JPS6074564A - Semiconductor memory device - Google Patents
Semiconductor memory deviceInfo
- Publication number
- JPS6074564A JPS6074564A JP58180544A JP18054483A JPS6074564A JP S6074564 A JPS6074564 A JP S6074564A JP 58180544 A JP58180544 A JP 58180544A JP 18054483 A JP18054483 A JP 18054483A JP S6074564 A JPS6074564 A JP S6074564A
- Authority
- JP
- Japan
- Prior art keywords
- type
- substrate
- region
- element region
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 230000002093 peripheral effect Effects 0.000 claims abstract description 9
- 230000000295 complement effect Effects 0.000 claims abstract description 5
- 238000002955 isolation Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052710 silicon Inorganic materials 0.000 abstract description 13
- 239000010703 silicon Substances 0.000 abstract description 13
- 230000003071 parasitic effect Effects 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823878—Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/74—Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76294—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Memories (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は半導体記憶装置に関し、特に周辺回路として相
補型MO8)ランジスタを用いた半導体記憶装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device using complementary MO8 transistors as peripheral circuits.
従来、半導体記憶装置の周辺回路等として用いられる相
補型MO8)ランジスタ(0MO8)は第1図に示す構
造のものが知られている。即ち、図中1は例えばn型シ
リコン基板であり、この基板1表面にはpウェル領域2
が選択的に設けられてい、る。前記シリコン基板1表面
にはpウェル領域2とpチャンネルトランジスタとなる
領域を分離するためのフィールド酸化膜3が設けられて
いる。なお、前記フィールド酸化膜3と接するn型シリ
コン基板1の界面にはn−型の反転防止層4が設けられ
ておシ、かつ同酸化膜3と接するpウェル領域2の界面
にはp−型の反転防止層5が設けられている。前記フィ
ールド酸化膜3で分離された島状の基板1領域表面には
互に電気的に分離されたp中型のソース、ドレイン領域
61+71が設けられておシ、かつこれら領域61+7
1 間のチャンネル領域を少なくとも含む基板1上には
ダート酸化膜81を介してダート電極9里が設けられて
いる。こうしたソース、ドレイン領域61171、ダー
ト電極91等によりpチャンネルMO8)ランジスタが
構成される。また、前記pウェル領域2の表面には互に
電気的に分離されたn中型のソース、ドレイン領域62
+7寞が設けられておシ、かつこれら領域62r72間
のチャンネル領域を少なくとも含むpウェル領域2上に
はy−ト酸化膜82を介してr−)電極9zが設けられ
ている。こうしたソース、ドレイン領域6’ll +
7倉、ダート電極92等によシイチャンネルMO8)ラ
ンジスタが形成される。なお、前記p十型ソース領域6
1は電源端子vDDに、n生型ソース領域6、は接地端
子VIBIIに、各ゲート電極91.92は入力端子V
inに、各ドレイン領領71+72は出力端子Vout
に、夫々接続されている。2. Description of the Related Art Conventionally, a complementary MO8 transistor (0MO8) used as a peripheral circuit of a semiconductor memory device has a structure shown in FIG. 1. That is, 1 in the figure is, for example, an n-type silicon substrate, and a p-well region 2 is formed on the surface of this substrate 1.
are provided selectively. A field oxide film 3 is provided on the surface of the silicon substrate 1 to separate a p-well region 2 from a region that will become a p-channel transistor. An n-type anti-inversion layer 4 is provided at the interface of the n-type silicon substrate 1 in contact with the field oxide film 3, and a p- type inversion prevention layer 4 is provided at the interface of the p-well region 2 in contact with the field oxide film 3. A mold reversal prevention layer 5 is provided. P medium type source and drain regions 61+71 electrically isolated from each other are provided on the surface of the island-shaped substrate 1 region separated by the field oxide film 3, and these regions 61+7
A dirt electrode 9 is provided on the substrate 1 including at least a channel region between 1 and 2 through a dirt oxide film 81. These source and drain regions 61171, dirt electrode 91, etc. constitute a p-channel MO8) transistor. Further, on the surface of the p-well region 2, there are n medium-sized source and drain regions 62 electrically isolated from each other.
An r-) electrode 9z is provided on the p-well region 2, which includes at least the channel region between these regions 62r72, via the y-toxide film 82. These source and drain regions 6'll +
A channel MO8) transistor is formed by the dirt electrode 92 and the like. Note that the p-type source region 6
1 is connected to the power supply terminal vDD, the n-type source region 6 is connected to the ground terminal VIBII, and each gate electrode 91 and 92 is connected to the input terminal V
In, each drain region 71+72 is an output terminal Vout
are connected to each other.
しかしながら、上述した第1図図示の0MO8にあって
は、シリコン基板1にウェル領域2やソース、ドレイン
領域61 + 62 + 71 + y=等の異種導電
型の拡散層が設けられているため、npn 、 pnp
形のバイポーラトランジスタが形成され、これが互につ
ながって、pnpn構造を持つ寄生サイリスタを構成す
る。具体的にはn型シリコン基板1をコレクタ、pウェ
ル領域2をペース、n十型ソース領域62(又はn十型
ドレイン領域7□ )をエミッタとする縦型npn )
ランジスタ10が形成され、0MO8特有の低濃度のp
ウェル領域2(f=100−cm+ xj=10μm)
をベースとするため、大きな電流増幅率(hFド、:2
00)を持ち易く、これが外部からの雑音によってラッ
チアップし易い寄生サイリスタを生みだす主原因とな#
)0MO8の誤動作や破壊を引き起こす問題を生じる。However, in the 0MO8 shown in FIG. 1 described above, since the silicon substrate 1 is provided with diffusion layers of different conductivity types such as the well region 2 and the source and drain regions 61 + 62 + 71 + y=, npn, pnp
bipolar transistors are formed, which are interconnected to form a parasitic thyristor with a pnpn structure. Specifically, it is a vertical npn with the n-type silicon substrate 1 as the collector, the p-well region 2 as the base, and the n-type source region 62 (or n-type drain region 7) as the emitter.
A transistor 10 is formed, and a low concentration of p, unique to 0MO8, is formed.
Well region 2 (f = 100-cm + xj = 10 μm)
Because it is based on
00), which is the main cause of parasitic thyristors that tend to latch up due to external noise.
) 0 This will cause problems that may cause malfunction or destruction of the MO8.
このようなことから、本発明者らは第2図に示す構造の
0MO8を既に提案した。即ち、図中の11はn型シリ
コン基板でアシ、この基板11上には例えば8102か
らなる素子分離領域12が設けられている。この素子分
離領域12で分離された2つの島状基板領域にはn型単
結晶シリコン層からなるn型素子領域13及びp型単結
晶シリコン層からなるp型素子領域14が夫々埋め込ま
れている。また、これら素子領域13゜14と基板11
との界面には薄い酸化層151゜152が夫々介在され
ている。前記n型素子領域13の表面には互に電気的に
分離されたp十型のソース、ドレイン領域”1 r17
1が設けられておシ、かつこれら領域161 + 17
1間のチャンネル領域を含むn型素子領域13上にはダ
ート酸化膜181を介してf−)電極191が設けられ
ている。こうしたソース、ドレイン領域161*111
、?”−ト電極191等によりpチャンネルMO8)ラ
ンジスタが構成される。For this reason, the present inventors have already proposed 0MO8 having the structure shown in FIG. That is, 11 in the figure is an n-type silicon substrate, and on this substrate 11, an element isolation region 12 made of, for example, 8102 is provided. An n-type device region 13 made of an n-type single-crystal silicon layer and a p-type device region 14 made of a p-type single-crystal silicon layer are buried in the two island-like substrate regions separated by the device isolation region 12, respectively. . In addition, these element regions 13° 14 and the substrate 11
Thin oxide layers 151 and 152 are respectively interposed at the interfaces. On the surface of the n-type element region 13, p-type source and drain regions "1 r17 are electrically isolated from each other.
1 is provided, and these areas 161 + 17
An f-) electrode 191 is provided on the n-type element region 13 including the channel region between 1 and 2 with a dirt oxide film 181 interposed therebetween. These source and drain regions 161*111
,? A p-channel MO8) transistor is configured by the negative electrode 191 and the like.
また、前記p型素子領域14の表面には、互に電気的に
分離されたn+型のソース、ドレイン領域162127
2が設けられており、かつこれらソース、ドレイン領域
162 、l’l、間のチャンネル領域を含むp型素子
領域14上にはダート酸化膜182を介してダート電極
192が設けられている。こうしたソース、ドレイン領
域162*1’72、””−ト電極192等によシ5−
nチャンネルMO8)ランジスタが構成されている。か
かる構造によれば、pチャンネル、nチャンネルのMO
S )ランジスタが造られるn型、p型の素子領域13
.14と基板11の界面には薄い酸化層151,15.
が介在されているため、寄生バイポーラトランジスタの
形成が阻止、され、これによってラッチアップ現象のな
い良好な素子特性を有する0MO8を得ることができる
。Further, on the surface of the p-type element region 14, n+ type source and drain regions 162127 are electrically isolated from each other.
A dirt electrode 192 is provided via a dirt oxide film 182 on the p-type element region 14 including the channel region between the source and drain regions 162 and l'l. The source and drain regions 162*1'72, the negative electrode 192, etc. constitute an n-channel MO8 transistor. According to this structure, p-channel, n-channel MO
S) N-type and p-type element regions 13 where transistors are made
.. 14 and the substrate 11 are thin oxide layers 151, 15.
is interposed, the formation of a parasitic bipolar transistor is prevented, thereby making it possible to obtain an 0MO8 having good device characteristics without latch-up phenomenon.
しかしながら、前述した第2図図示の0MO8をそのま
まダイナミックRAMの周辺回路としてメモリセルに併
設すると、次のような問題を生じる。これを第3図を参
照して説明する。第3図中の20はp型素子領域14に
隣接する島状基板領域に埋込まれたp型単結晶シリコン
層からなるp型素子領域である。この素子領域20上の
大部分の領域には薄い酸化膜21を介してキイ/4’シ
タ電極22が設けられている。このキヤ・(シタ電極2
2下の素子領域20表面にはn″″型拡散拡散層23け
られておシ、かつ該拡散層6−
23から所望距離へだてた同素子領域20表面には針量
拡散層24が設けられている。また、図中の25はトラ
ンスファーゲート電極であシ、このダート電極25は一
部が前記n−型拡散層23とn生型拡散層24の間に形
成されたダート酸化膜26を介して前記素子領域20表
面上に位置し、他端が酸化膜27を介して前記キャパシ
タ電極22上に延出している。こうしたキャパシタ電極
22、トランスファダート電極25等によシダイナミッ
クRAMのメモリセルが構成されている。このような構
造において、メモリセルが造られるp型素子領域20に
α線28が入射されると、同素子領域20内にエレクト
ロンが発生するが、素子領域20と基板1ノの界面にも
薄い酸化層153が介在されているため、発生したエレ
クトロンの基板11側への移行が酸化層153によシ阻
止される。このため、エレクトロンの大部分はキャパシ
タ電極22上のn−拡散層23に集まυ、その状態が反
転する等のソフトエラーを誘発する。したがって、α線
に対して極めて弱いという欠点があった。However, if the above-mentioned 0MO8 shown in FIG. 2 is directly attached to a memory cell as a peripheral circuit of a dynamic RAM, the following problem will occur. This will be explained with reference to FIG. Reference numeral 20 in FIG. 3 is a p-type element region made of a p-type single crystal silicon layer buried in an island-like substrate region adjacent to the p-type element region 14. A key/4' gate electrode 22 is provided over most of the element region 20 with a thin oxide film 21 interposed therebetween. This front electrode (bottom electrode 2)
An n'''' type diffusion layer 23 is provided on the surface of the element region 20 below 2, and a stylus diffusion layer 24 is provided on the surface of the element region 20 extending at a desired distance from the diffusion layer 6-23. ing. Further, 25 in the figure is a transfer gate electrode, and a part of this dirt electrode 25 passes through the dirt oxide film 26 formed between the n-type diffusion layer 23 and the n-type diffusion layer 24. It is located on the surface of the element region 20, and the other end extends onto the capacitor electrode 22 via the oxide film 27. The capacitor electrode 22, transfer dart electrode 25, etc. constitute a memory cell of the sidynamic RAM. In such a structure, when α rays 28 are incident on the p-type element region 20 where a memory cell is formed, electrons are generated within the element region 20, but there is also a thin interface between the element region 20 and the substrate 1. Since the oxide layer 153 is provided, the oxide layer 153 prevents the generated electrons from moving toward the substrate 11 side. Therefore, most of the electrons gather in the n-diffusion layer 23 on the capacitor electrode 22, inducing soft errors such as inversion of the state. Therefore, it has the disadvantage of being extremely weak against alpha rays.
本発明はラッチアップ現象の防止と、ソフトエラーの抑
制とを達成した高性能、高信頼性の半導体記憶装置を提
供しようとするものである。The present invention aims to provide a high-performance, highly reliable semiconductor memory device that achieves prevention of latch-up phenomena and suppression of soft errors.
本発明は第1導電型の半導体基板と、この基板上に設け
られた絶縁材料からなる素子分離領域と、この素子分離
領域によシ分離された複数の島状基板領域に夫々埋込ま
れた第1導電型、第2導電型いずれかの単結晶半導体層
からなる素子領域とを具備し、前記素子領域のうちメモ
リセル部となる素子領域を前記基板と直接接するように
設け、かつ前記素子領域のうち周辺回路としての相補型
MO8)ランジスタを構成する互に導電型の異なる隣シ
合う素子領域の少なくとも一方の基板との界面の一部も
しくは全部に絶縁層を介在させたことを特徴とするもの
である。とうした本発明によれば既述の如くラッチアッ
プ現象の防止と、ソフトエラーの抑制とが図られた高性
能、高信頼性の半導体記憶装置を得ることができる。The present invention includes a semiconductor substrate of a first conductivity type, an element isolation region made of an insulating material provided on this substrate, and a plurality of island-shaped substrate regions separated by this element isolation region. an element region made of a single crystal semiconductor layer of either a first conductivity type or a second conductivity type; an element region of the element region that becomes a memory cell portion is provided in direct contact with the substrate; Complementary type MO as a peripheral circuit in the region 8) An insulating layer is interposed in part or all of the interface with the substrate of at least one of adjacent element regions of mutually different conductivity types constituting a transistor. It is something to do. According to the present invention, as described above, it is possible to obtain a high performance, highly reliable semiconductor memory device in which the latch-up phenomenon is prevented and soft errors are suppressed.
以下、本発明の実施例を第4図を参照して説明する。な
お、前述した第3図と同様な部材は回付号を付して説明
を省略する。Embodiments of the present invention will be described below with reference to FIG. Incidentally, the same members as those shown in FIG. 3 described above are given reference numbers and their explanations are omitted.
本発明のダイナミックメモリは第4図に示す如くメモリ
セルが造られたp型素子領域20をn型シリコン基板1
1に直接接するようにし、かつpチャンネル、nチャン
ネルのMOSトランジスタが造られたn型、p型の素子
領域13゜14と基板11の界面に薄い酸化層151+
J52を夫々設けた構造になっている。In the dynamic memory of the present invention, as shown in FIG.
A thin oxide layer 151+ is formed at the interface between the substrate 11 and the n-type and p-type device regions 13° 14 in which p-channel and n-channel MOS transistors are formed.
It has a structure in which J52 is provided respectively.
このような構成によれば、α線がメモリセル部のp型素
子領域20に入射して、エレクトロンが発生した場合、
前記p型素子領域20はn型シリコン基板11に直接接
触しているため、発生したエレクトロンはそれらのpn
接合の電位差によpn型シリコン基板11に吸い込まれ
ソフトエラーが抑制される。また、pチャンネル、9−
nチャンネルのMOS )ランジスタが形成されたn型
、p型の素子領域13.14とシリコン基板11の界面
には薄い酸化層151 + 152が介在されているた
め、寄生バイポーラトランジスタの形成が阻止され、こ
れによってラッチアップ現象のない良好な素子特性を有
する0MO8の周辺回路を得ることができる。According to such a configuration, when α rays are incident on the p-type element region 20 of the memory cell portion and electrons are generated,
Since the p-type element region 20 is in direct contact with the n-type silicon substrate 11, the generated electrons
The potential difference between the junctions causes soft errors to be absorbed into the pn type silicon substrate 11 and suppressed. In addition, since thin oxide layers 151 + 152 are interposed at the interface between the silicon substrate 11 and the n-type and p-type element regions 13 and 14 in which p-channel and 9-n channel MOS transistors are formed, parasitic The formation of bipolar transistors is prevented, thereby making it possible to obtain a 0MO8 peripheral circuit free from latch-up and having good device characteristics.
上記実施例では0MO8を構成するn型、p型の素子領
域とシリコン基板の界面の両方に薄い酸化層を介在させ
た構造にしたが、これに限定されない。例えば第5図に
示す如くpチャンネルMO8)ランジスタが形成される
n型素子領域13と基板11の界面のみに薄い酸化層1
51を介在する構造にしてもよい。In the above embodiment, the structure is such that a thin oxide layer is interposed between both the n-type and p-type element regions constituting the 0MO8 and the interface between the silicon substrate, but the structure is not limited thereto. For example, as shown in FIG. 5, a thin oxide layer 1 is formed only on the interface between the substrate 11 and the n-type element region 13 where the transistor is formed.
51 may be interposed.
本発明は上記実施例の如くダイナミックRAMに限らず
、スタティックRAM 、 EPROM等の他の半導体
記憶装置にも同様に適用できる。The present invention is not limited to dynamic RAM as in the above embodiment, but can be similarly applied to other semiconductor memory devices such as static RAM and EPROM.
以上詳述した如く、本発明によればメモリセル部でのソ
フトエラーの抑制と、周辺回路とし10−
ての0MO8のラッチアップ現象の防止とを達成した高
性能、高信頼性の半導体記憶装置を提供できる。As detailed above, according to the present invention, there is provided a high-performance, highly reliable semiconductor memory device that suppresses soft errors in the memory cell section and prevents latch-up of 10-0 MO8 as a peripheral circuit. can be provided.
第1図は従来の0MO8を示す断面図、第2図は本出願
人が既に提案した0MO8を示す断面図、第3図は第2
図図示の0MO8をそのままダイナミックRAMの周辺
回路としてメモリセルに併設した状態を示す断面図、第
4図は本発明の一実施例を示すダイナミックRAMの断
面図、第5図は本発明の他の実施例を示すダイナミック
RAMの断面図である。
11・・・n型シリコン基板、12・・・素子分離領域
、13・・・n型素子領域、14.20・・・p散票領
域、151.151・・・薄い酸化層、161 。
16!・・・ソース領域、171,171・・・ドレイ
ン領域、181.182・・・ダート酸化膜、191゜
19、・・・ダート電極、22・・・キャパシタ電極、
25・・・トランスファーゲート電極。
11−Fig. 1 is a sectional view showing the conventional 0MO8, Fig. 2 is a sectional view showing the 0MO8 already proposed by the applicant, and Fig. 3 is a sectional view showing the 0MO8 already proposed by the applicant.
4 is a sectional view of a dynamic RAM showing one embodiment of the present invention, and FIG. 5 is a sectional view of another embodiment of the present invention. 1 is a cross-sectional view of a dynamic RAM showing an example. DESCRIPTION OF SYMBOLS 11... N-type silicon substrate, 12... Element isolation region, 13... N-type element region, 14.20... P scatter region, 151.151... Thin oxide layer, 161. 16! ... Source region, 171,171 ... Drain region, 181.182 ... Dirt oxide film, 191°19, ... Dirt electrode, 22 ... Capacitor electrode,
25...Transfer gate electrode. 11-
Claims (1)
縁材料からなる素子分離領域と、この素子分離領域によ
シ分離された複数の島状基板領域に夫々埋込まれた第1
導電型、第2導電型いずれかの単結晶半導体層からなる
素子領域とを具備し、前記素子領域のうちメモリセル部
となる素子領域を前記基板と直接接するように設け、か
つ前記素子領域のうち周辺回路としての相補型MO8)
ランジスタを構成する互に導電型の異なる隣シ合う素子
領域め□少なくとも一方の基板との界面の一部もしくは
全部に絶縁層を介在させたことを特徴とする半導体記憶
装置。A semiconductor substrate of a first conductivity type, an element isolation region made of an insulating material provided on this substrate, and a first semiconductor substrate embedded in each of a plurality of island-shaped substrate regions separated by this element isolation region.
an element region made of a single crystal semiconductor layer of either a conductivity type or a second conductivity type; an element region of the element region that becomes a memory cell portion is provided in direct contact with the substrate; Complementary MO8 as a peripheral circuit)
A semiconductor memory device characterized in that an insulating layer is interposed in part or all of the interface between adjacent element regions of different conductivity types constituting a transistor and at least one of the substrates.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58180544A JPS6074564A (en) | 1983-09-30 | 1983-09-30 | Semiconductor memory device |
EP84108241A EP0134504B1 (en) | 1983-07-15 | 1984-07-13 | A c-mos device and process for manufacturing the same |
DE8484108241T DE3478170D1 (en) | 1983-07-15 | 1984-07-13 | A c-mos device and process for manufacturing the same |
US07/478,044 US5079183A (en) | 1983-07-15 | 1989-01-06 | C-mos device and a process for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58180544A JPS6074564A (en) | 1983-09-30 | 1983-09-30 | Semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6074564A true JPS6074564A (en) | 1985-04-26 |
Family
ID=16085128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58180544A Pending JPS6074564A (en) | 1983-07-15 | 1983-09-30 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6074564A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518005A (en) * | 1978-07-25 | 1980-02-07 | Toshiba Corp | Mos-type dynamic memory |
JPS5662369A (en) * | 1979-10-26 | 1981-05-28 | Toshiba Corp | Mos semiconductor device |
JPS57194565A (en) * | 1981-05-25 | 1982-11-30 | Toshiba Corp | Semiconductor memory device |
JPS5840851A (en) * | 1981-09-03 | 1983-03-09 | Toshiba Corp | Complementary metal oxide semiconductor device and its manufacture |
-
1983
- 1983-09-30 JP JP58180544A patent/JPS6074564A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518005A (en) * | 1978-07-25 | 1980-02-07 | Toshiba Corp | Mos-type dynamic memory |
JPS5662369A (en) * | 1979-10-26 | 1981-05-28 | Toshiba Corp | Mos semiconductor device |
JPS57194565A (en) * | 1981-05-25 | 1982-11-30 | Toshiba Corp | Semiconductor memory device |
JPS5840851A (en) * | 1981-09-03 | 1983-03-09 | Toshiba Corp | Complementary metal oxide semiconductor device and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3342918B2 (en) | Diode structure to protect pads against electrostatic discharge in integrated circuits | |
JP2998662B2 (en) | Semiconductor device | |
US4642667A (en) | Integrated circuits | |
JPS5944786B2 (en) | Complementary MIS circuit device | |
JPS6074564A (en) | Semiconductor memory device | |
JP2661318B2 (en) | Semiconductor device | |
JPS6362904B2 (en) | ||
JP3018417B2 (en) | Integrated circuit protection device | |
JP2680848B2 (en) | Semiconductor memory device | |
JP3108125B2 (en) | Semiconductor integrated circuit | |
JP3038744B2 (en) | CMOS type semiconductor integrated circuit device | |
JPH0456465B2 (en) | ||
JPH0478018B2 (en) | ||
JPS61208863A (en) | Cmos semiconductor device | |
JP2834186B2 (en) | Semiconductor device | |
JPH01273346A (en) | Semiconductor device | |
JPH0434963A (en) | Semiconductor device | |
JPH01155652A (en) | Bipolar mos semiconductor integrated circuit | |
JPH0440867B2 (en) | ||
JPH03214771A (en) | Bipolar cmos semiconductor device | |
JPS6295862A (en) | I2l semiconductor device | |
JPH0337314B2 (en) | ||
JPH0367347B2 (en) | ||
JPH03105964A (en) | Semiconductor device | |
JPS62165354A (en) | Semiconductor integrated circuit device |