JPS6071529A - Manufacture of spherical magnetite powder - Google Patents

Manufacture of spherical magnetite powder

Info

Publication number
JPS6071529A
JPS6071529A JP58181290A JP18129083A JPS6071529A JP S6071529 A JPS6071529 A JP S6071529A JP 58181290 A JP58181290 A JP 58181290A JP 18129083 A JP18129083 A JP 18129083A JP S6071529 A JPS6071529 A JP S6071529A
Authority
JP
Japan
Prior art keywords
ferrous salt
aqueous solution
ferrous
hydroxide
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58181290A
Other languages
Japanese (ja)
Other versions
JPS6251208B2 (en
Inventor
Keizo Mori
森 啓三
Masaru Kawabata
河端 優
Nanao Horiishi
七生 堀石
Koji Toda
戸田 浩次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP58181290A priority Critical patent/JPS6071529A/en
Publication of JPS6071529A publication Critical patent/JPS6071529A/en
Publication of JPS6251208B2 publication Critical patent/JPS6251208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To utilize all of Fe<2+> in a starting material and to obtain the titled powder having a uniform particle size and superior dispersibility by blowing a gas contg. O2 into an aqueous ferrous salt soln. contg. colloidal ferrous hydroxide at a prescribed temp., adding an alkali by an amount basing on the amount of residual Fe<2+>, and blowing a gas contg. O2 at said temp. CONSTITUTION:A reactive aqueous ferrous salt soln. contg. colloidal ferrous hydroxide is prepd. by adding 0.80-0.99 equiv. alkali hydroxide basing on the amount of Fe<2+> in an aqueous ferrous salt soln. to the ferrous salt soln. as a starting material. A gas contg. O2 is blown into the prepd. soln. under heating at 30-100 deg.C to form spherical magnetite particles from the colloidal ferrous hydroxide by oxidation. After finishing the reaction, 1.00 equiv. alkali hydroxide basing on the amount of the unreacted Fe<2+> is added, and oxidation is carried out under similar conditions. All of Fe<2+> in the ferrous salt soln. as a starting material is utilized, and spherical magnetite particles having a uniform particle size, superior dispersibility, high coloring power and superior productivity are obtd.

Description

【発明の詳細な説明】 本発明は、第一鉄塩水溶液を用いて球型を呈したマグネ
タイト粒子粉末の製造法に関するものであり、詳しくは
、第一鉄塩水溶液中に未反応のFe2+を残すことなく
Fe2+の全量がら粒度が均斉で優れた分散性と高い着
色力を有しミ且っ、p過性、粉砕容易性等の生産性に優
れた球型を呈したマグネタイト粒子粉末を得ることを目
的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spherical magnetite particles using an aqueous ferrous salt solution. To obtain magnetite particle powder having a uniform particle size, excellent dispersibility, high coloring power, and a spherical shape with excellent productivity such as p-permeability and ease of crushing without leaving any Fe2+ particles. The purpose is to

その主な用途は、塗料用黒色顔料粉末、静電複写用の磁
気トナー用材料粉末である。
Its main uses are black pigment powder for paints and material powder for magnetic toners for electrostatic copying.

マグネタイト粒子は、黒色顔料として広く一般に使用さ
れており、省エネルギー時代における作業能率の向上並
びに塗膜物性の改良という観点から、塗料の製造に際し
て、マグネタイト粒子粉末のビヒクル中への分散性の改
良が、益々、要望されている。
Magnetite particles are widely used as black pigments, and from the viewpoint of improving work efficiency and improving the physical properties of paint films in the energy-saving era, improving the dispersibility of magnetite particles in a vehicle is important when manufacturing paints. It is increasingly requested.

塗料の製造に際して、顔料粉末のビヒクル中への分散性
が良好であるが否がは、塗料の製造工程における作業能
率を左右するとともに、塗膜の諸物性を決定する極めて
重要な因子となる。
In the production of paints, whether the pigment powder is well dispersed in the vehicle or not is an extremely important factor that not only affects the efficiency of the paint manufacturing process but also determines the various physical properties of the paint film.

このことは、例えば、色材協会誌49巻第1号(197
(5年)の第8頁の次のような記載からも明らかである
This can be seen, for example, in the Journal of the Coloring Materials Association, Vol. 49, No. 1 (197
This is clear from the following statement on page 8 of (5th year).

「・・・・・・・・・塗膜の具備ずべき諸物性は一口に
いって、同一顔料であれば塗膜中における顔料の分散性
により、その大部分が決定されるといっても過言ではな
いように思われる。塗膜中の顔料の分散性が良好であれ
ば、色調は鮮明となり、着色力、いんぺい力等顔料本来
の基本的性質も向上することは理論の教えるところであ
る。また塗膜の光沢、鮮映性、機械的性質、塗膜の耐透
気性などが良好となり、これは塗膜の耐久性を向上させ
る結果となる。このように塗膜中の顔料の分散性は塗膜
の諸物性を決定するきわめて大事な要因であることが理
解できる。」 一方、近年における静電複写機の普及はめざましく、そ
れに伴い、現像剤である磁気トナーの研究開発がさかん
であり、その特性向上が要求されている。
``......The physical properties that a paint film should have are largely determined by the dispersibility of the pigment in the paint film if the pigments are the same. This does not seem to be an exaggeration. Theory teaches that if the dispersibility of the pigment in the coating film is good, the color tone will be clear and the basic properties of the pigment, such as coloring power and impregnation power, will also improve. In addition, the gloss, sharpness, mechanical properties, and air permeability of the coating film are improved, which improves the durability of the coating film. It can be understood that this is an extremely important factor that determines the various physical properties of the coating film.''On the other hand, electrostatic copying machines have spread rapidly in recent years, and along with this, research and development of magnetic toner, which is a developer, has been active. , there is a need to improve its characteristics.

例えば、特開昭54−122129号公報に次のように
記載されている。
For example, Japanese Patent Laid-Open No. 54-122129 describes the following.

[・・・・・・・・・磁気トナーはトナー結着剤中に磁
性微粒子が相当量混入されるが、磁性微粒子は一般にト
ナー結着樹脂中への分散性が悪く、製造上バラツキのな
い均一なトナーを得ることが困鍾であり、更に、絶縁性
トナーではトナーの電気抵抗の低下の原因ともなる。」
更に、特公昭53−21656号公報には「・・・・・
・・・・酸化鉄を現像剤粒子全体に均一に分布させるこ
とにより静電潜像の顕像化に必要な適度な帯磁性を得」
ることか可能であると記載されている。
[......Magnetic toner has a considerable amount of magnetic fine particles mixed in the toner binder, but magnetic fine particles generally have poor dispersibility in the toner binder resin, so there is no manufacturing variation. It is difficult to obtain a uniform toner, and insulating toner also causes a decrease in the electrical resistance of the toner. ”
Furthermore, in Japanese Patent Publication No. 53-21656, “...
...By uniformly distributing iron oxide throughout the developer particles, we obtain the appropriate magnetization required for visualization of electrostatic latent images.
It is stated that it is possible.

従来、第一鉄塩水溶液とアルカリとを反応させて得られ
た水酸化第一鉄を含む反応水溶液に酸素含有ガスを通気
することによりマグネタイト粒子粉末を製造するにあた
り、上記反応水溶液のpHにより生成マグネタイト粒子
の形状が種々異なることが知られている。
Conventionally, when producing magnetite particle powder by aerating oxygen-containing gas into a reaction aqueous solution containing ferrous hydroxide obtained by reacting a ferrous salt aqueous solution and an alkali, the production of magnetite particles is caused by the pH of the reaction aqueous solution. It is known that magnetite particles have various shapes.

即ち、この事実は、粉体粉末冶金協会昭和46年度秋季
大会講演概要集第112頁第14〜19行の[硫酸第一
鉄水溶液(13991071)に空気を吹き込み、攪拌
しながら水酸化ナトリウム水溶液(40〜44g106
1)を加え、50℃に昇温して5時間保って微粒子を得
た。粒子の外形を変えるためpHを変化させた。pHは
水酸化ナトリウムの量をコントロールし、酸性側(Na
OH40〜”g1036 )で落穴面体粒子を、アルカ
リ性側(469以上%o、sl)で八面体粒子を、中性
附近(Na1l(42g103. )では多面体化した
球状に近い粒子を得た。」なる記載及び特公昭44−6
68号公報特許請求の範囲の「・・・・・・・・・FQ
(OH)、コロイドを含むTIHl[1以上の水溶液を
45℃以上70°C以下の温度に保持し、攪拌により液
中に存在する沈澱粒子が充分に運動している状態で酸化
反応を行うことにより、・・・・・・・・・粒状または
立方状(六面体)を呈した・・・・・・・・・黒色強磁
性粒子(マグネタイト粒子)より成る沈澱を製造・・・
・・・・・・」なる記載から明らかである。
That is, this fact is based on the Powder and Powder Metallurgy Society of Japan's 1971 Autumn Conference Abstracts, page 112, lines 14-19. 40-44g106
1) was added, and the temperature was raised to 50°C and maintained for 5 hours to obtain fine particles. The pH was varied to change the shape of the particles. The pH is controlled by the amount of sodium hydroxide, and the pH is adjusted to the acidic side (Na
At OH40 to "g1036", we obtained pitahedral particles, at alkaline conditions (469% o, sl or higher) we obtained octahedral particles, and at near neutrality (Na11 (42 g103.)) we obtained polyhedral, nearly spherical particles. Description and Special Publication No. 44-6
68 Publication patent claims “...FQ
(OH), colloid-containing TIHL [1 or more aqueous solution is maintained at a temperature of 45°C or higher and 70°C or lower, and the oxidation reaction is carried out in a state where the precipitated particles present in the liquid are sufficiently moved by stirring. By this process, a precipitate consisting of black ferromagnetic particles (magnetite particles) having a granular or cubic (hexahedral) shape is produced.
It is clear from the statement "...".

本発明者は、マグネタイト粒子の形状に着目し、優れた
分散性と高い着色力を有するマグネタイト粒子を得よう
とすれば、カサ密度及び吸油量の低い球型を呈した粒子
であることが必要であると考え、球型を呈したマグネタ
イト粒子を得ることが必要であると考えた。
The present inventor focused on the shape of magnetite particles, and in order to obtain magnetite particles with excellent dispersibility and high coloring power, it is necessary that the particles exhibit a spherical shape with low bulk density and oil absorption. Considering that, it was necessary to obtain magnetite particles exhibiting a spherical shape.

上述した通り、球型を呈したマグネタイト粒子は、中性
附近の水溶液中で生成されることが知られているが、こ
の場合には、第一鉄塩水溶液中のpi+の全量をマグネ
タイト粒子に変換することは困難で未反応のxri+が
残存する為、収率が低く、その上未反応のPe2+は排
水公害の原因となるのでその対策が必要であった。
As mentioned above, it is known that spherical magnetite particles are produced in an aqueous solution near neutrality, but in this case, the entire amount of pi+ in the ferrous salt aqueous solution is converted into magnetite particles. Since conversion is difficult and unreacted xri+ remains, the yield is low, and unreacted Pe2+ causes waste water pollution, so countermeasures are needed.

第一鉄塩水溶液中のye”+の全量がらマグネタイト粒
子を生成し収率を高めようとすれば、第一鉄塩水溶液と
該第−鉄塩水溶液に対し1当量以上のアルカリとを反応
させる必要があり、この場合にはpH11程度以上のア
ルカリ反応水溶液となる為、生成マグネタイト粒子は六
面体又は八面体粒子となりかさ密度及び吸油量が高く、
分散性及び着色力が悪いものであった。
In order to generate magnetite particles from the entire amount of ye''+ in the ferrous salt aqueous solution and increase the yield, the ferrous salt aqueous solution is reacted with an alkali equivalent of 1 equivalent or more to the ferrous salt aqueous solution. In this case, the alkaline reaction aqueous solution has a pH of about 11 or more, so the generated magnetite particles are hexahedral or octahedral particles with high bulk density and oil absorption.
The dispersibility and coloring power were poor.

本発明者は、上述したところに鑑み、第一鉄塩水溶液中
に未反応のFe”+を残すことな(Fe”+の全量から
粒度が均斉で優れた分散性と高い着色力を有し、且つ、
優れた生産性を有するマグネタイト粒子を得るべく、種
々検討を重ねた結果、本発明に列体したのである。
In view of the above, the inventors of the present invention have proposed that the ferrous salt aqueous solution should have uniform particle size, excellent dispersibility, and high coloring power without leaving any unreacted Fe"+ in the ferrous salt aqueous solution. ,and,
In order to obtain magnetite particles with excellent productivity, the present invention was developed as a result of various studies.

即ち、本発明は、第一鉄塩水溶液と該第−鉄塩水溶液中
のFi+に対し080〜09g当量のアルカリとを反応
させて得られた水酸化第一鉄コロイドを含む第一鉄塩水
溶液に、70°C〜100°Cの温度範囲で加熱しなが
ら酸素含有ガスを通気することにより、上記水酸化第一
鉄コロイドから球型を呈したマグネタイト粒子を生成さ
せる第一段と、該第一段反応終了後残存1r e”に対
し1.00当量以上のアルカリを添加し第一段反応と同
条件下で加熱酸化する第二段との二段階反応から成るこ
とを特徴とする球型を呈したマグネタイト粒子粉末の製
造法である。
That is, the present invention provides a ferrous salt aqueous solution containing a ferrous hydroxide colloid obtained by reacting a ferrous salt aqueous solution with an alkali equivalent to 0.80 to 0.9 g based on Fi+ in the ferrous salt aqueous solution. a first stage of generating spherical magnetite particles from the ferrous hydroxide colloid by passing an oxygen-containing gas while heating in a temperature range of 70°C to 100°C; After the completion of the reaction, 1.00 equivalents or more of alkali is added to the 1r e'' remaining after the reaction, and the second stage reaction is heated and oxidized under the same conditions. This is a method for producing magnetite particle powder.

本発明の構成、効果を説明すれば以下の通りである。The structure and effects of the present invention will be explained as follows.

先ず、本発明者は、顔料として優れた分散性と高い着色
力を有するマグネタイト粒子を得る為には、球型を呈し
たマグネタイト粒子を得ることが肝要であり、その為に
は中性附近における反応であることが必要であることを
知った。
First of all, the present inventor believes that in order to obtain magnetite particles having excellent dispersibility and high coloring power as a pigment, it is important to obtain magnetite particles exhibiting a spherical shape. I learned that it is necessary to be responsive.

次に、本発明者は、第一鉄塩水溶液中に未反応のFe2
+を残すことなく原料第一鉄塩水溶液中のFe”の全量
からマグネタイトを生成することにより収率を高め、し
かも、優れた生産性を得るためには、アルカリ性側にお
ける反応であることが必要であることを知った。
Next, the present inventor discovered that unreacted Fe2 in the ferrous salt aqueous solution
In order to increase the yield by producing magnetite from the entire amount of Fe in the raw ferrous salt aqueous solution without leaving any + residue, and to obtain excellent productivity, the reaction must be on the alkaline side. I learned that.

そこで、本発明者は、原料第−鉄塩水溶液からあらかじ
め、Fe2+の一部をアルカリの添加により沈澱し、次
いで加熱酸化してマグネタイトとする第一段と、該第一
段反応終了後未反応のFJ“に対して1.00当量以上
のアルカリを添加して沈澱し、次いで加熱酸化する第二
段の二段階から成る反応をすれば、第一鉄塩水溶液中に
未反応のFe2+を残すことなく原料第一鉄塩水溶液中
のFe2+の全J1更から粒度が均斉で優れた分散性と
高い着色力を有し、且つ、優れた生産性を有する球型を
呈したマグネタイト粒子が得られると考え、第一段反応
におけるFe2+の沈澱量、該Fe2+の沈澱量と未反
応のFJ”損との関係、反応温度及び生成物マグネタイ
ト粒子の形状について種々検討を行なった。
Therefore, the present inventor developed a first stage in which a part of Fe2+ is precipitated from the raw material ferrous salt aqueous solution by adding an alkali, and then heated and oxidized to form magnetite, and unreacted FJ after the completion of the first stage reaction. If the reaction consists of two steps: adding 1.00 equivalents or more of alkali to precipitate, followed by heating and oxidation, no unreacted Fe2+ will remain in the ferrous salt aqueous solution. It is believed that spherical magnetite particles with uniform particle size, excellent dispersibility, high coloring power, and excellent productivity can be obtained from all the Fe2+ in the raw material ferrous salt aqueous solution. Various studies were conducted on the amount of precipitated Fe2+ in the first stage reaction, the relationship between the amount of precipitated Fe2+ and the unreacted FJ'' loss, the reaction temperature, and the shape of the product magnetite particles.

そして、第一鉄塩水溶液と該第−鉄塩水溶液中のFJ1
に対し0.80〜09g当量のアルカリを反応させて得
られた水酸化第−欽コロイドを含む第一鉄塩反応水溶液
に、70°C〜100°Cの温度範囲で加熱しながら酸
素含有ガスを通気することにより、上記水酸化第一鉄コ
ロイドから球型を呈したマグネタイト粒子を生成させる
第一段と、該第一段反応終了後残存Fe2+に対し1.
00当量以上のアルカリを添加し第一段反応と同条件下
で加熱酸化する第二段との二段階から成る反応をした場
合には、第二段反応では第一段反応で生成した球型を呈
したマグネタイト粒子表面にマグネタイトがエピタキシ
ャル成長し、六面体または八面体を呈したマグネタイト
粒子を生成しないので球型を呈した粒度分布が均斉で、
優れた分散性と高い着色力を有し、且つ、p過性、粉砕
容易性等の生産性に優れた球型を呈したマグネタイト粒
子粉末を得ることができるという知見を得た。
and FJ1 in the ferrous salt aqueous solution and the ferrous salt aqueous solution.
Oxygen-containing gas was added to the ferrous salt reaction aqueous solution containing ferrous salt colloid obtained by reacting 0.80 to 09 g equivalent of alkali to the ferrous salt reaction aqueous solution containing ferrous salt colloid, which was obtained by reacting an alkali equivalent to 0.80 to 0.09 g to A first stage in which spherical magnetite particles are produced from the ferrous hydroxide colloid by aeration, and a 1.
In the case of a two-stage reaction consisting of the first stage reaction in which 00 equivalents or more of alkali is added and the second stage of heating and oxidation under the same conditions, the spherical shape produced in the first stage reaction will be removed in the second stage reaction. Magnetite grows epitaxially on the surface of magnetite particles with a spherical shape, and does not produce hexahedral or octahedral magnetite particles, so the particle size distribution with a spherical shape is uniform.
It has been found that it is possible to obtain spherical magnetite particles having excellent dispersibility and high coloring power, and excellent productivity such as p-permeability and ease of crushing.

次に、本発明方法実施にあたっての諸条件について述べ
る。
Next, various conditions for implementing the method of the present invention will be described.

本発明において使用される第一鉄塩水溶液としては、硫
酸第一鉄水溶液、塩化第−鉄水溶液等がある。
Examples of the ferrous salt aqueous solution used in the present invention include a ferrous sulfate aqueous solution and a ferrous chloride aqueous solution.

本発明において使用されるアルカリとしては、水酸化ナ
トリウム、水酸化カリウム等、アルカリ金属の水酸化物
及び炭酸塩、水酸化マグネシウム、び炭酸塩等である。
Examples of the alkali used in the present invention include hydroxides and carbonates of alkali metals, such as sodium hydroxide and potassium hydroxide, magnesium hydroxide, and carbonates.

本発明の第一段反応において使用するアルカリの量は、
第一鉄塩水溶液中のF♂1に対し0.80〜0.9g当
量である。
The amount of alkali used in the first stage reaction of the present invention is
The amount is 0.80 to 0.9 g equivalent to F♂1 in the ferrous salt aqueous solution.

080当量以下又は0.9g当量以上である場合には、
球型を呈したマグネタイト粒子を生成することが困難で
ある。
If it is less than 0.080 equivalent or more than 0.9 g equivalent,
It is difficult to produce spherical magnetite particles.

本発明の第一段反応における反応温度は70’C〜10
06Cである。
The reaction temperature in the first stage reaction of the present invention is 70'C to 10
It is 06C.

70°C以下である場合には、針状晶ゲータイト粒子が
混在し、100℃以上でも球型を呈したマグネタイト粒
子は生成するが工業的ではない。
If the temperature is 70° C. or lower, acicular goethite particles are mixed, and even if the temperature is 100° C. or higher, spherical magnetite particles are produced, but this is not suitable for industrial use.

酸化手段は酸素含有ガス(例えば空気)を液中に通気す
ることにより行なう。
The oxidation means is carried out by passing an oxygen-containing gas (for example, air) into the liquid.

本件発明の第二段反応において使用するアルカリの盾は
、第一段反応における残存F82+に対して1.00当
量以上である。
The alkali shield used in the second stage reaction of the present invention has an equivalent amount of 1.00 or more relative to the remaining F82+ in the first stage reaction.

1.00当量以下ではFe2+が全量沈澱しない。1.
00当量以上の工業性を肝案じた量が好ましい量である
If the amount is 1.00 equivalent or less, the entire amount of Fe2+ will not precipitate. 1.
A preferable amount is 0.00 equivalent or more, taking into consideration industrial efficiency.

本発明における第二段反応の反応温度は第一段反応と同
一でよい。また、酸化手段も同一でよい。
The reaction temperature of the second stage reaction in the present invention may be the same as that of the first stage reaction. Furthermore, the oxidation means may be the same.

以上の通りの構成の本発明は、次の通りの効果を奏する
ものである。
The present invention configured as described above has the following effects.

即ち、本発明によれば、第一鉄塩水溶液中に未反応のF
e24°を残すことなくF♂1の全量から粒度が均斉で
、優れた分散性と高い着色力を有し、且つ、p過性、粉
砕容易性等の生産性に優れた球型を呈したマグネタイト
粒子粉末をイすることができる。
That is, according to the present invention, unreacted F is contained in the ferrous salt aqueous solution.
The particle size was uniform from the entire amount of F♂1 without leaving e24°, and it had excellent dispersibility and high coloring power, and exhibited a spherical shape with excellent productivity such as p-permeability and ease of crushing. Magnetite particle powder can be used.

塗料の製造に際して、上記球型を呈したマグネタイト粒
子粉末を用いた場合には、ビヒクル中への分散が良好で
あるので、光沢、鮮明性、耐久性の塗膜特性の改良が可
能となり、又、作業能率も向上する。
When the above-mentioned spherical magnetite particle powder is used in the production of paint, it is well dispersed in the vehicle, making it possible to improve coating film properties such as gloss, clarity, and durability. , work efficiency will also improve.

また、磁気トナーの製造に際して、上記球型を呈したマ
グネタイト粒子粉末を用いた場合には、樹脂への分散性
が良好であるので、適度な帯磁性を有し、画像濃度の優
れた画質を得ることができる。
In addition, when the above-mentioned spherical magnetite particles are used in the production of magnetic toner, they have good dispersibility in resin, so they have appropriate magnetism and image quality with excellent image density. Obtainable.

次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における平均粒子径はB
Ti:T法により、吸油量及びカサ密度はJ工5K51
01に記載の方法により測定し、着色力は測色用試料片
を東京重色製測色色差計(To−5D)を用いてffl
ll色して得られたL値(明度)で示した。
In addition, the average particle diameter in the following examples and comparative examples is B
By the Ti:T method, the oil absorption amount and bulk density were J-5K51.
The coloring power was measured by the method described in 01, and the coloring power was measured by ffl using a colorimetric sample piece manufactured by Tokyo Juishoku Co., Ltd. using a colorimeter (To-5D).
It is indicated by the L value (lightness) obtained by coloring.

L値が低い程、着色力が優れたものであり、分散性が良
好であることを示す。測色用試験片は、マグネタイト粒
子粉末05り及びチタン白1,5gとヒマシ油1.5c
cQフーバ一式マーラーで練ってペースト状とし、この
ペーストにクリヤラッカー4.5gを加え混練し塗料化
して、ミラコート紙上に6m11のアプリケータを用い
て塗布することによって得た。
The lower the L value, the better the coloring power and the better the dispersibility. The test piece for color measurement was 0.5 g of magnetite particle powder, 1.5 g of titanium white, and 1.5 c of castor oil.
The paste was kneaded with a cQ Huber set of muller to form a paste, and 4.5 g of clear lacquer was added to the paste to form a paint, which was applied onto Miracoat paper using a 6ml applicator.

実施例1 Fe2 + 1.5 mo 咎を含む硫酸第一鉄水溶液
201を、あらかじめ、反応器中に準備された2、64
−NのNaOH水溶液201に加え(Fe2+に対し0
.88当量に該当する。)、pH6,9、温度90°C
においてwe(oH)。
Example 1 An aqueous ferrous sulfate solution 201 containing Fe2 + 1.5 mo was prepared in advance in a reactor with 2,64
-N in NaOH aqueous solution 201 (0 for Fe2+)
.. This corresponds to 88 equivalents. ), pH 6,9, temperature 90°C
At we(oH).

を含む第一鉄塩水溶液の生成を行った。A ferrous salt aqueous solution containing ferrous salt was produced.

上記Fe(OH)2を含む第一鉄塩水溶液に温度9゜°
Cにおいて毎分1001の空気を240分間通気してマ
グネタイト粒子を含む第一鉄塩水溶液を生成した。
The above ferrous salt aqueous solution containing Fe(OH)2 was heated to a temperature of 9°.
A ferrous salt aqueous solution containing magnetite particles was produced by blowing air at 100 l/min for 240 minutes at C.

次いで、上記マグネタイト粒子を含む第一鉄塩水溶液に
3.78−NのNaOH水溶液21を加え(Fe2+に
Next, 3.78-N NaOH aqueous solution 21 was added to the ferrous salt aqueous solution containing the magnetite particles (for Fe2+).

対し1.05当量に該当する。)、pH11,8、温度
90℃において毎分201の空気を60分間通気してマ
グネタイト粒子を生成した。
This corresponds to 1.05 equivalents. ), pH 11.8, temperature 90° C., and 201 air per minute was passed through for 60 minutes to generate magnetite particles.

生成粒子は、常法により、水洗、p別、乾燥、粉砕した
The produced particles were washed with water, separated from P, dried, and crushed by a conventional method.

得られたマグネタイト粒子粉末は、図1に示す電子顕微
鏡写真(x20000)から明らがな通り、球型を呈し
た粒子であり、且つ、粒度が均斉なものであった。
As is clear from the electron micrograph (x20,000) shown in FIG. 1, the obtained magnetite particles had a spherical shape and were uniform in particle size.

また、この球状マグネタイト粒子粉末は、平均粒子径が
0.18μmで、L値35.8、吸油量19jItAO
o9及びカサ密度0・549/qであり、生産性の極め
て良好なもので市った。
In addition, this spherical magnetite particle powder has an average particle diameter of 0.18 μm, an L value of 35.8, and an oil absorption amount of 19jItAO.
o9 and bulk density of 0.549/q, it was sold as a product with extremely good productivity.

実施例2〜8 第一鉄塩水溶液の種類、濃度;噌1抽仁アルカリの種類
、濃度、第一段扛≠テ模における使用量及び反応温度を
種々変化させた以外は実施例1と同様にしてマグネタイ
ト粒子粉末を得た。
Examples 2 to 8 Same as Example 1 except that the type and concentration of the ferrous salt aqueous solution; the type and concentration of the extraction alkali, the amount used in the first stage and the reaction temperature were varied. Then, magnetite particle powder was obtained.

この時の主要製造条件及び生成マグネタイト粒子粉末の
緒特性を表1に示す。
Table 1 shows the main manufacturing conditions and the properties of the produced magnetite particles.

実施例2〜8で得られたマグネタイト粒子粉末は、電子
顕微鏡観察の結果、いずれも球型を呈した粒子であり、
且つ、粒度が均斉なものであった。
As a result of electron microscopic observation, the magnetite particles obtained in Examples 2 to 8 all had a spherical shape,
Moreover, the particle size was uniform.

実施例4で得られたマグネタイト粒子粉末の電子顕微鏡
写真(X2000[+)を図2に示す。
An electron micrograph (X2000[+) of the magnetite particles obtained in Example 4 is shown in FIG.

比較例1 Fe” 1.5 mo l/1を含む硫酸第一鉄水溶液
20J17を、あらかじめ、反応器中に準備された3、
45−NのNaOH水溶液204に加え(he2+に対
し1.15当量に該当する。)、T)H12,8、温度
90°CにおいてFe(OH)2を含む水溶液の生成を
行った。
Comparative Example 1 A ferrous sulfate aqueous solution 20J17 containing 1.5 mol/1 of ferrous sulfate was prepared in advance in a reactor.
In addition to 45-N NaOH aqueous solution 204 (corresponding to 1.15 equivalents to he2+), an aqueous solution containing Fe(OH)2 was produced at T)H12,8 and a temperature of 90°C.

上記Fe(OH)2を含む水溶液に温度90°Cにおい
て毎分1001の空気を220分間通気してマグネタイ
ト粒子粉末を生成した。
A magnetite particle powder was produced by blowing air at a rate of 100 l/min for 220 minutes at a temperature of 90° C. into the Fe(OH) 2 -containing aqueous solution.

得られたマグネタイト粒子粉末は、図3に示す電子顕微
鏡写真(X20000)から明らかな通り、六面体を呈
した粒子であった。
As is clear from the electron micrograph (X20000) shown in FIG. 3, the obtained magnetite particles were hexahedral particles.

また、この六面体を呈したマグネタイト粒子粉末は平均
粒子径が0.17μmで、を値40.1、吸油量゛、・
・・29w1A o o q及びカサ密度0.259/
cテあツタ。
In addition, this magnetite particle powder exhibiting a hexahedral shape has an average particle diameter of 0.17 μm, a value of 40.1, and an oil absorption amount of ゛.
・・29w1A o o q and bulk density 0.259/
c te attuta.

比較例2 P□e” 1.5 m Ol、/1を含む硫酸第一鉄水
溶液2olを、あらかじめ、反応器中に準備された1、
92−NのNaOH水溶液201に加え(Fe2+に対
し0.64当量に該当する。)、7)H4,8、温度9
0°CにおいてFe(OH)2を含む第一鉄塩水溶液の
生成を行った。
Comparative Example 2 2 ol of ferrous sulfate aqueous solution containing P□e” 1.5 m Ol,/1 was prepared in advance in a reactor.
In addition to 92-N NaOH aqueous solution 201 (corresponding to 0.64 equivalent to Fe2+), 7) H4,8, temperature 9
A ferrous salt aqueous solution containing Fe(OH)2 was produced at 0°C.

上記Fe(OH)2を含む第一鉄塩水溶液に温度90°
Cにおいて毎分1001の空気を190分間通気してマ
グネタイト粒子粉末を生成した。
The temperature of the ferrous salt aqueous solution containing Fe(OH)2 is 90°.
Magnetite particle powder was produced by blowing 1001 air per minute at C for 190 minutes.

得られたマグネタイト粒子粉末は、図4に示す電子顕微
鏡写真(x20000)から明らかな通り、不定形粒子
であった。
The obtained magnetite particles were irregularly shaped particles, as is clear from the electron micrograph (x20000) shown in FIG.

また、この不定形のマグネタイト粒子粉末は平均粒子径
が0.19μmで、l値390、吸油in ”V* 0
0g及びカサ密度0.349/cであった。
In addition, this irregularly shaped magnetite particle powder has an average particle diameter of 0.19 μm, an l value of 390, and an oil absorption in ”V* 0.
0g and bulk density 0.349/c.

【図面の簡単な説明】[Brief explanation of the drawing]

図1乃至図4はいずれも電子顕微鏡写真(X20000
)であり、図1及び図2はそれぞれ実施例1及び実施例
4で得られた球型を呈したマグネタイト粒子粉末、図3
は比較例1で得られた六面体を呈したマグネタイト粒子
粉末、図4は比較例2で得られた不定形のマグネタイト
粒子粉末である。 特許出願人 戸田工業株式会社 代表者松井五部 図 1 (X 200oo) 図 2 図3 (X2oooo) 図 4 手続士甫正書(自発) 昭和59年12月24日 1 事件の表示 昭和58年特許願第181290号 2、発明の名称 球型を呈したマグネタイト粒子粉末の製造法3、補正を
する4イ 明細書の「1.1″許請求の範囲」の欄及び「発5、補
正の内容 (1)明細書第1頁の「特許請求の範囲の欄Jの記載を
別紙の通り訂正致します。 (2)明細書第6N第3行の「及び」を「が大きく、」
に訂正致します。 (3)明細書節6頁屋上行〜第7頁第1行の「六面体又
は八面体粒子となりかさ密度及び吸油量が高く、」を「
六面体又は八面体粒子となる為かさ密度が小さく吸油量
が高くなり、」に訂正致します。 (4)明細書第7頁第10行の「当量の」の次に「水酸
化」を挿入致します。 (5)明細書第7頁第16行の「以上のJの次に「水酸
化」を挿入致します。 (6)明細書第6N第3行の「関係、」の次に「アルカ
リの種類、」を挿入致します。 (7)明細書第9頁第11行の「当量の」の次に「水酸
化」を挿入致します。 (8)明細書第9頁第17行の「以上の」の次に「水酸
化」を挿入致します。 (9)明細書第1O頁第14〜19行の「本発明におい
て・・・・炭酸塩等である。」を「本発明において使用
される水酸化アルカリとしては、水酸化ナトリウム、水
酸化カリウム等アルカリ金属の水i化物、水酸化マグネ
シウム、水酸化カルシウム等のアルカリ土類金属の水酸
化物である。」に訂正致します。 (10)明細書第11頁第1行の「使用する」の次に「
水酸化」を挿入致します。 (11)明細書第11頁第14行の「使用する」の次に
「水酸化」を挿入致します。 (12)明細書第15頁第3行の「種類、」の次に「水
酸化」を挿入致します。 (13)明細書第18頁の「表1」中、第2行の「アル
カリ」を「水酸化アルカリ」に訂正致しまず。 以上 特許請求の範囲 ■、第=鉄塩水溶液と該第−鉄塩水溶液中のFe”に対
し0.80〜0.9g当量の水飲■アルカリとを反応さ
せて得られた水酸化第一鉄コロイドを含む第一鉄塩反応
水溶液に、30℃〜100℃の温度範囲で加熱しながら
酸素含有ガスを通気することにより、上記水酸化第一鉄
コロイドから球型を呈したマグネタイト粒子を生成させ
る第一段と、該第一段反応終了後残存Fe 2 ゛に対
し1.00当量以上の水Mアルカリを添加し第一段反応
と同条件下で加熱酸化する第二段との二段階反応から成
ることを特徴とする球型を呈したマグネタイト粒子粉末
の製造法。 手続(甫正書く自発) 昭和59年12月27日 1、¥>件の表示 昭和58年特許願第181290号 2、発明の名称 球型を呈したマグネタイト粒子粉末の製造法3、補正を
する者 明細書の「発明の詳細な説明」の欄 5、補正の内容 (1)明細書第6頁19行の「となる為、」を「となり
、」に訂正致します。 以上
Figures 1 to 4 are all electron micrographs (X20000
), and FIGS. 1 and 2 show the spherical magnetite particles obtained in Example 1 and Example 4, respectively, and FIG.
4 shows hexahedral magnetite particles obtained in Comparative Example 1, and FIG. 4 shows irregularly shaped magnetite particles obtained in Comparative Example 2. Patent Applicant Toda Kogyo Co., Ltd. Representative Matsui Gobe Figure 1 (X 200oo) Figure 2 Figure 3 (X2oooo) Figure 4 Procedures Practitioner Ho Seisho (spontaneous) December 24, 1981 1 Case Indication 1988 Patent Application No. 181290 2. Name of the invention: Process for producing spherical magnetite particles 3. Amendment 4. B. Section ``1.1''Claims'' in the specification and ``Part 5, Contents of the amendment.'' (1) The statement in "Claims column J" on page 1 of the specification is corrected as shown in the attached sheet. (2) "And" in line 6N, third line of the specification has been replaced with "is larger,"
I will correct it. (3) In the specification section, from the top line of page 6 to the first line of page 7, "hexahedral or octahedral particles with high bulk density and oil absorption" are replaced with "
Since it is a hexahedral or octahedral particle, the bulk density is small and the oil absorption is high.'' (4) "Hydroxide" will be inserted next to "equivalent" on page 7, line 10 of the specification. (5) On page 7, line 16 of the specification, ``Hydroxide'' will be inserted next to J above. (6) Insert "Type of alkali" after "Relationship," on the third line of No. 6N of the specification. (7) "Hydroxide" will be inserted next to "equivalent" on page 9, line 11 of the specification. (8) "Hydroxide" will be inserted after "more than" on page 9, line 17 of the specification. (9) In the specification, page 1O, lines 14 to 19, "In the present invention...carbonates, etc." was changed to "The alkali hydroxides used in the present invention include sodium hydroxide, potassium hydroxide, etc." hydroxides of alkaline earth metals such as alkaline metal hydrides, magnesium hydroxide, calcium hydroxide, etc.''. (10) In the first line of page 11 of the specification, after “use”, “
We will insert hydroxide. (11) "Hydroxylation" will be inserted next to "Used" on page 11, line 14 of the specification. (12) "Hydroxylation" will be inserted next to "Type," on page 15, line 3 of the specification. (13) In "Table 1" on page 18 of the specification, "alkali" in the second line has been corrected to "alkali hydroxide." Claims (1) A hydroxide 1 obtained by reacting a ferrous salt aqueous solution with an alkali in an amount of 0.80 to 0.9 g equivalent to 0.80 to 0.9 g of Fe in the ferrous salt aqueous solution. Spherical magnetite particles are generated from the ferrous hydroxide colloid by passing oxygen-containing gas through the ferrous salt reaction aqueous solution containing iron colloid while heating it in a temperature range of 30°C to 100°C. From the two-step reaction, the first step is to add 1.00 equivalents or more of water M alkali to the residual Fe 2 ゛ after the first step reaction, and the second step is to heat and oxidize under the same conditions as the first step reaction. A method for producing magnetite particle powder exhibiting a spherical shape characterized by the following: Procedures (Spontaneous writing by Hosho) December 27, 1980 1, ¥ > Display 1981 Patent Application No. 181290 2, Invention Name of method for producing spherical magnetite particles 3, person making the amendment Column 5 of "Detailed Description of the Invention" in the specification, contents of the amendment (1) "Becomes" on page 6, line 19 of the specification We will correct ``to become'' to ``to become''. that's all

Claims (1)

【特許請求の範囲】[Claims] 1、 第一鉄塩水溶液と該第−鉄塩水溶液中のF+32
十に対し0.80〜0.9g当量のアルカリとを反応さ
せて得られた水酸化第一鉄コロイドを含む第一鉄塩反応
水溶液に、70°C〜100°Cの温度範囲で加熱しな
がら酸素含有ガスを通気することにより、上記水酸化第
一鉄コロイドから球型を呈したマグネタイト粒子を生成
させる第一段と、該第一段反応終了後残存Fi+に対し
1.00当量以上のアルカリを添加し第一段反応と同条
件下で加熱酸化する第二段との二段階反応から成ること
を特徴とする球型を呈したマグネタイト粒子粉末の製造
法。
1. Ferrous salt aqueous solution and F+32 in the ferrous salt aqueous solution
A ferrous salt reaction aqueous solution containing ferrous hydroxide colloid obtained by reacting 0.80 to 0.9 g equivalent of alkali per 100 ml was heated in a temperature range of 70 ° C to 100 ° C. A first stage in which spherical magnetite particles are produced from the ferrous hydroxide colloid by passing an oxygen-containing gas through the ferrous hydroxide colloid, and an alkali in an amount of 1.00 equivalent or more based on the remaining Fi+ after the first stage reaction is completed. A method for producing magnetite particle powder exhibiting a spherical shape, characterized by comprising a two-step reaction of adding and heating the first step and a second step of heating and oxidizing under the same conditions.
JP58181290A 1983-09-28 1983-09-28 Manufacture of spherical magnetite powder Granted JPS6071529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181290A JPS6071529A (en) 1983-09-28 1983-09-28 Manufacture of spherical magnetite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181290A JPS6071529A (en) 1983-09-28 1983-09-28 Manufacture of spherical magnetite powder

Publications (2)

Publication Number Publication Date
JPS6071529A true JPS6071529A (en) 1985-04-23
JPS6251208B2 JPS6251208B2 (en) 1987-10-29

Family

ID=16098094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181290A Granted JPS6071529A (en) 1983-09-28 1983-09-28 Manufacture of spherical magnetite powder

Country Status (1)

Country Link
JP (1) JPS6071529A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366582A (en) * 1986-09-09 1988-03-25 Toyo Ink Mfg Co Ltd Method for processing electrostatic charge image
JPS63108354A (en) * 1986-10-27 1988-05-13 Canon Inc Insulating magnetic encapsulated toner
US4774012A (en) * 1986-01-30 1988-09-27 Ishihara Sangyo Kaisha, Ltd. Cobalt-containing ferromagnetic iron oxide powder and process for producing the same
JPH01229073A (en) * 1988-02-10 1989-09-12 Bayer Ag Novel oxidation-resistant and heat-resistant iron oxide black pigment, its production and use
JPH0245570A (en) * 1988-06-24 1990-02-15 Bayer Ag New iron oxide pigment and its preparation and use
JPH03101744A (en) * 1989-09-14 1991-04-26 Canon Inc Magnetic toner incorporating spherical magnetic material
JPH03201509A (en) * 1989-12-28 1991-09-03 Toda Kogyo Corp Magnetite particle powder displaying hexahedron and manufacture thereof
EP0794154A1 (en) * 1996-03-07 1997-09-10 Toda Kogyo Corporation Magnetite particles, magnetic iron oxide particles, process for the production of the same and magnetic toner using the same
JP2011213548A (en) * 2010-03-31 2011-10-27 Toda Kogyo Corp Black magnetic iron oxide particle powder, and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774012A (en) * 1986-01-30 1988-09-27 Ishihara Sangyo Kaisha, Ltd. Cobalt-containing ferromagnetic iron oxide powder and process for producing the same
JPS6366582A (en) * 1986-09-09 1988-03-25 Toyo Ink Mfg Co Ltd Method for processing electrostatic charge image
JPS63108354A (en) * 1986-10-27 1988-05-13 Canon Inc Insulating magnetic encapsulated toner
JPH01229073A (en) * 1988-02-10 1989-09-12 Bayer Ag Novel oxidation-resistant and heat-resistant iron oxide black pigment, its production and use
JPH0245570A (en) * 1988-06-24 1990-02-15 Bayer Ag New iron oxide pigment and its preparation and use
JPH03101744A (en) * 1989-09-14 1991-04-26 Canon Inc Magnetic toner incorporating spherical magnetic material
JPH03201509A (en) * 1989-12-28 1991-09-03 Toda Kogyo Corp Magnetite particle powder displaying hexahedron and manufacture thereof
EP0794154A1 (en) * 1996-03-07 1997-09-10 Toda Kogyo Corporation Magnetite particles, magnetic iron oxide particles, process for the production of the same and magnetic toner using the same
US5858532A (en) * 1996-03-07 1999-01-12 Toda Kogyo Corporation Magnetite particles, magnetic iron oxide particles, process for the production of the same and magnetic toner using the same
US6103437A (en) * 1996-03-07 2000-08-15 Toda Kogyo Corporation Magnetic toner particles comprising magnetite particles containing silicon
JP2011213548A (en) * 2010-03-31 2011-10-27 Toda Kogyo Corp Black magnetic iron oxide particle powder, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6251208B2 (en) 1987-10-29

Similar Documents

Publication Publication Date Title
US4992191A (en) Sphere-like magnetite particles and a process for producing the same
JPS6071529A (en) Manufacture of spherical magnetite powder
WO2020241065A1 (en) Cobalt ferrite particle production method and cobalt ferrite particles produced thereby
JP3651017B2 (en) Spherical magnetite particles and method for producing the same
WO2020217982A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
JP2756845B2 (en) Hexahedral magnetite particle powder and its manufacturing method
US6083476A (en) Black ultrafine magnetite particles and process for preparing the same
JPH05137995A (en) Method for coating particles with ferrite
JP2690827B2 (en) Method for producing powder of polyhedral magnetite particles
JP2737756B2 (en) Production method of spherical hematite particles
JP3149886B2 (en) Method for producing spherical magnetite particle powder
JP6521254B2 (en) Black magnetic iron oxide particle powder and method for producing the same
JPH08325098A (en) Particulate magnetite and its production
WO2023176926A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
JPH0580413B2 (en)
JPH0580412B2 (en)
JP3006630B2 (en) Manganese titanate particle powder and method for producing the same
JPH0513894B2 (en)
JPH01298028A (en) Illumenite powder and production thereof
JP2002091065A (en) Toner containing magnetite particle
JPS61146714A (en) Production of fine powder of lower black titanium oxide
JPH0557213B2 (en)
JP2023138411A (en) Method of producing cobalt ferrite particles, and cobalt ferrite particles produced by the same
JPH0522652B2 (en)
JPS6364925A (en) Production of hematite particle powder