Al film wiring 19, a surface protection insulation film, etc. are formed, and accordingly the BIC memory is completed.

Description

【発明の詳細な説明】 (a) 発明の技術分野 不発明は半導体装置及びその製造方法に係り、特に絶縁
膜の静電破壊を利用し電気的に情報の曹込みが可能な耽
出し専用メモリ(FROM)、及び悄龜に対応するマス
クを用いリングラフィ技術によって情報の固定を行う続
出し専用メモリ(マスクROM)と、そ扛ぞれの製造方
法に関する。
Detailed Description of the Invention (a) Technical Field of the Invention The invention relates to a semiconductor device and a method for manufacturing the same, and in particular to a storage-only memory in which information can be electrically stored using electrostatic breakdown of an insulating film. The present invention relates to a continuous read only memory (Mask ROM) in which information is fixed by phosphorography technology using a mask corresponding to a variable speed, and a manufacturing method thereof.

(b) 技術の背景 絶縁膜の静電破壊を利用して情報の書込与を行う記憶(
メモリ)素子は、Breakdown ofInsul
ator for Conduction Memor
y’として知られている。以下これをBICメモリと略
称する。
(b) Background of the technology Memory that uses electrostatic breakdown of an insulating film to write and provide information (
Breakdown of Insul
ator for conduction memory
known as y'. Hereinafter, this will be abbreviated as BIC memory.

該BICメモリは第1図に回路図で示したように、ビッ
ト縁BLとワードiWLで構成されるマトリクスの交点
にダイオードDiと絶縁19ICが直列に接続された構
造を有しており、該絶縁膜を静電破壊することにより、
ダイオードDIを介して所望の交点に於てビット縁BL
とワード1ilWLを導通ゼしめることによって情報の
書込みがなされる。(Diの向きが逆になるもの、直列
に配#LさnだDiとCの位置が入れかわるものもある
。)このようにBICメモリ素子は絶縁膜の静電破壊と
いう原理的には無限小の面積での現象を利用して形成さ
れるので、通常のトランジスタを用いて形成するメモリ
素子に比べてセル面積の大幅な縮小が可゛能であり、F
ROMの高密度高集積化に対して極めて有効である。
As shown in the circuit diagram in FIG. 1, the BIC memory has a structure in which a diode Di and an insulator 19IC are connected in series at the intersection of a matrix consisting of a bit edge BL and a word iWL. By electrostatically destroying the membrane,
Bit edge BL at desired intersection via diode DI
Information is written by making the word 1ilWL conductive. (In some cases, the direction of Di is reversed, and in some cases, the positions of Di and C swapped in series.) In this way, BIC memory elements have an unlimited potential for electrostatic breakdown of the insulating film. Since it is formed using a phenomenon in a small area, it is possible to significantly reduce the cell area compared to memory elements formed using ordinary transistors.
This is extremely effective for increasing the density and integration of ROM.

(C) 従来技術と問題点 従来BICメモリのセルは、第2図に模式的に示した上
面図(イ)、A−A’矢視断面図(ロ)、B −B’矢
視断面図ヒ慢のような構造に形成さnでいた。なおこれ
らの図に於て、1はn型シリコン(St)基板、2はフ
ィールド酸化膜、3は素子形成領域、4は帯状p型領域
(ビット線)、5はりん珪酸ガラス(PSG)絶縁膜、
6は電極コンタクト窓、7は島状n中型領域、8は多結
晶Si電極、9は多結晶Siの酸化膜、10はアルミニ
ウム(At)膜配線(ワード線)を示している。
(C) Conventional technology and problems A conventional BIC memory cell is schematically shown in FIG. It was formed into a arrogant structure. In these figures, 1 is an n-type silicon (St) substrate, 2 is a field oxide film, 3 is an element formation region, 4 is a band-shaped p-type region (bit line), and 5 is a phosphosilicate glass (PSG) insulator. film,
Reference numeral 6 designates an electrode contact window, 7 an island-like n medium-sized region, 8 a polycrystalline Si electrode, 9 a polycrystalline Si oxide film, and 10 an aluminum (At) film wiring (word line).

そして該従来構造に於ては帯状のp型領塚4即ちビット
線(ボッイールド酸化lll!2にセルファラインで形
成され、該ビット線とワード線の交点にあたる場所に於
けるp型領域4内へのn十型領域7の形成(ダイオード
の形成)及び、p型領域4とワード線であるAt膜配線
10との前記ダイオードを介しての電気的接続は、該p
型領域4上に配設された絶膜膜5にフォトリソグラフィ
技術を用いて形成した電極コンタクト窓6を介してなさ
れていた。
In the conventional structure, a band-shaped p-type region 4, that is, a self-line is formed on the bit line (boiled oxidation llll!2), and is formed in the p-type region 4 at the intersection of the bit line and the word line. The formation of the n-type region 7 (formation of a diode) and the electrical connection between the p-type region 4 and the At film wiring 10, which is a word line, via the diode,
This was done through an electrode contact window 6 formed on a dielectric film 5 disposed on the mold region 4 using photolithography.

そのため従来構造に於ては、該メモリ・セルが高密度高
集積化されてフィールド酸化膜2で画定される素子形成
領域3の幅が更に微細化された場合、前記フォトリング
ラフィ技術に於けるマスク合わせの誤差により電極コン
タクト窓6が素子形成領域3からずれて形成される。そ
の結果該電極コンタクト窓6に整合して形成されるダイ
オードが設計寸法通り形成されない、該ダイオードに対
するAt膜配置1110のコンタクト抵抗が上昇する、
等の問題を生じ、メモリ素子の電気的性能が低下する。
Therefore, in the conventional structure, when the memory cell is highly integrated at high density and the width of the element formation region 3 defined by the field oxide film 2 is further miniaturized, the photolithography technique Due to an error in mask alignment, the electrode contact window 6 is formed offset from the element formation region 3. As a result, the diode formed in alignment with the electrode contact window 6 is not formed as designed, and the contact resistance of the At film arrangement 1110 with respect to the diode increases.
Problems such as these occur, and the electrical performance of the memory element deteriorates.

(d) 発明の目的 本発明は上記問題点に鑑み、半導体メモリ装置に於ける
素子形成@埴と電極コンタクト窓の位置ずれを防止した
構造及びその製造方法を提供するものであり、その目的
とするところはBICメモリやマスクROMを更に高密
度高集積化することを可能ならしめるにある。
(d) Purpose of the Invention In view of the above-mentioned problems, the present invention provides a structure and a method for manufacturing the same that prevents misalignment of the element formation @ clay and the electrode contact window in a semiconductor memory device. The purpose is to enable higher density and higher integration of BIC memories and mask ROMs.

(e) 発明の構成 即ち本発明は、第1の導電型を有する半導体基板と、該
半導体基板面に一方向に並んで形成された複数列の第1
の帯状分離絶縁膜と、該半導体基板に形成された該第1
の帯状分離絶縁膜が画定し、一方向に並んだ複数列の帯
状第2導電型領域と、該半導体基板面に該第1の帯状分
離絶縁膜に交差する方向に並んで形成された複数行の第
2の帯状分離絶縁膜と、該第1の帯状分離絶縁膜と第2
の帯状分離絶縁膜とによって画定された開孔と、該開孔
に接して該帯状第2導電型@塚に選択的に形成された複
数個の島状第1導電型領域と、核開孔上を該第1の帯状
分離絶縁膜に交差する方向に橋絡し、且つ該開孔部全壊
で該島状第1導電型領埴に接する複数行の電極配線とを
有し、該開孔部に、核間孔内に表出する島状第1導電型
領域上に個々に配設された第1導電型多結晶シリコン・
パターンと該多結晶シリコン・パターンの表面に形成さ
れた酸化膜によって構成され、情報に対応する該電極配
線と該帯状第2導電型佃域間に電圧を印加し、該酸化膜
を静電破壊して情報の書込みを行う畳込み可能な読出し
専用メモリ素子、若しくは該開孔内に表出する島状第1
導電型領塚面に設けら 7− レタ絶縁薄膜を、情報に対応するマスクを用いて選択的
に除去して情報を固定する読出し専用メモリ素子が配設
されてなることを特徴とする半導体装置と、第1の導電
型を有する半導体基板面に一方向に並んだ複数列の第1
の帯状分離絶縁膜を形成し、該半導体基板に該第1の帯
状分離絶縁膜に整合さゼて複数列の帯状第2導電型領域
を形成し、該半導体基板面に該第1の帯状分離絶縁膜に
交差する方向に並んだ複数行の第2の帯状分離絶縁膜を
形成し、該第1の帯状分離絶縁膜と第2の帯状分離絶縁
膜によって画定された開孔に整合させて該帯状第2導電
型領域に選択的に徐数個の島状第1導電型領域を形成し
、該開孔上に核島状第1導電型佃域に個々に接する第1
導電型多結晶シリコン・パターンを形成し、該多結晶シ
リコン・パターンの表面に酸化膜を形成し、該基板上に
該酸化膜を有する多結晶シリコンパターンに接し、且つ
該多結晶シリコン・パターンを該第1の帯状8− 上記半導体装置の製造方法、及び第1の導電型を有する
半導体基板面に一方向に並んだ複数列の第1の帯状分離
絶縁膜を形成し、該半導体基板に該第1の帯状分離絶縁
膜に整合さゼで複数列の帯状第2導電型領域を形成し、
該半導体基板面に該第1の帯状分離絶縁膜に交差する方
向に並んだ複数行の第2の帯状分離絶縁膜を形成し、該
第1の帯状分離絶縁膜と第2の帯状分離絶縁膜によって
画定された開孔に整合させて該帯状第2導電型領塚に選
択的に複数個の島状第1導電型惟域を形成し、該開孔内
に表出する島状第1導電型領域上に絶縁薄膜を形成し、
情報に対応するマスクを用いて該開孔内の絶縁薄膜を選
択的にエツチング除去し、該基板上に該開孔の内面に接
踵且っ該開孔を該第1の帯状分離絶縁膜に交差する方向
に橋絡する複数行の電極配線を形成する工程を有するこ
とを特徴とする上記半導体装置の製造方法に関するもの
である。
(e) Structure of the invention, that is, the present invention includes a semiconductor substrate having a first conductivity type, and a plurality of rows of first semiconductor substrates formed in one direction on the surface of the semiconductor substrate.
a strip-shaped isolation insulating film formed on the semiconductor substrate;
a plurality of rows of strip-shaped second conductivity type regions defined by a strip-shaped isolation insulating film and arranged in one direction; and a plurality of rows of strip-shaped second conductivity type regions formed on the semiconductor substrate surface in a direction intersecting the first strip-shaped isolation insulating film. a second strip-shaped isolation insulating film; a second strip-shaped isolation insulating film and a second strip-shaped isolation insulating film;
a plurality of island-shaped first conductivity type regions selectively formed in the strip-shaped second conductivity type mound in contact with the openings; a plurality of rows of electrode wiring that bridges the top in a direction crossing the first strip-shaped isolation insulating film, and contacts the island-like first conductivity type territory when the opening is completely destroyed; The first conductivity type polycrystalline silicon layers are individually arranged on the island-like first conductivity type regions exposed in the internuclear pores.
A voltage is applied between the electrode wiring corresponding to information and the band-shaped second conductivity type area, which is composed of a pattern and an oxide film formed on the surface of the polycrystalline silicon pattern, and the oxide film is destroyed by electrostatic discharge. A collapsible read-only memory element in which information is written by
A semiconductor device characterized by being provided with a read-only memory element that fixes information by selectively removing a 7-letter insulating thin film provided on a conductive type region surface using a mask corresponding to the information. , a plurality of first rows arranged in one direction on the surface of a semiconductor substrate having a first conductivity type.
forming a strip-shaped isolation insulating film on the semiconductor substrate, forming a plurality of rows of strip-shaped second conductivity type regions aligned with the first strip-shaped isolation insulating film on the semiconductor substrate surface; A plurality of rows of second strip-shaped isolation insulating films arranged in a direction crossing the insulating film are formed, and the second strip-shaped isolation insulating films are aligned with the openings defined by the first strip-shaped isolation insulating films and the second strip-shaped isolation insulating films. A diagonal number of island-like first conductivity type regions are selectively formed in the band-like second conductivity type region, and first conductivity type regions in contact with the core island-like first conductivity type regions are formed on the openings.
A conductive polycrystalline silicon pattern is formed, an oxide film is formed on the surface of the polycrystalline silicon pattern, and the polycrystalline silicon pattern is in contact with the polycrystalline silicon pattern having the oxide film on the substrate. The first strip-shaped isolation film 8 - The method for manufacturing the semiconductor device described above, and forming a plurality of rows of first strip-shaped isolation insulating films arranged in one direction on the surface of a semiconductor substrate having a first conductivity type, forming a plurality of rows of strip-shaped second conductivity type regions aligned with the first strip-shaped isolation insulating film;
forming a plurality of rows of second strip-shaped isolation insulating films arranged in a direction intersecting the first strip-shaped isolation insulating films on the semiconductor substrate surface; A plurality of island-like first conductivity type areas are selectively formed in the band-like second conductivity type region in alignment with the openings defined by the openings, and the island-like first conductivity type areas are exposed within the openings. forming an insulating thin film on the area;
selectively etching away the insulating thin film within the opening using a mask corresponding to the information, and etching the opening onto the substrate by touching the inner surface of the opening and intersecting the opening with the first strip-shaped isolation insulation film. The present invention relates to a method of manufacturing the semiconductor device described above, comprising a step of forming a plurality of rows of electrode wirings bridging in a direction.

(f) 発明の実施例 以下本発明を実施例について、図を用いて説明する。(f) Examples of the invention DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments and drawings.

第3図は本発明の構造をBICメモリに適用した一実施
例に於ける模式上面図(イ)、A−A/矢視断面図(ロ
)、B−B/矢視断面図e→、第4図乃至第8図は同B
ICメモリの製造方法の一実施例に於ける工程上面図(
イ)、A−A”矢視工程断面図(ロ)、B−B”矢視工
程断面図(ハ)、嬶9図は本発明の構造をマスクROM
に適用した一実施例に於ける模式上面図(イ)、A−A
’矢祈断面図(ロ)、B−Bゴ矢視断面図(ハ)、第1
0図乃至舶】】図は同マスクROMの製造方法の一実施
例に於ける工程上面図(イ)、A−A′:j−矢視工程
断面図(ロ)、B−BZ矢視工程断面図(ハ)、第12
図はこれら実施例の方法で形成されたダイオードの不純
物濃度プロファイル図である。なお第3図乃至第11図
に於て、各部は同一記号で示しである。
FIG. 3 is a schematic top view (a), A-A/arrow sectional view (b), B-B/arrow sectional view e →, in an embodiment in which the structure of the present invention is applied to a BIC memory Figures 4 to 8 are the same B.
A top view of the process in one embodiment of the IC memory manufacturing method (
A), A-A” arrow view process cross-sectional view (B), B-B” arrow view process cross-sectional view (C), and Figure 9 show the structure of the present invention as a mask ROM.
Schematic top view (A) of an example applied to
'Arrow cross-sectional view (b), B-B arrow cross-sectional view (c), 1st
0 to 7] The figures are a top view of the process in one embodiment of the mask ROM manufacturing method (A), A-A': A cross-sectional view of the process in the direction of the J-arrow (B), and a process in the direction of the B-BZ arrow. Cross-sectional view (c), 12th
The figure is an impurity concentration profile diagram of diodes formed by the methods of these examples. Note that in FIGS. 3 to 11, each part is indicated by the same symbol.

本発明を適用したBICメモリは、例えば第3図(イ)
、(ロ)、(ハ)に示すように、n型シリコン(Si)
基板11と、該SI基板11面に窒化シリコン(S i
s N4 )等の耐酸化膜をマスクにして行う選択酸化
法等でX方向に並んで形成された複数列の第1の帯状分
離酸化11!112と、該Sl基板11に該第1の帯状
分離酸化膜12に整合して形成された桧数列の帯状p型
頭域13と、該半導体基板11而にSi、N4等の耐酸
化膜をマスクにして行う選、択酸化法等でY方向に並ん
で形成された複数行の第2の帯状分離酸化a14と、該
第1の帯状分離酸化膜12と給2の帯状分離酸化膜14
とによって画定形成された開孔15と、該開孔15に整
合して該帯状p型頭域13に選択的に形成された複数個
の島状n中型領域16と、該開孔15内に表出する島状
n十型領域16上に個々に配設されたn型多結晶Si電
極パターン17と、該多結晶シリコン中パターン17の
表面に形成された静電破壊によって情報の書込みがなさ
れる該多結晶S1の酸化M18と、該酸化膜18を有す
る多結晶Si電極パターン17をX方向に橋絡する複数
行のアルミニウム(Az)膜配線19を有してなってい
る。なお該実施例に於て、第1の帯状分離酸化膜12の
配設間隔(dl )及び第2の帯状分離酸化*i4の配
設間隔(d、)は例えは2〔2μm〕に選ばれ、この場
合第1の分離酸化8!i!x2と第2の分離酸化膜14
によって画定形成される開孔15即ち電極コンタクト窓
の寸法は2×2〔μm〕になる。又帯状p型頭域13は
、例えば表面不純物濃度’ O” (a tm/cd 
〕 深さl(μm)程度に形成され、島状n十領域16
は例えば不純物濃度101it〜I O” (a tm
/m )、深さ2000〜3000(A:]程度に形成
される。又第1の帯状分離酸化膜12の厚ざは当初60
00[A)程度に形成され、第2の帯状分離酸化膜14
は4000〜6000(久〕程度の厚さに形成される。
For example, the BIC memory to which the present invention is applied is shown in FIG.
, (b) and (c), n-type silicon (Si)
The substrate 11 and silicon nitride (S i
A plurality of rows of first strip-shaped isolation oxides 11!112 are formed in line in the X direction by a selective oxidation method using an oxidation-resistant film such as sN4) as a mask, and the first strip-shaped isolation oxides are formed on the Sl substrate 11. The band-shaped p-type head region 13 of the Cypress number sequence formed in alignment with the isolation oxide film 12 is formed on the semiconductor substrate 11 using a selective oxidation method or the like using an oxidation-resistant film such as Si or N4 as a mask. A plurality of rows of second strip-shaped isolation oxide films 14 formed in line with each other, the first strip-shaped isolation oxide film 12 and the second strip-shaped isolation oxide film 14
a plurality of island-shaped n medium-sized regions 16 that are selectively formed in the band-shaped p-type head region 13 in alignment with the aperture 15; Information is written by electrostatic discharge damage formed on the surfaces of the n-type polycrystalline Si electrode patterns 17 individually arranged on the exposed island-shaped n-type regions 16 and the polycrystalline silicon medium patterns 17. It has a plurality of rows of aluminum (Az) film wiring 19 bridging the oxide M18 of the polycrystalline S1 and the polycrystalline Si electrode pattern 17 having the oxide film 18 in the X direction. In this embodiment, the arrangement interval (dl) of the first strip-shaped isolation oxide film 12 and the arrangement interval (d,) of the second strip-shaped isolation oxide film *i4 are selected to be, for example, 2 [2 μm]. , in this case the first separated oxidation 8! i! x2 and second isolation oxide film 14
The dimensions of the aperture 15, that is, the electrode contact window, defined by this are 2×2 [μm]. Further, the band-shaped p-type head region 13 has a surface impurity concentration 'O'' (a tm/cd
] Formed to a depth of about l (μm), island-like n0 regions 16
For example, the impurity concentration is 101it~I O” (a tm
/m ), and the depth is approximately 2000 to 3000 (A:).The thickness of the first strip-shaped isolation oxide film 12 is initially 60 mm.
00[A], and the second strip-shaped isolation oxide film 14
is formed to a thickness of about 4,000 to 6,000 (ku).

又多結晶St電極パターン17の厚さは1000(A)
程度でよく、該多結晶Sl電極パターン17上に形成さ
れる酸化膜18の厚さは、該メモリ素子を駆動する通常
の電圧で書込みが可能で、且つ所望の耐圧を保持する必
要性から200〜400(A)程度が適切である。又n
型多結晶St電極パターン17の不純物濃度は10” 
〜10” (atm/cII)程度が適当である。
Also, the thickness of the polycrystalline St electrode pattern 17 is 1000 (A)
The thickness of the oxide film 18 formed on the polycrystalline Sl electrode pattern 17 is set to about 200 mm because it is necessary to be able to write with a normal voltage for driving the memory element and to maintain a desired breakdown voltage. ~400(A) is appropriate. Also n
The impurity concentration of the type polycrystalline St electrode pattern 17 is 10"
~10'' (atm/cII) is appropriate.

そして該BICメモリ素子は、記憶ゼしめようとする情
報に基づいて、所望の帯状9m領域(ビット線)13と
、所望のAt膜配線(ワード線)19との間に、該p型
頭域13とAt膜配線19の変点に島状n中型領域16
と帯状p型頭域13とによって形成されているダイオー
ドが順方向になるように電圧を印加し、多結晶St電極
】7上の酸化膜18を静電破壊して該多結晶Si電極パ
ターン17とp、を膜配IIi!19を短絡し、該p型
頭域13とAt膜配線(ワード姻)19を前記ダイオー
ドを介して導通せしめることによ、−)て情報の書込み
がなされる。又読出しは、At膜配線(ワードa)19
と帯状p型頭域(ビット線)13の各1本を選択し、こ
れらの間に順バイアスを印加し、前記書込みの有無によ
って流れる電流を検知することによってなされる。なお
第3図は曹込みがなされていない状態を示している。
Based on the information to be stored in the BIC memory element, the p-type head area is placed between the desired 9m strip area (bit line) 13 and the desired At film wiring (word line) 19. 13 and the At film wiring 19 have an island-like n medium-sized region 16 at the junction point.
A voltage is applied so that the diode formed by the strip-shaped p-type head region 13 is in the forward direction, and the oxide film 18 on the polycrystalline St electrode 7 is electrostatically destroyed and the polycrystalline Si electrode pattern 17 is and p, the membrane arrangement IIi! By short-circuiting the p-type head region 13 and the At film wiring (word connection) 19 through the diode, information is written. Also, for reading, At film wiring (word a) 19
This is done by selecting one each of the p-type head area (bit line) 13 and applying a forward bias between them, and detecting the current flowing depending on the presence or absence of writing. Note that FIG. 3 shows a state in which no scouring is performed.

上記本発明の構造を有するBICメモリは、例えば次に
示すような方法により製造される。
The BIC memory having the structure of the present invention described above is manufactured, for example, by the following method.

第4図(イ)、(ロ)、(ハ)参照 例えは10〔Ω−m〕程度の比抵抗を有するn型Sl基
、1lt211を用い、例えば選択酸化法により該81
基板11の表面に、所望の電極コンタクト窓寸法に相当
する例えば2〔μm〕の間隔(dl)でX方向に並んだ
沙数列の第1の帯状分離酸化膜12を例えば6000(
A)程度の厚さに形成し次いで該第1の帯状分離酸化膜
12をマスクにして表出基板面即ち素子形成領域面に例
えばlXl0”(atm/cfA)、140(KeV)
程度の注入条件で硼素(B+)をイオン注入する。
Refer to FIGS. 4(a), (b), and (c). For example, using an n-type Sl group, 1lt211, having a specific resistance of about 10 [Ω-m], the 81
On the surface of the substrate 11, first strip-shaped isolation oxide films 12 arranged in the X direction at intervals (dl) of, for example, 2 [μm], which correspond to the desired electrode contact window dimensions, are formed with a thickness of, for example, 6000 (dl).
A), and then, using the first band-shaped isolation oxide film 12 as a mask, the exposed substrate surface, that is, the surface of the element formation region, is coated with a voltage of, for example, lXl0'' (atm/cfA), 140 (KeV).
Boron (B+) ions are implanted under certain implantation conditions.

ここで選択酸化法とは窒化珪素(S is Na)等の
耐酸化膜をマスクにし7、熱酸化法により81基叛面に
選択的に厚い酸化膜を形成する方法で、具体的には先ず
熱酸化により該81基叛の表面に厚さ例えば500(A
)程度の初期酸化[OXIを形成し、化学気相成長(C
VD)法で該初期酸化膜OX、上に例えば厚さ1000
[A)程度5isN4膜(腔にず)を形成し、フォト・
リソグラフィ技術で該Si3N4膜を電極コンタクト窓
に対応する所定の幅を有し、X方向に所望の間隔で並ん
だ複数列の帯状パターンに分割し、該第1の帯状81s
N4膜パターン(図示ゼず)をマスクにし、熱酸化法に
より表出して基板面に図示した第1の帯状分離酸化膜1
2を形成する方法である。なおこの方法に於て、Sin
N4mをパターンニングする際下部に介在している初期
酸化膜まで除去してもさしつかえない。
Here, the selective oxidation method is a method in which a thick oxide film is selectively formed on the surface of the 81 substrate by thermal oxidation using an oxidation-resistant film such as silicon nitride (S is Na) as a mask. The surface of the 81-base layer is coated with a thickness of, for example, 500 (A) by thermal oxidation.
) initial oxidation [OXI] is formed, and chemical vapor deposition (C
For example, a thickness of 1000 mm is formed on the initial oxide film OX by the VD) method.
[A) Form a 5isN4 film (cavity) and photo-coat.
Using lithography technology, the Si3N4 film is divided into a plurality of strip patterns having a predetermined width corresponding to the electrode contact windows and lined up at desired intervals in the X direction, and the first strip pattern 81s
The first strip-shaped isolation oxide film 1 is exposed on the substrate surface by thermal oxidation using the N4 film pattern (not shown) as a mask.
This is the method of forming 2. In addition, in this method, Sin
When patterning N4m, even the initial oxide film interposed below may be removed.

又B+のイオン注入は前記Si、N、膜パターン(図示
ゼず)を除去Qた後前記第1の帯状分離酸化膜12をマ
スクにして行われる。このイオン注入は通常基板に与え
るダメージを防止するため薄い酸化膜を通して行われ、
本実施例に於ては前記初期酸化膜OXIを通して行われ
る。なお前記Si8N4膜パターンを除去する際、該S
i3N。
Further, B+ ion implantation is performed using the first strip-shaped isolation oxide film 12 as a mask after removing the Si, N, and film patterns (not shown). This ion implantation is usually done through a thin oxide film to prevent damage to the substrate.
In this embodiment, the process is performed through the initial oxide film OXI. Note that when removing the Si8N4 film pattern, the S
i3N.

膜パターン(図示ゼず)下部の初期酸化膜OX rも除
去した際には、該素子形成領域面に新たに薄い酸化膜を
形成する必要がある。
When the initial oxide film OXr under the film pattern (not shown) is also removed, it is necessary to form a new thin oxide film on the surface of the element formation region.

第5図(イ)、(ロ)、(ハ)参照 次いで前記B+イオン注入を終った基板上に上記同様耐
酸化膜例えば5isN4膜パターン(図15− 示ゼず)をマスクにし、選択酸化法により前記第1の帯
状分離酸化膜に直交する方向即ちY方向にコンタクト窓
寸法に相当する例えは2〔μm〕の間隔(d、)を置い
て甚んだ徐数行の第2の帯状分離酸化膜14を形成する
。該選択酸化に際しての熱処理により基板面に注入され
ているB+は活性化再分布し、帯状p型頭域13が形成
される。
Refer to FIGS. 5(a), (b), and (c). Next, on the substrate after the B+ ion implantation, a selective oxidation method is applied using the same oxidation-resistant film, for example, a 5isN4 film pattern (not shown in FIG. 15) as a mask. Accordingly, the second strip isolation oxide film of divisor rows is arranged at an interval (d,) corresponding to the contact window size, for example, 2 [μm], in the direction perpendicular to the first strip isolation oxide film, that is, in the Y direction. An oxide film 14 is formed. By the heat treatment during the selective oxidation, the B+ implanted into the substrate surface is activated and redistributed, forming a band-shaped p-type head region 13.

次いで前記5llN4膜パターンを除去した後、該第2
の帯状分離酸化膜14と前記第1の帯状分離酸化膜12
とによって画定された開孔15内に初期酸化膜OX、を
介して表出している帯状p型領域13曲に前記分離酸化
膜12.14をマスクにし初期酸化Jl! OX rを
通して選択的にひ素(A?)を例えば1x lOIH(
atm/i)、120(KeV)程度の条件でイオン注
入する。
Next, after removing the 5llN4 film pattern, the second
the strip-shaped isolation oxide film 14 and the first strip-shaped isolation oxide film 12
The isolation oxide film 12.14 is used as a mask to cover the band-shaped p-type region 13 exposed through the initial oxide film OX in the opening 15 defined by the initial oxide Jl! Selective arsenic (A?) through OX r, e.g. 1x lOIH (
ion implantation is performed under conditions of approximately 120 (KeV) and 120 (KeV).

本実施例に於ては第1の初期酸化膜OX、が残留せしめ
られていたので、第2の5isN4膜パターン(図示せ
ず)はその上に形成したが、素子形成領域のSi面が表
出せしめられている際には第2の5ijN4111を形
成する前に該素子形成領域16− 面に第2の初期酸化膜を形成する必要がある。又本実施
例に於てはAa+B+注入して第2のSi、N。
In this example, since the first initial oxide film OX was left, the second 5isN4 film pattern (not shown) was formed on it, but the Si plane of the element formation region was exposed. When exposed, it is necessary to form a second initial oxide film on the surface of the element formation region 16 before forming the second 5ijN4111. Further, in this embodiment, Aa+B+ is implanted to form the second Si and N layers.

膜パターンのみを除去し、その下部の第1の初期酸化膜
を通して注入がなされたが、第1の初期酸化膜、B+注
入に際して形成したダメージ防止用の酸化膜、第2の初
期酸化膜も除去され該開孔15内にp型頭域13面が表
出している場合は、該被注入像域面にダメージ防止用の
薄い酸化膜を形成し、該薄い酸化膜を通してA8+の注
入を行うことが望ましい。
Only the film pattern was removed, and implantation was performed through the first initial oxide film underneath, but the first initial oxide film, the damage prevention oxide film formed during B+ implantation, and the second initial oxide film were also removed. If the p-type head region 13 surface is exposed in the opening 15, a thin oxide film for damage prevention is formed on the surface of the implanted image region, and A8+ is implanted through the thin oxide film. is desirable.

第6図(イ)、(ロ)、(ハ)参照 次いで所定の熱処理を行い、前MeAg+を活性化再分
布ゼしめて、前記開孔(電極コンタクト窓)15下部の
帯状p副領域13内に、深さ例えば2000〜3000
〔A〕程度の島状n十型領域16を形成する。なお該熱
処理によりp型帯状領域13中のB+は更に披散しC1
例えば1〔μm〕程度の所定の深さを有するp型帝状領
琥13が完成する。
Referring to FIGS. 6(a), (b), and (c), a predetermined heat treatment is then performed to activate and redistribute the pre-MeAg+ into the band-shaped p sub-region 13 below the opening (electrode contact window) 15. , depth e.g. 2000-3000
An island-like n-type region 16 of approximately [A] size is formed. Note that due to the heat treatment, B+ in the p-type band-shaped region 13 is further dispersed and becomes C1.
For example, a p-type teisho ryokan 13 having a predetermined depth of about 1 [μm] is completed.

第7図(イ)、(ロ)、(ハ)参照 次いで前記開孔15内の第1の初期酸化膜0XI(又は
第2の初期酸化膜、イオン注入に際して形成した薄い酸
化膜等)を除去した後、通常のCVD法を用いて該基板
上に厚さ例えば1000〜2000[A〕程度のノン・
ドープ多結晶Si層を形成し該ノンドープ多結晶St層
に例えばIXIOII(atm/ej)、40[:Ke
V〕程度の注入条件でりん(P+)をイオン注入し、1
000〔℃〕程度の温度で10〔分〕程度アニールを行
って、該多結晶St層を電導性を有する多結晶St層と
した後、通常のフォト・リングラフィ技術によりパター
ンニングを行って、前記第1.第2の帯状分離酸化膜1
2.14によって画定された開孔15上に前記島状n生
型領域16に接するn型多結晶St電極パターン17を
形成し、次いで通常の熱酸化法により該多結晶St電極
パターン17の表面に厚さ例えば200〜300[:A
)程度の多結晶S1の酸化11118を形成する。なお
該多結晶Si酵化膜18の電界強度(耐圧)は多結晶S
tへの不純物のドーズ量が多くなるに従って低くなり、
ノン・ドープ多結晶siの場合6〔M■/crn〕程f
あるのに対し、上記ドーズ蓋の多結晶SIの場合2 (
MY/crn)程度となる。そして該多結晶St酸化膜
18の厚さはこの電界強度と曹込み電圧によって決定さ
れる。
Refer to FIGS. 7(a), (b), and (c). Next, the first initial oxide film 0XI (or second initial oxide film, thin oxide film formed during ion implantation, etc.) inside the opening 15 is removed. After that, a non-contact film with a thickness of about 1000 to 2000 [A], for example, is deposited on the substrate using a normal CVD method.
A doped polycrystalline Si layer is formed, and the non-doped polycrystalline St layer is coated with, for example, IXIOII (atm/ej), 40[:Ke
Phosphorus (P+) was ion-implanted under implantation conditions of about 1V].
After annealing for about 10 minutes at a temperature of about 1,000 degrees Celsius to make the polycrystalline St layer electrically conductive, patterning is performed using normal photo-phosphorography technology, Said 1st. Second strip-shaped isolation oxide film 1
2. Form an n-type polycrystalline St electrode pattern 17 in contact with the island-like n-type region 16 on the opening 15 defined by For example, the thickness is 200~300[:A
) oxidation 11118 of polycrystalline S1 is formed. Note that the electric field strength (withstand voltage) of the polycrystalline Si fermented membrane 18 is
As the dose of impurities to t increases, it decreases,
In the case of non-doped polycrystalline Si, about 6 [M/crn] f
In contrast, in the case of the polycrystalline SI of the dose lid 2 (
MY/crn). The thickness of the polycrystalline St oxide film 18 is determined by the electric field strength and the dipping voltage.

第8図(イ)、(ロ)、(ハ)参闇 次いで通常通り蒸着成るいはスパッタ法により該基板上
に厚ざl〔μm〕程度のht(合金を含む)膜を形成し
、通常のフォト・リソグラフィ技術等によりパターンニ
ンダを行って、前記酸化膜18を有する多結晶S1電極
パターン17を帯状p副領域(ビット線)13に直角に
変差する方向即ちX方向に橋絡する被数行のAt膜配線
(ワード線)19を形成する。
FIG. 8 (a), (b), (c) Next, an HT (including alloy) film with a thickness of about 1 [μm] is formed on the substrate by vapor deposition or sputtering as usual. Pattern ninder is performed using a photolithography technique or the like to form a number bridging the polycrystalline S1 electrode pattern 17 having the oxide film 18 in a direction perpendicular to the band-shaped P sub-region (bit line) 13, that is, in the X direction. Row At film wirings (word lines) 19 are formed.

そして図示しないが、表面保護絶縁膜等の形成がなされ
て本発明を適用したBICメモリが完成する。
Although not shown, a surface protection insulating film and the like are formed to complete the BIC memory to which the present invention is applied.

又本発明を適用したマスクROMは、例えば第9図(イ
)、(ロ)、(ハ)に示すように、n型Si基鈑11と
、該Sl基板11面にSi、N、等の耐酸化膜をマスク
にして行う選択酸化法等でX方向に並んで形成された複
数列の第1の帯状分離酸化膜12と、該Si基板11に
該第1の帯状分離酸化膜12に整合して形成された複数
列の帯状p副領域13と、該半導体基板11面に5il
N4膜等の耐酸化膜をマスクにして行う選択酸化法等で
Y方向に並んで形成2!nた被数行の第2の帯状分離酸
化膜14と、該第1の帯状分離酸化膜12と第2の帯状
分離酸化膜】4とによって画定された開孔15と、該開
孔15に整合して該帯状p副領域13に選択的に形成さ
れた複数個の島状n生型領域16と、該開孔15内に表
出する島状n中型領域16面に配設された情報固定用の
例えば厚さ500〜1000(A)程度の二酸化シリコ
ン(Sift)膜20と、該開孔15上をX方向に橋絡
する複数行のAtJI@配線19を有してなっている。
Further, a mask ROM to which the present invention is applied includes an n-type Si substrate 11 and a layer of Si, N, etc. on the surface of the Si substrate 11, as shown in FIGS. A plurality of rows of first strip-shaped isolation oxide films 12 are formed in line in the X direction by a selective oxidation method performed using an oxidation-resistant film as a mask, and the Si substrate 11 is aligned with the first strip-shaped isolation oxide films 12. A plurality of rows of strip-shaped p sub-regions 13 are formed as shown in FIG.
Formed side by side in the Y direction using a selective oxidation method using an oxidation-resistant film such as an N4 film as a mask 2! The openings 15 are defined by the second strip-shaped isolation oxide film 14 in the nth rows, the first strip-shaped isolation oxide film 12 and the second strip-shaped isolation oxide film 4; A plurality of island-like n green regions 16 selectively formed in the band-like p sub-region 13 in alignment, and information arranged on the surface of the island-like n medium region 16 exposed in the opening 15. It includes a fixing silicon dioxide (Sift) film 20 having a thickness of, for example, about 500 to 1000 (A), and a plurality of rows of AtJI@ wiring 19 bridging the opening 15 in the X direction.

なお該マスクROMに於ては、後述する製造方法に示す
ように予め情報に対応して開孔15内のSin、膜20
が選択的に除去される。第9図はこの状態を示している
。又該実施例に於て、第1゜第2の帯状分離酸化膜12
.14の形成間隔(dl。
In addition, in the mask ROM, as shown in the manufacturing method described later, the Sin in the opening 15 and the film 20 are adjusted in advance according to information.
are selectively removed. FIG. 9 shows this state. Further, in this embodiment, the first and second strip-shaped isolation oxide films 12
.. 14 formation intervals (dl.

d、)及び厚さ、帯状p副領域13の不純物濃度及び深
さ、島状n生型領域の不純物濃度及び深さAt膜配+v
j19の厚さ、等は例えば前記BICメモリの実施例と
同様に形成される。
d, ) and thickness, impurity concentration and depth of band-like p sub-region 13, impurity concentration and depth of island-like n-type region At film distribution +v
The thickness of j19, etc., are formed in the same manner as in the embodiment of the BIC memory, for example.

上記本発明の構造を有するマスクROMは、例えば次に
示すような方法で形成される。
The mask ROM having the structure of the present invention described above is formed, for example, by the following method.

第 6 図(イ)、(ロ)、 (ハ)参■6先ず前記B
ICメモリの実施例と同様な方法により、n型S1基板
11面にX方向に並んだ複数列の第1の帯状分離酸化膜
12を形成し、該第1の帯状分離酸化膜12に整合さセ
て該S1基板に複数行の帯状p副領域13を形成し、該
基板面にY方向に並んだ複数行の第2の帯状分離酸化膜
14を形成し、該第1.第2の帯状分離酸化膜12゜1
4で画定される開孔(電極コンタクト窓)15を形成し
、該開孔15に整合さゼて帯状p型領域13内に島状n
生型領域16を形成される。なお図中OX1は初期酸化
膜である。
Figure 6 (a), (b), (c) ■6 First, the above B
A plurality of rows of first strip-shaped isolation oxide films 12 arranged in the X direction are formed on the surface of the n-type S1 substrate 11 by a method similar to the example of the IC memory, and aligned with the first strip-shaped isolation oxide films 12. Then, a plurality of rows of strip-shaped p sub-regions 13 are formed on the S1 substrate, and a plurality of rows of second strip-shaped isolation oxide films 14 arranged in the Y direction are formed on the substrate surface. Second strip-shaped isolation oxide film 12°1
A hole (electrode contact window) 15 defined by 4 is formed, and an island shape n is formed in the band-like p-type region 13 aligned with the hole 15.
A green mold area 16 is formed. Note that OX1 in the figure is an initial oxide film.

第10図(イ)、(ロ)、(ハ)参照 次いで前記初期酸化膜OXlを除去した後、再び熱酸化
を行って前記開孔15内に表出している島状n型頭域1
6面に500〜1000(λ〕程度の厚さのSin、膜
20を形成し、次いで情報に対応するマスクを用いフォ
ト・リングラフィ技術により所定の開孔(電極コンタク
ト窓)15内のstow膜20を選択的に除去し、縮短
情報の固定を行う。
Refer to FIGS. 10(a), (b), and (c). Next, after removing the initial oxide film OXl, thermal oxidation is performed again, and the island-shaped n-type head region 1 exposed in the opening 15 is removed.
A Sin film 20 with a thickness of about 500 to 1000 (λ) is formed on six sides, and then a stow film is formed in a predetermined opening (electrode contact window) 15 by photophosphorography using a mask corresponding to the information. 20 is selectively removed and the reduction information is fixed.

第11図(イ)、仲)、09診開 法いで通當通り蒸着酸るいはスパッタ法により該基板上
に厚さ1〔μm〕程度のAtC合金を含む)膜を形成し
、通常のフォト・リングラフィ技術等によりパターンニ
ンダを行りて、該開孔15を、帯状p型頭域(ビット線
)13に直角に交差する方向即ちX方向に橋絡する沙数
行のAt膜配線(ワード線)19を形成する。(M o
やMo5ilの配線を用いる場合もある。) そして図示しないが、表面保護絶縁膜等の形成がなされ
て、本発明を適用したマスクROMが完成する。
Figure 11 (a), middle), a film (containing an AtC alloy) having a thickness of about 1 [μm] is formed on the substrate by evaporation or sputtering as usual in the 2009 diagnostic method, and then - Pattern ninder is performed using phosphorography technology, etc., and the opening 15 is formed with several rows of At film wiring (word) bridging in the direction perpendicular to the band-shaped p-type head area (bit line) 13, that is, in the X direction. Line) 19 is formed. (Mo
or Mo5il wiring may be used. ) Although not shown, a surface protection insulating film and the like are formed to complete a mask ROM to which the present invention is applied.

第12図は上記実施例に示した、BICメモリ及びマス
クROMに形成されたダイオードに於ける不純物+7[
プロファイル図を示したものである。
FIG. 12 shows impurity +7 [
It shows a profile diagram.

なお本発明の構造に於て、上記ダイオードの耐圧を爽に
高めようとする場合には、前記帯状p型頭域(ビット線
)を形成する際のB十注入を複数回に分けて行い、n中
型頭載が形成される領域及びその近傍のみを選択的に低
不純物濃度にすればよい。 ・ (g) 発明イ擲の効果 以上説明したように本発明によれば、例えばn型−/リ
コン基板を用いてBICメモリ若しくはマスクROMを
形成する際、帯状p型頭域(ビット*)が、選択酸化法
によって一方向に並んで形成された複数列の第1の帯状
分離酸化膜に整合形成され、又該帯状p型頭埴土に設け
られる複数個の電極コンタクト窓は、前記第1の帯状分
離酸化膜と該第1の帯状分離酸化膜と例えば直角に交差
する方向に選択酸化法で並んで形成された複数行の第2
の帯状分離酸化膜によって画定形成される。
In the structure of the present invention, if it is desired to increase the withstand voltage of the diode, the B+ implantation when forming the band-shaped p-type head region (bit line) is divided into multiple steps, It is sufficient to selectively lower the impurity concentration only in the region where the n medium-sized head is formed and its vicinity. (g) Effects of the invention As explained above, according to the present invention, when forming a BIC memory or mask ROM using an n-type/recon board, for example, the band-shaped p-type head area (bit*) , a plurality of electrode contact windows are formed in alignment with a plurality of rows of first strip-shaped isolation oxide films formed in one direction by a selective oxidation method, and provided in the strip-shaped p-type head clay. A strip-shaped isolation oxide film and a plurality of rows of second isolation oxide films formed by selective oxidation in a direction perpendicular to the first strip-shaped isolation oxide film, for example.
The area is defined by a band-shaped isolation oxide film.

従って前記帯状p型領琥幅が微細になっても、該電極コ
ンタクト窓及び該電極コンタクト窓に整合して帯状p型
頭域内に形成される島状n中型細板が、該帯状p型額域
から外にずれることがないので、該BICメモリやマス
クROMの電気的性能が損なわれることがない。
Therefore, even if the width of the band-shaped p-type region becomes fine, the electrode contact window and the island-like n medium-sized thin plate formed in the band-shaped p-type head area in alignment with the electrode contact window will be Since the voltage does not deviate from the range, the electrical performance of the BIC memory or mask ROM is not impaired.

従って本発明は絶縁膜の静電破壊を利用して情報の1込
みを行うFROMや、フォト・マスクを用いて情報の固
定を行うマスクROMの高密度高集積化を可能からしめ
る効果を有する。
Therefore, the present invention has the effect of enabling high-density and high-integration of FROM, which stores information by utilizing electrostatic breakdown of an insulating film, and mask ROM, which stores information by using a photo mask.

なお本発明はp型半導体基板にも適用できる。Note that the present invention can also be applied to a p-type semiconductor substrate.

その場合ビット線は帯状のn型頭域で形成され、該n型
領域内に第1.第2の帯状分離酸化膜によって画定され
た電極コンタクト窓に整合して島状p十型領域が形成さ
れる。又BICメモリ素子に於て該島状p十 型頭域に
接する多結晶シリコン電極もp型になる。
In that case, the bit line is formed with a band-shaped n-type head region, within which the first . An island-like p-type region is formed in alignment with the electrode contact window defined by the second strip-shaped isolation oxide film. Further, in the BIC memory element, the polycrystalline silicon electrode in contact with the island-like p-type head region also becomes p-type.

更に又本発明に於て帯状の素子分離領埴は、上記実施例
に示した選択酸化法によって形成した帯状分離酸化膜に
限られるものではなく、半導体基板面に分離溝を形成し
、該分離溝内に絶縁膜を埋込んでなる絶縁膜分離構造で
あっても良い。
Furthermore, in the present invention, the band-shaped element isolation region is not limited to the band-shaped isolation oxide film formed by the selective oxidation method shown in the above embodiment, but is formed by forming an isolation trench on the semiconductor substrate surface. An insulating film isolation structure in which an insulating film is buried in the trench may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は絶縁膜の静電破壊を利用して情報の書込みを行
うBICメモリの回路図、第2図は該BICメモリに於
ける従来構造を示す模式上面図(イ)、A−AI矢視断
面図(ロ)、B−B〆矢視断面図(ハ)、第3図は本発
明の構造をBICメモリに適用した一実施例に於ける模
式上面図(イ)、A−A4′矢視断面図(ロ)、B−B
ノ矢視断面図(ハ)、第4図乃至第8図は同BICメモ
リの製造方法の一実施例に於ける工程上面図(イ)、A
−A)矢視工程断面図(ロ)、B−Bツ矢視工程断面図
(ハ)、第9図は本発明の構造をマスクROMに適用し
た一実施例に於ける模式上面図(イ)、A−A〆矢視断
面図(ロ)、B−B−/矢視断面図(→、第10図乃至
第11図は同マスクROMの製造方法の一実施例に於け
る工程上面図(イ)、A−A7矢視工程断面図(ロ)、
B−f3’矢視工程断面図(ハ)で、第12図は本実施
例の方法で形成されたダイオードの不純物濃度プロフィ
ル図である。 図中、11はnff1シリコン基板、12は第1の帯状
分離酸化膜、13は帯状p副領域(ビット線)14は第
2の帯状分離酸化膜、15は第1.第2の帯状分離酸化
膜によって画定された開孔、16は島状n+型領領域1
7はn型多結晶シリコン電極パターン、18は多結晶シ
リコンの酸化膜、19はアルミニウム膜配線、20は二
酸化シリコン膜、OXIは初期酸化膜、B+はほう素イ
オン、As”はひ素イオンを示す。 −27−・ ・」 く ε p − 侍案紅臀青 −
Figure 1 is a circuit diagram of a BIC memory that writes information using electrostatic breakdown of an insulating film. Figure 2 is a schematic top view (A) showing the conventional structure of the BIC memory, and A-AI arrows. Fig. 3 is a schematic top view (a) of an embodiment in which the structure of the present invention is applied to a BIC memory, A-A4' Arrow sectional view (b), B-B
4 to 8 are a cross-sectional view as viewed from the arrow (C), a top view of the process in an embodiment of the BIC memory manufacturing method (A), and A.
-A) A cross-sectional view of the process in the direction of arrows (b), a cross-sectional view of the process in the direction of B-B (c), and FIG. ), A-A cross-sectional view (b), B-B-/arrow cross-sectional view (→, Figures 10 and 11 are process top views in one embodiment of the method for manufacturing the same mask ROM (A), A-A7 arrow view process cross-sectional view (B),
FIG. 12 is a sectional view (c) of the process taken along the line B-f3', and is an impurity concentration profile diagram of the diode formed by the method of this embodiment. In the figure, 11 is an NFF1 silicon substrate, 12 is a first strip-shaped isolation oxide film, 13 is a strip-shaped P sub-region (bit line) 14 is a second strip-shaped isolation oxide film, 15 is a first strip-shaped isolation oxide film, and 15 is a strip-shaped isolation oxide film. An opening defined by the second strip-shaped isolation oxide film, 16 is an island-like n+ type region 1
7 is an n-type polycrystalline silicon electrode pattern, 18 is a polycrystalline silicon oxide film, 19 is an aluminum film wiring, 20 is a silicon dioxide film, OXI is an initial oxide film, B+ is a boron ion, and As'' is an arsenic ion. . −27−・・” くε p − Samurai plan red and blue −

Claims (1)

【特許請求の範囲】 1、第1の導電型を有する半導体基板と、該半導体基板
面に一方向に並んで形成された複数列の第lの帯状分離
絶縁膜と、該半導体基板に形成された該第1の帯状分離
絶縁膜が画定し一方向に並んだ複数列の帯状第2導電型
領域と、該半導体基板面に該第1の帯状分離絶縁膜に交
差する方向に並んで形成された複数行の第2の帯状分離
絶縁膜と、該第1の帯状分離絶縁膜と第2の帯状分離絶
縁膜とによって画定された開孔と、該開孔に接して該帯
状第2導電型領域に選択的に形成された複数個の島状柄
i4を型頓域と、該開孔上を該第1の帯状分離絶縁膜に
交差する方向に橋絡し、且つ該開孔部で該島状第1導電
型頭域に接する複数行の電極間軸とを有し、該開孔部に
該tlE&配線と該島状第14電型領域を接続するメモ
リ素子が配設ぎれてなることを特徴とする半導体装置。 2 上記メモリ素子が該開孔内に表出する島状第1導電
型餉域上に個々に配設された第1導*型多鯖 結晶シリコン昏パターンと、id多tli1.シリコン
−パターンの表面に形成された酸化膜とによって構成さ
れ、情報に対応する該配線と該帯状第2導電型領竣間に
電圧を印加し、該酸化膜を静電破壊して情報の畜込みを
行う書込み可能な読出専用メモリ素子よりなることを特
徴とする特許請求の範囲第1項記載の半導体装置。 3、上記メモリ素子が該開孔内に表出する島状第141
1型領域面に設けられた絶縁膜を、情報に対応するマス
クを用いて選択的に除去して情報を固定する読出し専用
メモリ素子よりなることを特徴とする特許請求の範囲第
1項記載の半導体装置。 4 第1の導電型金層する半導体基板面に一方向に並ん
だ複数列の第1の帯状分離絶縁膜を形成し、該半導体基
板に該第1の帯状分離絶縁膜に整合さぞて複数列の情状
第2導電型領域を形成し、該半導体基板面に該第1の帯
状分離絶縁膜に交差する方向に並んだ複数行の第2の帯
状分離絶縁膜全形成し、該第1の帯状分離絶縁膜と第2
の帯状分離絶縁膜によって画定された開孔に整合ざゼて
該帯状第2導電型領域に選択的に複数個の島状第1導電
型領域全形成し、該開孔上に該島状第1導1!L型領域
に個々に接する第14電型多結晶シリコン・パターンを
形成し、該多結晶シリコン・パターンの表面に酸化膜全
形成し、該基板上に該酸化#を有する多結晶シリコン・
パターンに接し、且つ該多結晶シリコン・パターンを該
第1の帯状分離絶縁膜の製造方法。 5、第Xの導電型を有する半導体基板面に一方向に並ん
だ複数列の第1の帯状分離絶縁膜を形成し、該半導体基
板に該第1の帯状分離絶縁膜に整合さゼて複数列の帯状
給2導電型領域を形成し、該半導体基板面に該第1の帯
状分離絶縁膜に交差する方向に並んだ複数行の第2の帯
状分離絶縁膜を形成し、該第1の帯状分離絶縁膜と第2
の帯状分離絶縁膜によって画定された開孔に整合さゼて
該帝状第2導[型領域に選択的に複数個の島状第1導電
m頭域を形成し、該開孔内に表出する島状第14電型領
域上に絶縁薄膜を形成し、情報に対応するマスクを用い
て該開孔内の絶縁薄膜を選択的にエツチング除去し、該
基板上に該開孔の内■に接し、且つ該開孔を該第1の帯
状分離絶縁膜に交差する方向に橋絡する複数行の電極虻
線を形成する工程を有することを特徴とする半導体装置
の製造方法。
[Claims] 1. A semiconductor substrate having a first conductivity type, a plurality of rows of l-th strip-shaped isolation insulating films formed in one direction on the surface of the semiconductor substrate, and a plurality of rows of strip-shaped second conductivity type regions defined by the first strip-shaped isolation insulating film and arranged in one direction; a plurality of rows of second strip-shaped isolation insulating films; apertures defined by the first strip-shaped isolation insulating films and the second strip-shaped isolation insulating films; and a second conductivity type strip in contact with the openings. A plurality of island-shaped patterns i4 selectively formed in the area are bridged with the patterned area in a direction crossing the first strip-shaped isolation insulating film over the opening, and It has a plurality of rows of inter-electrode axes in contact with the island-like first conductivity type head region, and a memory element connecting the tlE & wiring and the island-like 14th conductivity type region is disposed in the opening. A semiconductor device characterized by: 2. A first conductive* type polycrystalline silicon pattern individually disposed on the island-like first conductive type hook region where the memory element is exposed in the opening, and an id polycrystalline silicon pattern. A voltage is applied between the wiring corresponding to information and the strip-shaped second conductivity type region, and the oxide film is electrostatically destroyed to store information. 2. The semiconductor device according to claim 1, comprising a writable read-only memory element that performs writing. 3. A 141st island in which the memory element is exposed within the opening.
Claim 1, characterized in that the read-only memory element is comprised of a read-only memory element in which information is fixed by selectively removing an insulating film provided on a type 1 region surface using a mask corresponding to the information. Semiconductor equipment. 4. Forming a plurality of rows of first strip-shaped isolation insulating films aligned in one direction on the surface of the semiconductor substrate on which the first conductivity type gold is layered, and forming a plurality of rows of first strip-shaped isolation insulating films aligned with the first strip-shaped isolation films on the semiconductor substrate. A second conductivity type region is formed, a plurality of rows of second strip-shaped isolation insulating films are formed on the semiconductor substrate surface in a direction intersecting the first strip-shaped isolation film, and Separation insulating film and second
A plurality of island-shaped first conductivity type regions are selectively formed in the strip-shaped second conductivity type region in alignment with the openings defined by the strip-shaped isolation insulating film, and the island-shaped first conductivity type regions are formed over the openings. 1 guide 1! A 14th electric type polycrystalline silicon pattern is formed in contact with each L-type region, an oxide film is entirely formed on the surface of the polycrystalline silicon pattern, and a polycrystalline silicon pattern having the oxide # is formed on the substrate.
A method for manufacturing a first strip-shaped isolation insulating film in contact with a pattern and in contact with the polycrystalline silicon pattern. 5. Forming a plurality of rows of first strip-shaped isolation insulating films arranged in one direction on the surface of a semiconductor substrate having an forming a plurality of rows of second strip-shaped isolation insulating films arranged in a direction intersecting the first strip-shaped isolation insulating films on the surface of the semiconductor substrate; The strip-shaped isolation insulating film and the second
A plurality of island-shaped first conductive regions are selectively formed in the diagonal second conductive region aligned with the aperture defined by the strip-shaped isolation insulating film, and a plurality of island-like first conductive regions are formed in the aperture. An insulating thin film is formed on the island-like 14th electrode type region to be etched, and the insulating thin film inside the opening is selectively etched away using a mask corresponding to the information, and the inside of the opening is etched on the substrate. 1. A method of manufacturing a semiconductor device, comprising the step of forming a plurality of rows of electrode lines that are in contact with the first strip-shaped isolation insulating film and bridge the openings in a direction crossing the first strip-shaped isolation insulating film.
JP58182041A 1983-09-30 1983-09-30 Semiconductor device and manufacture thereof Pending JPS6074669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182041A JPS6074669A (en) 1983-09-30 1983-09-30 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182041A JPS6074669A (en) 1983-09-30 1983-09-30 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6074669A true JPS6074669A (en) 1985-04-26

Family

ID=16111302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182041A Pending JPS6074669A (en) 1983-09-30 1983-09-30 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6074669A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876220A (en) * 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
US5134457A (en) * 1986-05-09 1992-07-28 Actel Corporation Programmable low-impedance anti-fuse element
US5266829A (en) * 1986-05-09 1993-11-30 Actel Corporation Electrically-programmable low-impedance anti-fuse element
EP0599388A1 (en) * 1992-11-20 1994-06-01 Koninklijke Philips Electronics N.V. Semiconductor device provided with a programmable element
US5502326A (en) * 1992-11-20 1996-03-26 U.S. Philips Corporation Semiconductor device provided having a programmable element with a high-conductivity buried contact region
US5508220A (en) * 1991-04-18 1996-04-16 Actel Corporation Method of forming antifuses having minimum areas
US5552627A (en) * 1990-04-12 1996-09-03 Actel Corporation Electrically programmable antifuse incorporating dielectric and amorphous silicon interlayers
US5578836A (en) * 1990-04-12 1996-11-26 Actel Corporation Electrically programmable antifuse element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720466A (en) * 1980-07-14 1982-02-02 Toshiba Corp Semiconductor memory device
JPS5728356A (en) * 1980-07-28 1982-02-16 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720466A (en) * 1980-07-14 1982-02-02 Toshiba Corp Semiconductor memory device
JPS5728356A (en) * 1980-07-28 1982-02-16 Nec Corp Semiconductor device and manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134457A (en) * 1986-05-09 1992-07-28 Actel Corporation Programmable low-impedance anti-fuse element
US5266829A (en) * 1986-05-09 1993-11-30 Actel Corporation Electrically-programmable low-impedance anti-fuse element
US5412244A (en) * 1986-05-09 1995-05-02 Actel Corporation Electrically-programmable low-impedance anti-fuse element
US4876220A (en) * 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
US5552627A (en) * 1990-04-12 1996-09-03 Actel Corporation Electrically programmable antifuse incorporating dielectric and amorphous silicon interlayers
US5578836A (en) * 1990-04-12 1996-11-26 Actel Corporation Electrically programmable antifuse element
US5508220A (en) * 1991-04-18 1996-04-16 Actel Corporation Method of forming antifuses having minimum areas
EP0599388A1 (en) * 1992-11-20 1994-06-01 Koninklijke Philips Electronics N.V. Semiconductor device provided with a programmable element
US5502326A (en) * 1992-11-20 1996-03-26 U.S. Philips Corporation Semiconductor device provided having a programmable element with a high-conductivity buried contact region

Similar Documents

Publication Publication Date Title
US4992389A (en) Making a self aligned semiconductor device
US5635421A (en) Method of making a precision capacitor array
JP2546150Y2 (en) Electrically programmable and erasable memory cells
EP0186855A2 (en) Semiconductor read only memory device and method of manufacturing the same
JPH03505147A (en) Non-volatile process applied to digital and analog dual level metal MOS process
JPS6074669A (en) Semiconductor device and manufacture thereof
JP3049100B2 (en) Semiconductor device and manufacturing method thereof
JPH104149A (en) Semiconductor memory and its manufacture
JPH021176A (en) Nonvolatile semiconductor memory device and manufacture thereof
JPS62193273A (en) Semiconductor memory
US5227319A (en) Method of manufacturing a semiconductor device
GB2143675A (en) High efficiency dynamic random access memory cell and process for fabricating it
US6727195B2 (en) Method and system for decreasing the spaces between wordlines
KR920009748B1 (en) Stacked capacitor cell and method for producing the same
JPH0992731A (en) Semiconductor device having ldd transistor
JPH11312795A (en) Nonvolatile semiconductor memory device
JPS63226955A (en) Manufacture of capacitive element
KR100420440B1 (en) Non-volatile semiconductor memory device
JPS5887876A (en) Semiconductor device
JPS6058662A (en) Memory device for temporary storage of charge
JP3630484B2 (en) Method for manufacturing nonvolatile memory
JPH02254752A (en) Semiconductor memory
JPS62193274A (en) Semiconductor memory and manufacture thereof
JPH0279468A (en) Semiconductor memory and manufacture thereof
JP3257513B2 (en) Semiconductor device and method of manufacturing semiconductor device