JPS6130063A - Nonvolatile semiconductor memory device - Google Patents
Nonvolatile semiconductor memory deviceInfo
- Publication number
- JPS6130063A JPS6130063A JP15225084A JP15225084A JPS6130063A JP S6130063 A JPS6130063 A JP S6130063A JP 15225084 A JP15225084 A JP 15225084A JP 15225084 A JP15225084 A JP 15225084A JP S6130063 A JPS6130063 A JP S6130063A
- Authority
- JP
- Japan
- Prior art keywords
- source
- region
- diffusing
- memory transistor
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 21
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 13
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims description 40
- 229910021341 titanium silicide Inorganic materials 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 230000010354 integration Effects 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000012299 nitrogen atmosphere Substances 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000004544 sputter deposition Methods 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229920005591 polysilicon Polymers 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003870 refractory metal Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 1
- 241000209507 Camellia Species 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 229910021357 chromium silicide Inorganic materials 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910021339 platinum silicide Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
- H01L29/7884—Programmable transistors with only two possible levels of programmation charging by hot carrier injection
- H01L29/7885—Hot carrier injection from the channel
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、不揮発性半導体記憶装置に関し、特に改良さ
れたメモリセル配列を有する装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to nonvolatile semiconductor memory devices, and more particularly to devices having improved memory cell arrangements.
(従来技術)
不揮発性半導体記憶装置用の記憶素子として、種々のM
OSデバイスが開発されているが、現在テハ、ソース、
ドレイン、浮遊ゲート及びポリシリコン(多結晶シリコ
ン)の制御ゲートを有し、ソースとドレインの間に電流
を流してチャネル中で加速された電子を浮遊ゲートに注
入して書込みを行う、いわゆるチャネル電子注入型浮遊
ゲートMOSメモリトランジスタが広く利用されている
。(Prior art) Various M
An OS device is being developed, but currently the technology, source,
A so-called channel electron device has a drain, a floating gate, and a control gate made of polysilicon (polycrystalline silicon), and performs writing by flowing current between the source and drain and injecting electrons accelerated in the channel into the floating gate. Injected floating gate MOS memory transistors are widely used.
このメそリトランジスタを用いれば、メモリ装置の1ビ
ツトを1トランジスタで構成することができ、高集積化
に非常に適している。従来、前記の浮遊グー)MOSメ
モリトランジスタを集積化してセルアレイを構成する場
合には、メモリトランジスタをマトリックスに配列し、
列方向に配置されたメモリトランジスタのドレインを共
通にアルき配線に接続してビット線を形成し、行方向に
配置されたメモリトランジスタのポリシリコン制御ゲー
ト電極を共通接続し、ポリシリコンのワード線を形成し
、メそリトランジスタのソースを共通の拡散層配線に接
続し、適当な場所でビット線と平行に設置されたアルミ
ニウムの接地配線と接続する。以上のように、構成され
た従来のメモリセルアレイの回路図t−14図に示す。If this memory transistor is used, one bit of a memory device can be constructed from one transistor, and it is very suitable for high integration. Conventionally, when configuring a cell array by integrating the above-mentioned floating MOS memory transistors, the memory transistors are arranged in a matrix,
The drains of the memory transistors arranged in the column direction are commonly connected to an aluminum wire to form a bit line, and the polysilicon control gate electrodes of the memory transistors arranged in the row direction are commonly connected to form a polysilicon word line. The sources of the mesori transistors are connected to a common diffusion layer wiring, and connected to an aluminum ground wiring placed parallel to the bit line at an appropriate location. A circuit diagram of a conventional memory cell array configured as described above is shown in FIG. t-14.
44図に示された装置がNチャネル型である場合を例に
とっ曵、メモリトランジスタの書込みを説明する。メモ
リトランジスタQIK書込みを行う場合、ポリシリコン
のワード線Wlに正の高電圧を印加し、アルミニウムの
ビット線Blに正の書込み電圧を印加する。この時メモ
lランラスタQlのチャネルは導通状態となり、電流は
、ビット線B1からメモリトランジスタQ1のチャネル
を通り、ソース共通拡散層配線SLを経て、アルミニウ
ムの接地線GLに流れ込む。メモリトランジスタQ1の
チャネル中を流れる電子の一部はソース、ドレイン間の
電界で加速され高エネルギを得て、ゲート酸化膜のバリ
アを乗り越えて浮遊ゲートに注入され書込みが行われる
。この場合にソース共通拡散層配線SLの抵抗が大きす
ぎると、書込み電流と配線抵抗の積で決まる電圧がメモ
リトランジスタQlのソースに印加されるので、ソース
電位が上昇した分だけ、ソース、ドレイン間の電子を加
速する電界が弱まって、メモリトランジスタQlの書込
みが充分に行われなくなる。この様に、メモリトランジ
スタのソースと接地電位の間に付加されるソース共通拡
散層配線の抵抗は、書込みに対し℃障害となるものであ
るから、できる限り不さいことが望ましい。Writing into a memory transistor will be explained by taking as an example the case where the device shown in FIG. 44 is an N-channel type. When writing to the memory transistor QIK, a high positive voltage is applied to the polysilicon word line Wl, and a positive write voltage is applied to the aluminum bit line Bl. At this time, the channel of the memory run raster Ql becomes conductive, and current flows from the bit line B1 through the channel of the memory transistor Q1, through the source common diffusion layer wiring SL, and into the aluminum ground line GL. A portion of the electrons flowing through the channel of the memory transistor Q1 are accelerated by the electric field between the source and drain, obtain high energy, overcome the barrier of the gate oxide film, and are injected into the floating gate to perform writing. In this case, if the resistance of the source common diffusion layer wiring SL is too large, a voltage determined by the product of the write current and the wiring resistance will be applied to the source of the memory transistor Ql. The electric field that accelerates the electrons weakens, and writing to the memory transistor Ql becomes insufficient. In this way, the resistance of the source common diffusion layer interconnection added between the source of the memory transistor and the ground potential becomes a ℃ hindrance to writing, and therefore it is desirable that it be as low as possible.
従来のメモリセルアレイにおいては、ソース共通拡散層
配線の幅を広くするか、或いは、アルミニウムの接地縁
の本数を増して各メモリトランジスタのソースと、アル
ミニウムの接地線間のソース共通拡散層配線の距離を短
くすることによってメモリトランジスタのソースと接地
電位の間に付加される抵抗値を減少させている。しかし
、前記の方法はいずれもメモリセルアレイの集積密度を
低くするものであり、分後ますます要求の強まってくる
不揮発性半導体記憶装置の微細化及び大容量化に捻適合
しないという欠点があった。In conventional memory cell arrays, the distance between the source common diffusion layer wiring between the source of each memory transistor and the aluminum ground line can be increased by increasing the width of the common source diffusion layer wiring or by increasing the number of aluminum grounding edges. By shortening , the resistance value added between the source of the memory transistor and the ground potential is reduced. However, all of the above methods reduce the integration density of the memory cell array, and have the disadvantage that they are not compatible with the miniaturization and larger capacity of nonvolatile semiconductor memory devices, which are becoming increasingly demanding. .
(発明の目的)
本発明の目的は、メそリセルアレイ中のソース共通拡散
層配線の層抵抗を/JSさくすることによって、前記拡
散層配縁幅を広くしたり、或いはアルミニウムの接地線
の本数を増加させたりすることなく、各メモリトランジ
スタの書込み特性を保障できるメモリセルアレイ、即ち
高集積化に適したメモリセル7レイを提供することであ
る。(Object of the Invention) An object of the present invention is to reduce the layer resistance of the source common diffusion layer wiring in the mesoricell array, thereby increasing the width of the diffusion layer wiring, or reducing the number of aluminum ground lines. It is an object of the present invention to provide a memory cell array that can guarantee the write characteristics of each memory transistor without increasing the number of memory transistors, that is, a memory cell 7 array suitable for high integration.
(発明の構成)
本発明の不揮発性半導体記憶装置は半導体基板上にソー
スとドレインの間に電流を流すことによって書込みを行
5MOS型不揮発性メモリド2ンジスタがマトリ、クス
に配置され、前記メモリトランジスタのソース拡散領域
の表面またはソース −拡散領域に接続された拡散
配線領域の表面に高融点金属シリサイドが形成されて構
成されるメモリセルアレイを備えるものである。また、
本発明においては、特に製造上及び特性上望ましい拐料
として、前記高融点金属シリサイドにチタンシリサイド
を用いることができる。(Structure of the Invention) A nonvolatile semiconductor memory device of the present invention performs writing by flowing a current between a source and a drain on a semiconductor substrate, and five MOS type nonvolatile memory transistors are arranged in a matrix and a matrix, and the memory transistors are arranged in a matrix. The memory cell array includes a refractory metal silicide formed on the surface of the source diffusion region or the surface of the diffusion wiring region connected to the source-diffusion region. Also,
In the present invention, titanium silicide can be used as the refractory metal silicide, which is particularly desirable in terms of manufacturing and properties.
更に、本発明におしては、前記ソース拡散領域の宍面ま
たはソース拡散領域に接続された拡散配線領域表面に形
成した高融点シリサイドと同一の材料を、メそリトラン
ジスタのゲートを構成する多結晶シリコン表面(即ちア
レイ中のワード線)に形成することができる。Furthermore, in the present invention, the same material as the high melting point silicide formed on the surface of the source diffusion region or the surface of the diffusion wiring region connected to the source diffusion region is used as a polycrystalline material constituting the gate of the mesori transistor. It can be formed on the silicon surface (ie, on the word lines in the array).
(発明の効果)
半導体基板の不純物拡散領域表面に高融点金属シリサイ
ドを形成することにより、拡散ttiiortb抵抗は
1/lO程度に低下する。この様な低抵抗の配amを用
いることによって、同一の抵抗値を1するソース共通配
置w!層を作る場合には、不純物拡散層だけで形成する
のに比べて、狭い配線層幅で夾現できる利点がある。即
ち、セルアレイの集積度を向上させることができる。(Effects of the Invention) By forming high melting point metal silicide on the surface of the impurity diffusion region of the semiconductor substrate, the diffusion ttiiortb resistance is reduced to about 1/1O. By using such a low-resistance arrangement, the common source arrangement can achieve the same resistance value of 1! When forming a layer, there is an advantage that it can be formed with a narrow wiring layer width compared to forming only an impurity diffusion layer. That is, the degree of integration of the cell array can be improved.
(実施例1)
第1図に本発明の好ましい一実施例のメモリセルアレイ
の平面図を示す。本実施例は、メモリトランジスタとし
て、Nチャネル浮遊ゲート型メモリトランジスタを用い
ている。また、本実施例では高融点金属シリサイドとし
てチタンシリサイドを使用している。チタンシリサイド
は一般に利用されている高融点金属シリサイドのうちで
、最ホの層抵抗を有しているから、これを用いることに
よってきわめ″C顕著な効果が得られる。(Embodiment 1) FIG. 1 shows a plan view of a memory cell array according to a preferred embodiment of the present invention. In this embodiment, an N-channel floating gate type memory transistor is used as the memory transistor. Further, in this embodiment, titanium silicide is used as the high melting point metal silicide. Titanium silicide has the highest layer resistance among commonly used high-melting point metal silicides, so its use can provide a very remarkable effect.
第1図において、ソース共通拡散層配線SLの表面の中
央部に、スリット上にチタンシリサイド層1が形成され
ている。ここで用いた拡散領域は、N型不純物であるヒ
素のイオン注入で形成され、その層抵抗Fi30Ω/口
である。それに対して、チタンシリサイド層の層抵抗は
2Ω/口であった。In FIG. 1, a titanium silicide layer 1 is formed on a slit in the center of the surface of the source common diffusion layer wiring SL. The diffusion region used here is formed by ion implantation of arsenic, which is an N-type impurity, and has a layer resistance Fi of 30Ω/hole. In contrast, the layer resistance of the titanium silicide layer was 2Ω/hole.
第1図において、従来の如くソース共通拡散層配線8L
をヒ素拡散層のみで作る場合には、ソース付加抵抗を5
00Ω以下に抑えるのに、拡散層SLの幅を4μmとし
、メモリトランジスタのソースからアルミニウムの接地
線GLとの接続コンタクト孔2までの距離Jを約67μ
m以内にせねばならない。一方、本実施例では、ソース
付加抵抗を同じ5000以下に抑えるのに、拡散層SL
の幅を2μmとし、スリット状のチタンシリサイド層l
の幅を1μmとしてメモリトランジスタのソースから接
地線GLとのコンタクト孔2までの距離ノを250μm
とすることかできる。即ち、従来方法に比べてソース共
通拡散層配線幅を4μmから2μmに縮小したうえで更
に、メモリトランジスタのソースとアルミニウムの接地
線の間隔を約4倍まで拡げることができる。従ってセル
アレイ中の接地線の本数を減少できる。この機力縮小効
果は、ビット数が増加しセルアレイのサイズが大きくな
る程顕著となる。In FIG. 1, as in the conventional source common diffusion layer wiring 8L,
When making only an arsenic diffusion layer, the source additional resistance is 5
In order to suppress the resistance to 00Ω or less, the width of the diffusion layer SL is 4 μm, and the distance J from the source of the memory transistor to the connection contact hole 2 with the aluminum ground line GL is approximately 67 μm.
It must be done within m. On the other hand, in this embodiment, in order to suppress the source added resistance to the same 5000 or less, the diffusion layer SL
The width of the titanium silicide layer is 2 μm, and the slit-shaped titanium silicide layer l
Assuming that the width of is 1 μm, the distance from the source of the memory transistor to the contact hole 2 with the ground line GL is 250 μm.
It is possible to do this. That is, compared to the conventional method, the width of the source common diffusion layer wiring can be reduced from 4 μm to 2 μm, and the distance between the source of the memory transistor and the aluminum ground line can be increased by about 4 times. Therefore, the number of ground lines in the cell array can be reduced. This power reduction effect becomes more pronounced as the number of bits increases and the size of the cell array increases.
次に、本実施例のセルアレイの製造方法につい−C第2
図を用いて説明する。第2図は第1図中a−a/線部分
の断面図を示す。P型シリコン半導体基板21上にゲー
ト酸化膜22.ポリシリコン浮遊ゲート電極23.ゲー
ト間絶縁膜24及びポリシリコン制御ゲート電極25を
順次形成し、次いでドレイン26.ソース及びソース共
通拡散層配線領域27をヒ素イオン注入で形成し、シリ
コン酸化膜28でメモリトランジスタ及び拡散領域表面
を覆う。ここまでの工程はすでに公知である任意の方法
で製造できるから詳細は省略する。Next, regarding the method for manufacturing the cell array of this example, Section C-2 will be explained.
This will be explained using figures. FIG. 2 shows a sectional view taken along line a-a/ in FIG. 1. A gate oxide film 22 is formed on a P-type silicon semiconductor substrate 21. Polysilicon floating gate electrode 23. An intergate insulating film 24 and a polysilicon control gate electrode 25 are sequentially formed, and then a drain 26 . A source and source common diffusion layer wiring region 27 is formed by arsenic ion implantation, and a silicon oxide film 28 covers the surface of the memory transistor and the diffusion region. The steps up to this point can be manufactured by any known method, so the details will be omitted.
次いで、PRをマスクとして、ソース共通拡散層配線領
域27上のシリコン酸化膜28にスリット29を通常の
エツチング方法によって開孔し、次に高融点金属である
チタンを100OAの厚さに堆積させる。チタンの堆積
は種々の方法によって行えるが、本実施例でViDCス
パッタリングによっている。その後、600Cの窒素雰
囲気中でアニールすることにより、シリコンとチタンが
直接に接しているスリット29中のシリコン表面にのみ
チタンシリサイドが形成される。次いで未反応チタンを
アンモニアと過酸化水素系のエツチング液で除去すると
、スリット29中にチタンシリサイド層30が残される
。次いで900Cの熱処理を行うことによって、チタン
シリサイド層30は均一化されて役2Ω/口の層抵抗を
有する安定な層となる。以後のパシベーション層形成、
コンタクト孔の開孔、アルミニウム配線層の形成等の工
程は通常の方法で行うことができる。Next, using PR as a mask, a slit 29 is formed in the silicon oxide film 28 on the source common diffusion layer wiring region 27 by a normal etching method, and then titanium, which is a high melting point metal, is deposited to a thickness of 100 OA. Although titanium can be deposited by various methods, in this example, ViDC sputtering is used. Thereafter, by annealing in a nitrogen atmosphere at 600 C, titanium silicide is formed only on the silicon surface in the slit 29 where silicon and titanium are in direct contact. Next, unreacted titanium is removed using an etching solution containing ammonia and hydrogen peroxide, leaving a titanium silicide layer 30 in the slit 29. Next, by performing a heat treatment at 900C, the titanium silicide layer 30 is made uniform and becomes a stable layer having a layer resistance of about 2Ω/gate. Subsequent passivation layer formation,
Steps such as forming a contact hole and forming an aluminum wiring layer can be performed by a conventional method.
(実施例2)
本実施例においては、ソース共通拡散層配線領域と、ポ
リシリコンワード線上に同一のチタンシリサイド層を形
成するメモリセルアレイについて述べる。本実施例の平
面図は、第1図と同様であるが、構造的には、第1図に
おけるポリシリコンのワード線W1〜W3の表面にチタ
ンシリサイド層が形成されていることだけが異なる。第
3図を用いて製造方法を説明する。第3図は、第2図と
同様に、第1図のa−a’線部分の断面図である。(Embodiment 2) In this embodiment, a memory cell array in which the same titanium silicide layer is formed on the source common diffusion layer wiring region and the polysilicon word line will be described. The plan view of this embodiment is the same as that of FIG. 1, but the only structural difference is that a titanium silicide layer is formed on the surfaces of the polysilicon word lines W1 to W3 in FIG. 1. The manufacturing method will be explained using FIG. FIG. 3 is a sectional view taken along line a-a' in FIG. 1, similar to FIG. 2.
P屋シリコン半導体基板21上にゲート酸化膜22゜ポ
リシリコン浮遊ゲート電極23及びゲート間絶縁膜24
を形成する。次いでポリシリコン制御グ−ト電極25を
シリコン窒化膜31をマスクにしてバターニングを行い
第3図(alを得る。A gate oxide film 22 , a polysilicon floating gate electrode 23 and an inter-gate insulating film 24 are formed on a silicon semiconductor substrate 21 .
form. Next, the polysilicon control gate electrode 25 is patterned using the silicon nitride film 31 as a mask to obtain the pattern shown in FIG. 3 (al).
次いでヒ素のイオン注入によってドレイン26並びにソ
ース及びソース共通拡散領域27を形成する。その彼シ
リコン窒化#31をマスクとして、熱酸化法により、メ
モリトランジスタの側面及び拡散領域表面にシリコン酸
化膜28を形成する。Next, the drain 26 and the source and source common diffusion regions 27 are formed by arsenic ion implantation. Using the silicon nitride #31 as a mask, a silicon oxide film 28 is formed on the side surfaces of the memory transistor and the surface of the diffusion region by thermal oxidation.
次いでシリコン窒化J[31を除去することによって、
第3図(blを得る。Then by removing silicon nitride J[31,
Figure 3 (obtain bl.
これ以後の工程は実施例1で述べたものと全く同じであ
る。ただし、本実施例においては、堆積されたチタンが
制御ゲートポリシリコン25にも直接に接しているから
、最終的にポリシリコン25上にもポリシリコンのチタ
ンシリサイド層32が形成され第3図(C1を得る。The subsequent steps are exactly the same as those described in Example 1. However, in this embodiment, since the deposited titanium is also in direct contact with the control gate polysilicon 25, a titanium silicide layer 32 of polysilicon is finally formed on the polysilicon 25 as shown in FIG. Obtain C1.
このようにして形成されたポリシリコンのチタンシリサ
イド層32も約20/口の層抵抗となる。The titanium silicide layer 32 of polysilicon thus formed also has a layer resistance of about 20/hole.
また、本実施例では、上記の如く、ソース共通拡散配線
領域とポリシリコンワード線の表面が同時に同一材料で
シリサイド化され、低抵抗化されたメモリセルアレイが
得られる。このように、メモリセルアレイ中のゲートポ
リシリコン表面にソース共通拡散層配線の表面と同一材
料の高融点金属シリサイドを形成することによって、工
程を増やさずにスイッチング速度の高速化と高集積化を
同時に実現できる。Furthermore, in this embodiment, as described above, the surfaces of the common source diffusion wiring region and the polysilicon word line are simultaneously silicided with the same material, resulting in a memory cell array with low resistance. In this way, by forming refractory metal silicide, which is the same material as the surface of the source common diffusion layer wiring, on the gate polysilicon surface in the memory cell array, it is possible to simultaneously increase switching speed and high integration without increasing the number of steps. realizable.
なお上記2つの実施例では高融点金属シリサイドとして
チタンシリサイドを用いた場合について説明したが、モ
リブデンシリサイド、白金シリサイド、クロムシリサイ
ド等を用いて良好な結果が得られる。In the above two embodiments, titanium silicide was used as the refractory metal silicide, but good results can also be obtained using molybdenum silicide, platinum silicide, chromium silicide, or the like.
以上詳細に述べたように、本発明によれば、メモリセル
アレイ中のソース共通拡散層配線の層抵抗を下げること
によって、メモリトランジスタのソースと接地電位の間
に付加される抵抗を増大させること々く、プレイ中のメ
モリトランジスタの集積度を上げることかできる。As described in detail above, according to the present invention, by lowering the layer resistance of the source common diffusion layer wiring in the memory cell array, the resistance added between the source of the memory transistor and the ground potential can be increased. It is possible to increase the integration density of memory transistors in play.
第1図は本発明の好ましい一実施例の平面図、第2図は
第1図のa−a’線断面図、第3図は本発明の第2の実
施例の断面図、第4図は2×2マトリツクスのメモリセ
ルアレイの回路図である。
1.30.32・・・・・・チタンシリサイド層、2・
・・コンタクト孔、21・・・・・・シリコン基板、2
2・・・・・・ゲート酸化膜、23・・・・・・浮遊ゲ
ート電極、24・・・ゲート間絶縁膜、25・・・・・
・制御ゲート電極、26・・・・・・ドレイン、27・
・・・・・ソース及びソース共通拡散層配線領域、28
・・・・・・シリコン酸化膜、29・・・スリット、3
1・・・・・・シリコン窒化膜。
椿1図
?や
第?図FIG. 1 is a plan view of a preferred embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line a-a' in FIG. 1, FIG. 3 is a cross-sectional view of a second embodiment of the present invention, and FIG. is a circuit diagram of a 2×2 matrix memory cell array. 1.30.32...Titanium silicide layer, 2.
...Contact hole, 21...Silicon substrate, 2
2...Gate oxide film, 23...Floating gate electrode, 24...Inter-gate insulating film, 25...
・Control gate electrode, 26...Drain, 27.
...Source and source common diffusion layer wiring region, 28
...Silicon oxide film, 29...Slit, 3
1...Silicon nitride film. Camellia 1? Or number? figure
Claims (3)
流すことによって書込みを行うMOS型不揮発性メモリ
トランジスタがマトリックスに配置され、前記メモリト
ランジスタのソース拡散領域の表面またはソース拡散領
域に接続された拡散配線領域の表面に高融点金属シリサ
イドが形成されていることを特徴とする不揮発性半導体
記憶装置。(1) On a semiconductor substrate, MOS type nonvolatile memory transistors that perform writing by flowing a current between the source and drain are arranged in a matrix, and are connected to the surface of the source diffusion region of the memory transistor or the source diffusion region. A nonvolatile semiconductor memory device characterized in that a high melting point metal silicide is formed on the surface of a diffusion wiring region.
あることを特徴とする特許請求範囲第1項記載の不揮発
性半導体記憶装置。(2) The nonvolatile semiconductor memory device according to claim 1, wherein the high melting point metal silicide is titanium silicide.
トが多結晶シリコンで形成され、前記多結晶シリコン表
面とソース拡散領域の表面またはソース拡散領域に接続
された拡散配線領域の表面が同一の高融点金属シリサイ
ドで形成されていることを特徴とする特許請求範囲第1
項記載の不揮発性半導体記憶装置。(3) The gate of the MOS type nonvolatile memory transistor is formed of polycrystalline silicon, and the surface of the polycrystalline silicon and the surface of the source diffusion region or the surface of the diffusion wiring region connected to the source diffusion region are made of the same high-melting point metal. Claim 1 characterized in that it is formed of silicide.
The non-volatile semiconductor memory device described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15225084A JPS6130063A (en) | 1984-07-23 | 1984-07-23 | Nonvolatile semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15225084A JPS6130063A (en) | 1984-07-23 | 1984-07-23 | Nonvolatile semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6130063A true JPS6130063A (en) | 1986-02-12 |
Family
ID=15536375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15225084A Pending JPS6130063A (en) | 1984-07-23 | 1984-07-23 | Nonvolatile semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6130063A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210678A (en) * | 1986-03-12 | 1987-09-16 | Hitachi Ltd | Semiconductor integrated circuit device |
EP0368097A2 (en) * | 1988-11-10 | 1990-05-16 | Texas Instruments Incorporated | A cross-point contact-free floating-gate memory array with silicided buried bitlines |
JPH02187070A (en) * | 1989-01-13 | 1990-07-23 | Toshiba Corp | Nonvolatile semiconductor memory and its manufacture |
JPH0357281A (en) * | 1989-07-25 | 1991-03-12 | Mitsubishi Electric Corp | Non-volatile semiconductor memory device |
EP0436475A2 (en) * | 1989-12-22 | 1991-07-10 | STMicroelectronics S.r.l. | Eprom device with metallic source connections and fabrication thereof |
US5117269A (en) * | 1989-03-09 | 1992-05-26 | Sgs-Thomson Microelectronics S.R.L. | Eprom memory array with crosspoint configuration |
JPH07130889A (en) * | 1993-11-01 | 1995-05-19 | Nec Corp | Semiconductor storage device and its manufacture |
US5811853A (en) * | 1995-12-20 | 1998-09-22 | Winbond Electronics Corp. | Single-side oxide sealed salicide for EPROMS |
US5962890A (en) * | 1996-08-29 | 1999-10-05 | Sharp Kabushiki Kaisha | Non-volatile semiconductor memory |
EP0975022A1 (en) * | 1998-07-22 | 2000-01-26 | STMicroelectronics S.r.l. | Method for manufacturing electronic devices comprising non-volatile memory cells and LV transistors, with salicided junctions |
KR100328332B1 (en) * | 1998-02-10 | 2002-03-12 | 가네꼬 히사시 | Semiconductor device and method of manufacturing the same |
US6384450B1 (en) | 1998-05-13 | 2002-05-07 | Nec Corporation | Semiconductor memory device and method of manufacturing the same |
KR20020050115A (en) * | 2000-12-20 | 2002-06-26 | 가네꼬 히사시 | Semiconductor memory device with silicide layer formed selectively |
WO2010109803A1 (en) * | 2009-03-25 | 2010-09-30 | パナソニック株式会社 | Resistance-change non-volatile memory device |
-
1984
- 1984-07-23 JP JP15225084A patent/JPS6130063A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210678A (en) * | 1986-03-12 | 1987-09-16 | Hitachi Ltd | Semiconductor integrated circuit device |
EP0368097A2 (en) * | 1988-11-10 | 1990-05-16 | Texas Instruments Incorporated | A cross-point contact-free floating-gate memory array with silicided buried bitlines |
JPH02187070A (en) * | 1989-01-13 | 1990-07-23 | Toshiba Corp | Nonvolatile semiconductor memory and its manufacture |
US5117269A (en) * | 1989-03-09 | 1992-05-26 | Sgs-Thomson Microelectronics S.R.L. | Eprom memory array with crosspoint configuration |
JPH0357281A (en) * | 1989-07-25 | 1991-03-12 | Mitsubishi Electric Corp | Non-volatile semiconductor memory device |
US5210046A (en) * | 1989-12-22 | 1993-05-11 | Scs-Thomas Microelectronics S.R.L. | Method of fabricating eprom device with metallic source connections |
EP0436475A2 (en) * | 1989-12-22 | 1991-07-10 | STMicroelectronics S.r.l. | Eprom device with metallic source connections and fabrication thereof |
JPH07130889A (en) * | 1993-11-01 | 1995-05-19 | Nec Corp | Semiconductor storage device and its manufacture |
US5811853A (en) * | 1995-12-20 | 1998-09-22 | Winbond Electronics Corp. | Single-side oxide sealed salicide for EPROMS |
US5962890A (en) * | 1996-08-29 | 1999-10-05 | Sharp Kabushiki Kaisha | Non-volatile semiconductor memory |
US6673674B2 (en) | 1998-02-10 | 2004-01-06 | Nec Electronics Corporation | Method of manufacturing a semiconductor device having a T-shaped floating gate |
KR100328332B1 (en) * | 1998-02-10 | 2002-03-12 | 가네꼬 히사시 | Semiconductor device and method of manufacturing the same |
US6384450B1 (en) | 1998-05-13 | 2002-05-07 | Nec Corporation | Semiconductor memory device and method of manufacturing the same |
EP0975022A1 (en) * | 1998-07-22 | 2000-01-26 | STMicroelectronics S.r.l. | Method for manufacturing electronic devices comprising non-volatile memory cells and LV transistors, with salicided junctions |
KR20020050115A (en) * | 2000-12-20 | 2002-06-26 | 가네꼬 히사시 | Semiconductor memory device with silicide layer formed selectively |
US6747321B2 (en) | 2000-12-20 | 2004-06-08 | Nec Electronics Corporation | Semiconductor memory device with a silicide layer formed on regions other than source regions |
WO2010109803A1 (en) * | 2009-03-25 | 2010-09-30 | パナソニック株式会社 | Resistance-change non-volatile memory device |
JP4606520B2 (en) * | 2009-03-25 | 2011-01-05 | パナソニック株式会社 | Variable resistance nonvolatile memory device |
JPWO2010109803A1 (en) * | 2009-03-25 | 2012-09-27 | パナソニック株式会社 | Variable resistance nonvolatile memory device |
US8320159B2 (en) | 2009-03-25 | 2012-11-27 | Panasonic Corporation | Resistance variable nonvolatile memory device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3150362B2 (en) | EPROM virtual ground array | |
US4630089A (en) | Semiconductor memory device | |
US5352620A (en) | Method of making semiconductor device with memory cells and peripheral transistors | |
JP2825585B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
US5656839A (en) | Semiconductor integrated circuit device having single-element type nonvolatile memory elements | |
US4597060A (en) | EPROM array and method for fabricating | |
US6239500B1 (en) | Semiconductor device with common bit contact area | |
JPH06112501A (en) | Nonvolatile semiconductor memory device and its manufacture | |
CN101252133B (en) | Semiconductor device and method for manufacturing the same | |
EP0124115B1 (en) | Semiconducter rom device and method for manufacturing the same | |
JPH05102436A (en) | Semiconductor memory device and manufacture thereof | |
JPS6130063A (en) | Nonvolatile semiconductor memory device | |
US5602048A (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
US7016225B2 (en) | Four-bit non-volatile memory transistor and array | |
JPH021988A (en) | Electrically programmable memory cell | |
US5151761A (en) | Nonvolatile semiconductor memory device with isolated gate electrodes | |
JP3150747B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP2829012B2 (en) | Semiconductor nonvolatile memory device and method of manufacturing the same | |
JPH03194967A (en) | Manufacture of semiconductor non-volatile memory | |
JP3382024B2 (en) | Nonvolatile semiconductor memory device and method of manufacturing the same | |
JPS6267857A (en) | Semiconductor storage device | |
JPH0521805A (en) | Manufacture of semiconductor device | |
JPH0554267B2 (en) | ||
JP4040138B2 (en) | Method for manufacturing nonvolatile semiconductor memory device | |
KR19990002554A (en) | Manufacturing Method of Flash Memory Array Device |