JPS5887876A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5887876A
JPS5887876A JP56186344A JP18634481A JPS5887876A JP S5887876 A JPS5887876 A JP S5887876A JP 56186344 A JP56186344 A JP 56186344A JP 18634481 A JP18634481 A JP 18634481A JP S5887876 A JPS5887876 A JP S5887876A
Authority
JP
Japan
Prior art keywords
transistor
gate
substrate
floating gate
memory transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56186344A
Other languages
Japanese (ja)
Inventor
Masanori Kikuchi
菊地 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56186344A priority Critical patent/JPS5887876A/en
Publication of JPS5887876A publication Critical patent/JPS5887876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To minimize the dimensions of a device by making identical the sectional structures of a memory transistor and an address-selecting transistor which are connected in series to each other. CONSTITUTION:Floating gate electrodes 8 and 12 in a memory transistor (M)7 and a selecting transistor (T)11 are patterned into a form 24 indicated by a dotted line, and then are formed finally in a self-alignment manner by using control gate electrode patterns 10 and 14 as masks. Both of these gate electrodes are almost identical in dimentions in the direction of a channel. Moreover, the areas between the floating gate electrodes of the transistors (M) and (T) and a channel region are set to be S1M=25mu<2> and SiT=50mu<2>, while the areas between the floating gate electrodes and the control gate electrodes are set to be S2M= S2T=150mu<2>. The ratio of S2/S1 is S2M/S1M=6 in the transistor (M), and S2T/S1T=3 in the transistor 3, while S2M/S1M:S2T/S1T=2. By setting design parameters to be as mentioned above, electric fields generated in the first gate SiO2 films 7 and 11 of the transistors (M) and (T) can be changed.

Description

【発明の詳細な説明】 この発明は、改良された半導体装置、特に改良されfc
構造を有する下1■発注記憶ωj作を行う半導体装直に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved semiconductor device, particularly an improved fc
The present invention relates to a semiconductor device that has a structure and performs order storage ωj.

従来、この独の半導体装置で、メモリ1ビット当り2個
のトランジスタ(メモリトランジスタと蒼地遇択用トラ
ンジスタ)ライ史用しているものでは、番地選択用トラ
ンジスタは通常の一層ゲートのMO8型トランジスタを
法用していた。しかるに、メモリトランジスタは浮遊ゲ
ート電惨と制佃Jゲート電極とを有するスタックド・ケ
ート型MOSトランジスタで、これに直列接続された着
地選択用のトランジスタが一〜ケートのMOS型トラン
ジスタである為、との四トランジスタ間には同一構造の
トランジスタを2個血夕i」に並べて作るt合に比し、
プラスアルファ(十α)の寸法な′福保することが必蒙
不口」欠で、これが装置の寸法全人きくシ、島東槓化の
防けになると共に、ひいては性能・製造ν箱9・伯籾注
1川での欠点となっていた。
Conventionally, this German semiconductor device uses two transistors (memory transistor and blue field selection transistor) per memory bit, and the address selection transistor is an ordinary single-gate MO8 type transistor. was used legally. However, since the memory transistor is a stacked gate type MOS transistor having a floating gate electrode and a limiting J gate electrode, and the landing selection transistor connected in series with this is a single to gate type MOS transistor, Compared to the case where two transistors of the same structure are arranged side by side between the four transistors,
Plus alpha (10α) dimensions, it is essential to protect the equipment.・This was a drawback in Hakumo Note 1 River.

この発明は上述の如き、従来装置の欠点に逓みてなされ
たもので、従来装置の先に飲明した寸法面での+αを除
去し筒果槓化・高性能化、高製造歩首り、lvI侶頼証
足央視、すること葡目的にしている。
This invention was made in response to the above-mentioned drawbacks of the conventional device, and it eliminates the disadvantages of the conventional device in terms of dimensions, resulting in increased cylindrical structure, higher performance, and higher production speed. LvI's Yorishin Ashioji, the goal is to do something.

この発明の半導体装1鉦は、半導体基体の主表面近傍に
、互に間隔金層いて設けられ、基体と反対導電型を持つ
ソース・ト”レイン領域と、この間の基体主表向上に第
1のゲート絶縁族と、この上に導電性拐科から成り、他
の部分から絶縁された浮遊ゲート電極パル光の上に第2
のゲート絶縁族と、さらにこの上に専′…、性拐料から
なる制御ゲート電極(CG)’に有するスタックドゲー
トMos型メモリトランジスタ(M)と、このメモリト
ランジスタに直列接続して設けられた同泳の断面構造を
自する番地選択用のM OS型トランジスタ(T)’に
具備し、トランジスタ(M)と(T)のいづれもFGと
CGがチャンネル方間にそって瓦にセルファラインに形
状が決められていると同時に、(M)と(T)のいづれ
のソース、ドレインIi4域も又FGとCGとにセルフ
ァラインに形成され、かつCG −rr G間容tのF
’G−基体間容量に対する比が(M)の場合の方が(T
)の賜金よ91.5倍以上に大きく設定しである。
A semiconductor device according to the present invention includes a source/train region which is provided in the vicinity of the main surface of a semiconductor substrate with metal layers spaced apart from each other, and has a conductivity type opposite to that of the substrate, and a first region on the main surface of the substrate between these regions. A floating gate electrode consisting of a gate insulating group and a conductive layer on top of this, and a second electrode on top of the floating gate electrode pulsed light, which is insulated from other parts.
A stacked gate Mos-type memory transistor (M) having a control gate electrode (CG) made of a conductive material on top of the gate insulating group is connected in series with the memory transistor. The MOS type transistor (T)' for address selection has a same cross-sectional structure, and the FG and CG of both transistors (M) and (T) are self-aligned on the tiles along the channel direction. At the same time, the source and drain Ii4 regions of both (M) and (T) are also formed in a self-line between FG and CG, and the F of the CG-rr G gap t is determined.
'When the ratio to the G-substrate capacitance is (M), it is better (T
) has been set at 91.5 times greater.

この発明の装置では、1fl1列に接続されたメモリト
ランジスタと番地迫択用トランジスタの断面構造が全く
同一である為、これらトランジスタ間の寸法は制御ケー
ト電極のバターニングに際してPR(Photo  R
e5ist)技術とエツチング技術の計す限pの最小寸
法に設fi−1でき、従来装置dの如き+α分は全く必
要無い。この為、装置寸法の最小化が実現でき、これが
付加的な極々の利点効果をもたらすことは先に述べた通
如である。
In the device of this invention, since the cross-sectional structures of the memory transistors and the address selection transistors connected in one column of 1fl are exactly the same, the dimensions between these transistors are determined by PR (Photo R) when patterning the control gate electrodes.
As far as e5ist) technology and etching technology are concerned, the minimum dimension of p can be set to fi-1, and there is no need for +α as in the conventional device d. As a result, the size of the device can be minimized, which, as mentioned above, brings significant additional advantages.

ここで本発明装置の動作面をいっそう明らかにする為に
説明を加える。いま一般に、スタックトゲ−)MOS型
トランジスタに於いて、浮遊ゲート電極と基体間のオー
バーラツプ面槓を81 容量盆C8第1ケートSiO□
膜厚をdl、浮遊ゲート電極と制御ゲート′lL惨闇の
オーバーラツプ面精を82%各賞をC!、第2ゲート5
in2膜厚をd8とすれは、6をSin、のMli1率
として、C,==63. /as  、C2=gs2/
a2となる。従って制御ゲート電極に電圧V。を印加し
た場合、第1ゲートsio、膜に生じる′電界Eは次の
如く表わせる。
Here, an explanation will be added to further clarify the operational aspects of the device of the present invention. Generally speaking, in stacked gate (MOS) transistors, the overlap surface between the floating gate electrode and the substrate is 81 Capacitor tray C8 first gate SiO □
The film thickness is dl, and the overlap between the floating gate electrode and the control gate 'lL is 82%, and each award is C! , second gate 5
If the in2 film thickness is d8, and the Mli1 ratio of 6 is Sin, C,==63. /as, C2=gs2/
It becomes a2. Therefore, a voltage V is applied to the control gate electrode. When sio is applied, the electric field E generated in the first gate sio and the film can be expressed as follows.

印=C*  VG/d I (Ct +Ct)=VG/
ca、 +dt(St/5l)) 従って本発明装置の如く、メモリトランジスタと番地選
択用トランジスタとを同陳の断面構造(即ちd、、d、
  を同一)にしても、Sz /S lを変えることに
より第1ゲート5iOii換中の′電界Eを変化5− させることができる。従って畳込・消去動作時に、制御
ゲート11L極に印加する電圧V。にょって、メモリト
ランジスタIt’J、 F’owler −Nordh
eim トyネル機構等を利用したチャージの注入・放
出を生じさせる電界Eを作ると同時罠、番地選択用トラ
ンジスタにはこれらの埃象が全く生じない一4界Eに抑
えることが設目十パラメータS2/S1の選択によって
可能となる訳である。
Mark = C* VG/d I (Ct +Ct) = VG/
ca, +dt (St/5l)) Therefore, as in the device of the present invention, the memory transistor and the address selection transistor have the same cross-sectional structure (i.e., d, d,
Even if Sz/Sl is the same), it is possible to change the electric field E during the first gate 5iOii conversion by changing Sz/Sl. Therefore, during the convolution/erase operation, the voltage V applied to the control gate 11L pole. Memory transistor It'J, F'owler - Nordh
eim When creating an electric field E that causes charge injection and discharge using a tunnel mechanism etc., the aim is to suppress the field E to 14, so that these dust phenomena do not occur in the address selection transistor at the same time. This is possible by selecting the parameters S2/S1.

次に本発明の%徽と内在をより解り易くする為に、実施
例を挙げ図面を参照しながら評しく説明する。
Next, in order to make it easier to understand the nature and nature of the present invention, examples will be given and explained in detail with reference to the drawings.

第1図は本発明の半導体装置の一実施例に於ける断面構
造模型図である。第2図は同装置の平面模型図で、この
図に示したA−A’郁での断面を第1図が表わしている
FIG. 1 is a cross-sectional structural model diagram of an embodiment of the semiconductor device of the present invention. FIG. 2 is a plan view of the same device, and FIG. 1 shows a cross section taken along the line AA' shown in this figure.

この第1図、第2図に於いて、lは比砥抗が約100−
zのPmSi単結晶基体、2は面指数(100)を有す
るlの主表面、3は1の尚温熱酸化法によって形成した
厚さfJlμのフィールドS10.膜である。
In Figures 1 and 2, l has a specific grinding resistance of approximately 100-
z PmSi single crystal substrate, 2 the main surface of l having a surface index (100), 3 the field S10. It is a membrane.

6− 4.5.6はn型拡散領域で4はスタックドゲートMO
8型メモリトランジスタのソース領域、5はメモリトラ
ンジスタのドレインと番地込択用MO8型トランジスタ
のソースとの共洲領域、6は選択用トランジスタのドレ
イン領域となっている。
6- 4.5.6 is n-type diffusion region and 4 is stacked gate MO
The source region of the 8-type memory transistor, 5 is a common region between the drain of the memory transistor and the source of the MO8-type address selection transistor, and 6 is the drain region of the selection transistor.

7.11はそれぞれメモリトランジスタ(以下Mと略称
)と選択用トランジスタ(以下T、!:略称)の第1ゲ
ー)SiQ、膜で、1の熱版化法により形成され、厚さ
は共に杓150A である。8.12はそれぞれM、T
の浮遊ゲート′Fa極で、厚さ約200OAのN型不純
物であるリンを冷加した多結晶Siからなっている。9
,13はそれぞれM。
7. 11 are the first gate (SiQ) films of the memory transistor (hereinafter referred to as M) and the selection transistor (hereinafter referred to as T, !: abbreviation), which are formed by the thermal printing method in 1, and the thickness of both is 1. It is 150A. 8.12 are M and T respectively
The floating gate 'Fa electrode is made of polycrystalline Si with a thickness of approximately 200 OA and phosphorus, which is an N-type impurity, is cooled. 9
, 13 are each M.

Tの厚さ約100OAの第2ゲート5in2換で8゜1
2(D熱酸化により成長した。10.14はそれぞれM
、Tの制御ゲート電極で、厚さ約500OAのリン添加
多結晶Siで形成されている。15は気相成長法によっ
て形成した厚さ約1μのPSG(Phospho −5
ilicate −Glass) 腺である。
8゜1 in terms of 5in2 second gate with T thickness of about 100OA
2 (D grown by thermal oxidation. 10.14 are respectively M
, T, and is formed of phosphorus-doped polycrystalline Si with a thickness of about 500 OA. 15 is PSG (Phospho-5) with a thickness of about 1μ formed by vapor phase growth method.
ilicate-Glass) gland.

16.17はそれぞれN型領域4.6上のPSG膜1膜
中5中けられたコンタクト孔である。18゜19はAt
の引き出し配線で、それぞれコンタクト孔16.17を
介してN型領域4,6とオーミック接触を有している。
Reference numerals 16 and 17 are contact holes made in 5 of the PSG films on the N-type regions 4 and 6, respectively. 18°19 is At
These lead-out wirings have ohmic contact with the N-type regions 4 and 6 through contact holes 16 and 17, respectively.

20.21はそれぞれ?b制御ゲート電極10.14上
のPSG膜1膜中5中目けられたコンタクト孔、22.
21は開側jケート11惨のAt引き出し配線である。
20.21 respectively? b A contact hole made in the middle of the PSG film 1 on the control gate electrode 10.14, 22.
21 is the At lead wiring of the open side cable 11.

ここで第1図に於ける浮遊ケートx+13,12は第2
図に点巌で示した形状24にバターニングした恢、制御
ゲート成極パターン10.14全マスクにして自己賢台
的にHE形状決定されている(即ち平面的に副側1ゲー
ト%極パターンの1h下のみに浮遊ゲート電極が形成さ
れている)ので、両ゲート′亀惨はチャンネル力向、即
ちA−A’方向にそって寸法は?よは一致している。又
、N型領域4.5.6は互に自己整合化されたl′を遊
、匍j#両ゲートー1惨をマスクにしたAsのイオン注
入法によって目已歪合的に形成されている。この例示の
装置では、メモリトランジスター(M)および選択用ト
ランジスタ(T)の浮遊ゲート[4Thとチャンネル領
域間の面積はそれぞれS、=25μ 、S、:50μ 
、浮遊ゲー)’III極と制御ゲート電極間の面積は共
にSt ”82  =150μ2に設定してあり、Sz
/S1  の比はメモリトランジスタ(M)ではS。
Here, the floating cages x+13 and 12 in Figure 1 are the second
After patterning into the shape 24 shown with dots in the figure, the control gate polarization pattern 10.14 is used as a whole mask and the HE shape is determined in a self-intuitive manner (i.e., the sub-side 1 gate % polar pattern in plan view). (The floating gate electrode is formed only 1h below), so what are the dimensions of both gates along the channel force direction, that is, the A-A' direction? yo agrees. In addition, the N-type regions 4.5.6 are formed in a misaligned manner by the As ion implantation method using the mutually self-aligned l' and the gates as masks. . In this exemplary device, the areas between the floating gate [4Th and the channel region of the memory transistor (M) and the selection transistor (T) are S, = 25μ, S,: 50μ, respectively.
, floating gate) The areas between the 'III pole and the control gate electrode are both set to St "82 = 150 μ2, and Sz
/S1 ratio is S in the memory transistor (M).

/s1 =6、選択用トランジスタ(T)ではS、 /
51−3でSt /S1  : St /s、 =2に
なっている。この様な設計パラメータの設定により、電
体22.23に同一の1、圧全印加した場合、メモリト
ランジスタ(M)と選択用トランジスタ(T)の第lゲ
ートS10.腹7,11に生じる電界は(M)の場合の
万が(T)の場合の約1.87倍強くなる。この半導体
装置ではメモリトランジスタ(M)のゲート電極22に
正の尚電圧を印加して第1ゲート5iO1膜7中の電界
により鴇;子を基体1から浮遊ゲート電極8にFowl
er−Nordheim(以下F−Nと略)トンネル注
入したシ、又負の高市、王を印加して電子を浮遊ゲート
電極8から基体1にF−N )ンネル放出させることに
よシ“畳込”、“消去”の不揮発性記憶作用を行わせる
が、この時選択用トランジスタ(T)のゲート1M、億
23にも同碌の正・負の高電圧が印加されても、第1ゲ
ートSin、膜11中9− の・出、界が羽い為、猶予の注入・放出等の現象は生じ
ず、従って選択用トランジスタ(′r)はhピ憶作用は
竹わず、単なるスイッチ菓子としてのトランジスタとし
て機能させることができる。以上述べたメモリトランジ
スタ(M) (!: s4t< Blh 57 シ、X
 タ(T)の特性の違い全図3に示す。この図で検輔は
ゲート電極22j23から見たスレッショルド電圧(−
2)で横41111はゲート電極に、10m5の助間印
力11シに′電圧の値(vcG)を示している。
/s1 = 6, S in the selection transistor (T), /
In 51-3, St/S1: St/s, =2. By setting such design parameters, when the same pressure voltage of 1 is applied to the electric bodies 22 and 23, the first gate S10 of the memory transistor (M) and the selection transistor (T). The electric field generated in the antinodes 7 and 11 is approximately 1.87 times stronger in the case of (M) than in the case of (T). In this semiconductor device, a positive voltage is applied to the gate electrode 22 of the memory transistor (M), and the electric field in the first gate 5iO1 film 7 causes a droplet to fall from the substrate 1 to the floating gate electrode 8.
Er-Nordheim (hereinafter abbreviated as F-N) tunnel injection is applied, and electrons are emitted from the floating gate electrode 8 to the substrate 1 through F-N) tunnels. At this time, even if the same positive and negative high voltages are applied to the gates 1M and 23 of the selection transistor (T), the first gate Since the field of Sin and 9- in the film 11 is winged, phenomena such as delayed injection and release do not occur, so the selection transistor ('r) has no memory effect and is just a switch. It can be made to function as a transistor. The memory transistor (M) described above (!: s4t< Blh 57 shi,
The differences in the characteristics of the data (T) are all shown in Figure 3. In this figure, the threshold voltage (-
In 2), the horizontal line 41111 indicates the voltage value (vcG) at the gate electrode, and at the input force 11 between the 10 m5 spaces.

実相ハメモリトランジスタ(M)のtドを注葡、破細は
選択用トランジスタ(′r)の特性をボす。この図から
明らかな峰に、例えば正電圧V 、負電比V−を′書込
”、“消去”、“動作に使用4することによりメモリト
ランジスタ(M )のスレッショルド電圧(VTM)の
みをシフトさせることができ、選択用トランジスタ(T
)の特性は何ら変化しない味に出来る。
When the real-phase memory transistor (M) has a t-domain, the breakage impairs the characteristics of the selection transistor ('r). As shown in the figure, only the threshold voltage (VTM) of the memory transistor (M) is shifted by using, for example, a positive voltage V and a negative voltage ratio V- for 'writing', 'erasing', and 'operations'. The selection transistor (T
) can be made to taste without any change in its characteristics.

以上の説明から明らかな除に、比si/st  :St
 /s+を大きく取る桂% ”CGに対するメモリウィ
ンドの巾の差を大きく取れるので装置の動作は一1〇− 安定になるが、実使用に対しては上記比が1.5倍以上
あれは十分安定であることを確認した。
It is clear from the above explanation that the ratio si/st :St
Katsura% by increasing /s+ ``Since the difference in memory window width for CG can be increased, the operation of the device becomes 110- more stable, but for actual use, it is sufficient that the above ratio is 1.5 times or more. It was confirmed that it is stable.

上述の実施例は単に?lI示の為のものであシ、本発明
がこれに限定されるものでないことは以上の説明からも
明らかである。例えば装置谷部の導電型や製法kKえる
こともできるし、材買や寸法にもある範囲内では選択の
自由度が存在する。
Is the above embodiment simply? It is clear from the above description that the present invention is not limited to this, but is for illustrative purposes only. For example, the conductivity type of the device valley and the manufacturing method can be changed, and there is a degree of freedom in selecting materials and dimensions within a certain range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一央ぬ例に於ける断面俣
型図、第2図はその平面模型図である。 第3図は%性説明図である。
FIG. 1 is a cross-sectional cross-sectional view of an example of the semiconductor device of the present invention, and FIG. 2 is a plan view of the semiconductor device. FIG. 3 is a percentage explanatory diagram.

Claims (1)

【特許請求の範囲】[Claims] 所要の半導体基体の一生次面に隣接し、互に間隔装置い
て収けられた1対の基体と逆導電型を有するソース、ド
レイン領域と、該両細織間の基体主表面上に第1のゲー
ト1111!!縁膜と、該絶縁膜上に金属又は半導体材
料からなり、他の装に部分から電気的に絶縁された浮遊
ゲー)1[惨と、該電極上に第2のゲート絶縁層と、該
絶縁膜上に尋電注材料からなる市1]御ゲート電極と會
壱するスタックドゲートMO8型メモリトランジスタと
、該メモリトランジスタに隣接して同−基体上に直列接
続して設けられた、前記メモリトランジスタト同錘の断
面構造を有する番地迫択用の1VIO8型トランジスタ
とを具備し、前Mi2iViO8型メモリトランヅメモ
リトラ番地スタ用MO8型トランジスタのいづれも制御
ゲート電極と浮遊ゲートを極がチャンネル方向にそって
互いに目已荒付的に形状決定されていると共に、それぞ
れのソース、ドレイン領域も又、匍」側jゲート′rぼ
4愼と#遊ケート霜、惨とに目己精合的に形成され、か
つ制御ゲート市1欅と浮遊ゲート電極間′6租の#廚ケ
ート′肛惨と基体間容加ンこ対する比が、1)j記メモ
リトランジスタの場合のブiが削動番地退択用トランジ
スタよりも15指以上に大きく設定しである半分特徴と
する半導体装置。
A pair of source and drain regions having opposite conductivity types to the substrate, which are adjacent to the surface of the required semiconductor substrate and spaced apart from each other; Gate 1111! ! a second gate insulating layer on the electrode, a floating gate made of a metal or semiconductor material on the insulating film and electrically insulated from other parts; 1] A stacked gate MO8 type memory transistor, which is made of a metal-polymerized material on the film, and which is connected to the gate electrode, and the memory provided adjacent to the memory transistor and connected in series on the same substrate. The transistor is equipped with a 1VIO8 type transistor for address selection having a cross-sectional structure of the same weight as the transistor. The shape of each source and drain region is determined to be roughly similar to each other along the two sides, and the respective source and drain regions are also shaped to be roughly similar to each other. and the ratio of the distance between the control gate 1 and the floating gate electrode and the volume between the base and the substrate is 1) when the bu i in the case of j memory transistor is removed. A semiconductor device characterized by being set 15 fingers or more larger than an address selection transistor.
JP56186344A 1981-11-20 1981-11-20 Semiconductor device Pending JPS5887876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186344A JPS5887876A (en) 1981-11-20 1981-11-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186344A JPS5887876A (en) 1981-11-20 1981-11-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5887876A true JPS5887876A (en) 1983-05-25

Family

ID=16186708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186344A Pending JPS5887876A (en) 1981-11-20 1981-11-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5887876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707717A (en) * 1984-12-05 1987-11-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US5274587A (en) * 1990-07-11 1993-12-28 Nec Corporation Non-volatile programmable read only memory device having memory cells each implemented by a memory transistor and a switching transistor coupled in parallel and method of memorizing a data bit
US5291440A (en) * 1990-07-30 1994-03-01 Nec Corporation Non-volatile programmable read only memory device having a plurality of memory cells each implemented by a memory transistor and a switching transistor stacked thereon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707717A (en) * 1984-12-05 1987-11-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US5274587A (en) * 1990-07-11 1993-12-28 Nec Corporation Non-volatile programmable read only memory device having memory cells each implemented by a memory transistor and a switching transistor coupled in parallel and method of memorizing a data bit
US5291440A (en) * 1990-07-30 1994-03-01 Nec Corporation Non-volatile programmable read only memory device having a plurality of memory cells each implemented by a memory transistor and a switching transistor stacked thereon

Similar Documents

Publication Publication Date Title
JP3150362B2 (en) EPROM virtual ground array
EP0044384B1 (en) Electrically alterable read only memory cell
JP2689888B2 (en) Semiconductor device and manufacturing method thereof
RU98114501A (en) SEMICONDUCTOR MEMORY DEVICE WITH HIGH DEGREE OF INTEGRATION AND METHOD FOR PRODUCING SEMICONDUCTOR MEMORY DEVICE
JPH0554699B2 (en)
JPS60177678A (en) Semiconductor integrated circuit device and production thereof
JPS59155968A (en) Semiconductor memory device
JPS6033315B2 (en) semiconductor equipment
JP3049100B2 (en) Semiconductor device and manufacturing method thereof
US4513304A (en) Semiconductor memory device and process for producing the same
JPH04348072A (en) Manufacture of nonvolatile semiconductor memory device
JPS61107762A (en) Manufacture of semiconductor memory device
US5493139A (en) Electrically erasable PROM (E2 PROM) with thin film peripheral transistor
JPS6130063A (en) Nonvolatile semiconductor memory device
JPH06103745B2 (en) Integrated circuit element
JPH04212472A (en) Manufacture of non-volatile semiconductor memory
JPS5887876A (en) Semiconductor device
JPS6074669A (en) Semiconductor device and manufacture thereof
KR900007903B1 (en) Method of manufacturing semiconductor device
KR100417029B1 (en) Method for manufacturing nonvolatile semiconductor memory with narrow variation in threshold voltages of memory cells
JP3061907B2 (en) Semiconductor device and manufacturing method thereof
JPH0645614A (en) Manufacture of read-only semiconductor memory
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JPH09246536A (en) Semiconductor element
JP3382024B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same