JP6521254B2 - Black magnetic iron oxide particle powder and method for producing the same - Google Patents

Black magnetic iron oxide particle powder and method for producing the same Download PDF

Info

Publication number
JP6521254B2
JP6521254B2 JP2015526413A JP2015526413A JP6521254B2 JP 6521254 B2 JP6521254 B2 JP 6521254B2 JP 2015526413 A JP2015526413 A JP 2015526413A JP 2015526413 A JP2015526413 A JP 2015526413A JP 6521254 B2 JP6521254 B2 JP 6521254B2
Authority
JP
Japan
Prior art keywords
iron oxide
black magnetic
magnetic iron
particle powder
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015526413A
Other languages
Japanese (ja)
Other versions
JPWO2015005452A1 (en
Inventor
亮 岩井
亮 岩井
伸哉 志茂
伸哉 志茂
内田 直樹
直樹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Publication of JPWO2015005452A1 publication Critical patent/JPWO2015005452A1/en
Application granted granted Critical
Publication of JP6521254B2 publication Critical patent/JP6521254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0836Other physical parameters of the magnetic components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明に係る黒色磁性酸化鉄粒子粉末は、八面体形状であり、黒色であることから、塗料用、樹脂用、印刷インキ等の黒色着色顔料として用いることができ、また、磁性トナー用黒色磁性粒子として用いた場合には、黒色度の高い磁性トナーを得ることができる。   The black magnetic iron oxide particle powder according to the present invention has an octahedral shape and is black, so it can be used as a black coloring pigment for paints, resins, printing inks and the like, and also black magnetic magnets for magnetic toners. When used as particles, a magnetic toner having a high degree of blackness can be obtained.

従来、静電潜像現像法の一つとして、キャリアを使用せずに樹脂中にマグネタイト粒子粉末等の磁性粒子粉末を混合分散させた複合体粒子を現像剤として用いる所謂「一成分系磁性トナー」による現像法が広く知られ、汎用されている。   Conventionally, as one of electrostatic latent image developing methods, a so-called "one-component magnetic toner" using composite particles obtained by mixing and dispersing magnetic particles such as magnetite particles in a resin without using a carrier as a developer "Development method by" is widely known and widely used.

近時、レーザービームプリンターやデジタル複写機の高性能化に伴い、現像剤である磁性トナーの黒色度のより高いものが要求されている。   Recently, with the advancement of laser beam printers and digital copiers, there has been a demand for magnetic toners, which are developers, to have higher blackness.

前記磁性トナーの黒色度は、磁性トナー中に含有するマグネタイトの黒色度に大きく依存するものである。そこで、黒色度の高い黒色磁性粒子が強く要求されている。   The degree of blackness of the magnetic toner is largely dependent on the degree of blackness of magnetite contained in the magnetic toner. Therefore, black magnetic particles having a high degree of blackness are strongly required.

特に粒子形状が八面体であるマグネタイト粒子は、黒色度が高いことが知られている。   In particular, magnetite particles having an octahedral particle shape are known to have a high degree of blackness.

より黒色度の高いマグネタイト粒子を得るために様々な試みがなされている(特許文献1〜3)。   Various attempts have been made to obtain magnetite particles having a higher degree of blackness (Patent Documents 1 to 3).

特開平3−131866号公報JP-A-3-131866 特開2008−184338号公報JP, 2008-184338, A 特開2011−213548号公報JP, 2011-213548, A

上述の諸問題に鑑み、微細粒子であり、黒色度に優れている黒色磁性酸化鉄粒子粉末は、現在最も要求されているところであるが、このような黒色磁性酸化鉄粒子粉末は未だ提供されていない。   In view of the above-mentioned problems, black magnetic iron oxide particle powder which is fine particles and excellent in blackness is the most demanded at present, but such black magnetic iron oxide particle powder is still provided. Absent.

前出特許文献1記載のマグネタイト粒子は、珪素元素の分布が一定ではないため、黒色度が十分とは言い難い。   In the magnetite particles described in the above-mentioned Patent Document 1, the distribution of the silicon element is not constant, so it can not be said that the degree of blackness is sufficient.

また、前出特許文献2記載のマグネタイト粒子粉末は、珪素元素の分布が一定ではないため、黒色度が十分とは言い難い。   Moreover, in the magnetite particle powder described in the above-mentioned Patent Document 2, since the distribution of the silicon element is not constant, it can not be said that the degree of blackness is sufficient.

また、前出特許文献3記載のマグネタイト粒子は、珪素元素の分布が一定ではないため、黒色度が十分とは言い難い。   Moreover, in the magnetite particles described in the above-mentioned Patent Document 3, since the distribution of the silicon element is not constant, it can not be said that the degree of blackness is sufficient.

そこで、本発明は、八面体形状であって、粒子内部にケイ素元素が一定に分布し、薄い厚さの塗膜とした場合においても黒色度に優れている磁性トナーに好適に用いられる黒色磁性酸化鉄粒子粉末を提供することを技術的課題とする。   Therefore, the present invention is a black magnetic material suitably used for a magnetic toner having an octahedral shape, in which the silicon element is uniformly distributed in the particles and the blackness is excellent even in the case of a thin coating film. It is a technical task to provide iron oxide particle powder.

前記技術的課題は、次の通りの本発明によって達成できる。   The above technical problems can be achieved by the present invention as follows.

即ち、本発明は、八面体形状であって、鉄元素に対してケイ素元素換算で0.19〜1.90原子%のケイ素を含有し、鉄元素溶解率(X%)が20<X20〜40≦40%、40<X40〜60≦60%、60<X60〜80≦80%の各範囲におけるケイ素元素溶解率(Y%)が、鉄元素溶解率(X%)と鉄元素溶解率が10%のときのケイ素元素溶解率(a%)とからなる下記式(1)、(2)を満足することを特徴とする黒色磁性酸化鉄粒子粉末である(本発明1)。That is, the present invention has an octahedral shape, and contains 0.19 to 1.90 atomic% silicon in terms of silicon element with respect to iron element, and the iron element dissolution rate (X%) is 20 <X 20. Solubility rate of silicon element (Y%) in each range of 40 to 40 ≦ 40%, 40 <X 40 to 60 ≦ 60%, 60 <X 60 to 80 ≦ 80%, iron element dissolution rate (X%) and iron element It is a black magnetic iron oxide particle powder characterized by satisfying the following formulas (1) and (2) consisting of the silicon element dissolution rate (a%) when the dissolution rate is 10% (Invention 1).

{(100−a)X+100(a−10)}/90−10(1−a/100)≦Y≦{(100−a)X+100(a−10)}/90+10(1−a/100) ・・・(1)
10≦a≦80 ・・・(2)
(但し、10≦X≦100、10≦Y≦100)
{(100-a) X + 100 (a-10)} / 90-10 (1-a / 100) ≦ Y ≦ {(100-a) X + 100 (a-10)} / 90 + 10 (1-a / 100). (1)
10 ≦ a ≦ 80 (2)
(However, 10 ≦ X ≦ 100, 10 ≦ Y ≦ 100)

また、本発明は、黒色磁性酸化鉄粒子中のナトリウム含有量が0.02〜0.10重量%であって、全鉄元素量に対して鉄元素溶解率50%におけるナトリウム元素溶解率が、全ナトリウム元素溶解量に対して50%以上である本発明1記載の黒色磁性酸化鉄粒子粉末である(本発明2)。   In the present invention, the sodium content in the black magnetic iron oxide particles is 0.02 to 0.10% by weight, and the sodium element dissolution rate at an iron element dissolution rate of 50% with respect to the total iron element amount is It is a black magnetic iron oxide particle powder according to the present invention 1 which is 50% or more with respect to the total dissolved amount of sodium element (invention 2).

また、本発明は、平均粒子径が0.05〜0.30μmである本発明1又は2記載の黒色磁性酸化鉄粒子粉末である(本発明3)。   Further, the present invention is the black magnetic iron oxide particle powder according to the present invention 1 or 2 having an average particle diameter of 0.05 to 0.30 μm (Invention 3).

また、本発明は、粒度分布における変化係数が30%以下である本発明1〜3のいずれかに記載の黒色磁性酸化鉄粒子粉末である(本発明4)。   The present invention is the black magnetic iron oxide particle powder according to any one of the present inventions 1 to 3, in which the variation coefficient in the particle size distribution is 30% or less (Invention 4).

また、本発明は、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23〜26μmのときの塗膜のb*値が2以下であり、
a*(I) : 塗膜膜厚4〜6μmでのa*値
a*(II) : 塗膜膜厚23〜26μmでのa*値
α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする本発明1〜4のいずれかに記載の黒色磁性酸化鉄粒子粉末である(本発明5)。
In the present invention, the b * value of the coating film is 23 or less when the film thickness is 23 to 26 μm, which is prepared using the black magnetic iron oxide particle powder,
a * (I): a * value a * (II) at a coating film thickness of 4 to 6 μm: a * value at a coating film thickness of 23 to 26 μm α = a * (I) / a * (II) When you
It is a black magnetic iron oxide particle powder according to any one of the present inventions 1 to 4 which satisfy 1.0 ≦ α ≦ 2.0 (Invention 5).

また、本発明は、Si及びAlの被覆層を有する本発明1〜5のいずれかに記載の黒色磁性酸化鉄粒子粉末である(本発明6)。   Moreover, this invention is a black magnetic iron oxide particle powder in any one of this invention 1-5 which has a coating layer of Si and Al (this invention 6).

また、本発明は、八面体形状であって、鉄元素に対してケイ素元素換算で0.19〜1.90原子%のケイ素を含有する黒色磁性酸化鉄粒子粉末であって、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23〜26μmのときの塗膜のb*値が2以下であり、
a*(I):塗膜膜厚4〜6μmでのa*値
a*(II):塗膜膜厚23〜26μmでのa*値
α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする黒色磁性酸化鉄粒子粉末である(本発明7)。
Further, the present invention is a black magnetic iron oxide particle powder which is octahedral shape and contains silicon of 0.19 to 1.90 atomic% in terms of silicon element with respect to iron element, which is black magnetic iron oxide B * value of the coating film is 2 or less when the film thickness is 23 to 26 μm, which is made using the particle powder,
a * (I): a * value at a coating film thickness of 4 to 6 μm a * (II): a * value at a coating film thickness of 23 to 26 μm α = a * (I) / a * (II) When you
It is a black magnetic iron oxide particle powder characterized by satisfying 1.0 ≦ α ≦ 2.0 (Invention 7).

また、本発明は、第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し0.90〜1.00等量の水酸化アルカリ水溶液と、第一鉄塩溶液中のFeに対しSi換算で0.05〜1.00原子%の水可溶性ケイ酸塩とを反応させて得られた水酸化第一鉄コロイドを含む反応溶液のpHを8〜9に調整し、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が7〜12%まで酸化反応を行い、核晶マグネタイト粒子を生成させる第一段反応、該第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01〜1.50当量となるように水酸化アルカリ水溶液を添加し、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40〜60%まで酸化反応を行う第二段反応、第二段反応終了後pHを5〜9に一旦調整し、その後、反応溶液のpHを9.5以上に再調整した後、水可溶性ケイ酸塩を第一段反応で添加した水可溶性ケイ酸塩に対して20〜200%であって、第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下となるように添加し70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行う(第三段反応)ことを特徴とする本発明1〜7のいずれかに記載の黒色磁性酸化鉄粒子粉末の製造方法である(本発明8)。 Further, according to the present invention, a ferrous salt aqueous solution, an aqueous solution of an alkali hydroxide of 0.90 to 1.00 equivalent to a ferrous salt in the ferrous salt aqueous solution, and a ferrous salt solution Adjust the pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting 0.05 to 1.00 atomic% of water-soluble silicate in terms of Si to Fe to 8 to 9, 70 The first stage reaction which generates nuclear crystal magnetite particles by conducting an oxidation reaction until the oxidation reaction rate of iron is 7 to 12% by bubbling an oxygen-containing gas while heating to a temperature range of -100 ° C. An aqueous solution of alkali hydroxide is added so as to be 1.01 to 1.50 equivalents with respect to a ferrous salt reaction liquid containing nuclear crystal magnetite particles and ferrous hydroxide colloid after completion, and the temperature of 70 to 100 ° C. The oxidation reaction rate of iron reaches 40 to 60% by passing oxygen-containing gas while heating to the range. After the completion of the second stage reaction in which the second stage reaction is carried out, the pH is once adjusted to 5 to 9 and then the pH of the reaction solution is readjusted to 9.5 or more. a 20 to 200% relative to the water-soluble silicate added in stage reaction, added as elemental silicon to be added in the first stage reaction and the third stage reaction is 1.9 atomic% or less in total pressure The black magnetic iron oxide particles according to any one of the present inventions 1 to 7, characterized in that the oxidation reaction is carried out by passing an oxygen-containing gas while heating to a temperature range of 70 to 100 ° C (third step reaction). It is a method of producing a powder (Invention 8).

本発明に係る黒色磁性酸化鉄粒子粉末は八面体形状であって、粒子内部に含有されるケイ素元素の分布を一定にすることで黒色磁性酸化鉄粒子の結晶性が均一となり、平均粒子径が0.05〜0.30μmの微細粒子であっても黒色度に優れていることから、電子写真用磁性トナー用の磁性粒子粉末として好適に用いることができる。   The black magnetic iron oxide particle powder according to the present invention has an octahedral shape, and by making the distribution of the silicon element contained in the inside of the particle constant, the crystallinity of the black magnetic iron oxide particles becomes uniform, and the average particle diameter is Even fine particles of 0.05 to 0.30 [mu] m can be suitably used as magnetic particle powders for magnetic toners for electrophotography because they are excellent in blackness.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る黒色磁性酸化鉄粒子粉末について述べる。   First, the black magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る黒色磁性酸化鉄粒子粉末は、組成的にはマグネタイト((FeO)x・Fe、0<x≦1)からなる。The black magnetic iron oxide particle powder according to the present invention is compositionally composed of magnetite ((FeO) x · Fe 2 O 3 , 0 <x ≦ 1).

本発明に係る黒色磁性酸化鉄粒子粉末の粒子形状は八面体である。本発明では、粒子形状が八面体であることによって、黒色度が高い黒色磁性酸化鉄粒子粉末とするものである。   The particle shape of the black magnetic iron oxide particle powder according to the present invention is octahedral. In the present invention, the particle shape is octahedral to obtain a black magnetic iron oxide particle powder having a high degree of blackness.

本発明に係る黒色磁性酸化鉄粒子粉末は、鉄元素に対してケイ素元素換算で0.19〜1.90原子%のケイ素を含有する。ケイ素の含有量が0.19原子%未満では、黒色磁性酸化鉄の粒度分布が悪くなり黒色度に優れる磁性酸化鉄粒子を得ることができない。ケイ素の含有量が1.90原子%を超える場合、マグネタイト以外の副生成物が生成し、黒色度に優れる磁性酸化鉄粒子を得ることができない。好ましいケイ素の含有量は0.25〜1.87原子%であり、より好ましくは0.30〜1.85原子%である。   The black magnetic iron oxide particle powder according to the present invention contains silicon at 0.19 to 1.90 atomic percent in terms of silicon element based on iron element. When the content of silicon is less than 0.19 atomic%, the particle size distribution of the black magnetic iron oxide is deteriorated, and magnetic iron oxide particles excellent in blackness can not be obtained. When the content of silicon exceeds 1.90 atomic%, byproducts other than magnetite are generated, and magnetic iron oxide particles excellent in blackness can not be obtained. The preferred silicon content is 0.25 to 1.87 atomic percent, more preferably 0.30 to 1.85 atomic percent.

本発明に係る黒色磁性酸化鉄粒子粉末は、鉄元素溶解率(X%)が20<X20〜40≦40%、40<X40〜60≦60%、60<X60〜80≦80%の各範囲におけるケイ素元素溶解率(Y%)が、鉄元素溶解率10%におけるケイ素元素溶解率a%からなる下記式(1)、(2)を満足することを特徴とする黒色磁性酸化鉄粒子粉末である。The black magnetic iron oxide particle powder according to the present invention has an iron element dissolution rate (X%) of 20 <X 20 to 40 ≦ 40%, 40 <X 40 to 60 ≦ 60%, 60 <X 60 to 80 ≦ 80% The black magnetic iron oxide characterized in that the silicon element dissolution rate (Y%) in each range of the above satisfies the following formulas (1) and (2) consisting of the silicon element dissolution rate a% at an iron element dissolution rate of 10%. It is a particle powder.

{(100−a)X+100(a−10)}/90−10(1−a/100)≦Y≦{(100−a)X+100(a−10)}/90+10(1−a/100) ・・・(1)
10≦a≦80 ・・・(2)
(但し、10≦X≦100、10≦Y≦100)
{(100-a) X + 100 (a-10)} / 90-10 (1-a / 100) ≦ Y ≦ {(100-a) X + 100 (a-10)} / 90 + 10 (1-a / 100). (1)
10 ≦ a ≦ 80 (2)
(However, 10 ≦ X ≦ 100, 10 ≦ Y ≦ 100)

本発明に係る黒色磁性酸化鉄粒子粉末は、前記関係式を満たすことによって、微細でありながら、黒色度に優れた磁性酸化鉄粒子粉末を得るものである。
ここで、鉄元素溶解率(X)は粒子全体のFeに対する溶解したFeの割合であり、0%は溶解していない状態、100%はすべて溶解した状態である。また、ケイ素元素溶解率(Y)も同様に、0%はケイ素が溶解していない状態、100%は磁性酸化鉄粒子中に存在する全てのケイ素がすべて溶解された状態である。とくに、鉄元素溶解率が10%(X=10%)のときのケイ素元素溶解率を(a)とするものである。
The black magnetic iron oxide particle powder according to the present invention is to obtain magnetic iron oxide particle powder excellent in blackness while being fine by satisfying the above-mentioned relational expression.
Here, the iron element dissolution rate (X) is the ratio of dissolved Fe to Fe in the whole particle, 0% being in the undissolved state and 100% in the dissolved state. Similarly, in the silicon element dissolution rate (Y), 0% is a state in which silicon is not dissolved, and 100% is a state in which all silicon present in the magnetic iron oxide particles is completely dissolved. In particular, the silicon element dissolution rate when the iron element dissolution rate is 10% (X = 10%) is defined as (a).

式(1)は、黒色磁性酸化鉄粒子について、鉄元素溶解率(X)、鉄元素溶解率10%におけるケイ素元素溶解率(a)及びケイ素元素溶解率(Y)の関係を示したものであり、黒色磁性酸化鉄粒子中のSiの分布状態を示すものである。すなわち、本発明において、式(1)を満足するということは、各範囲での鉄元素溶解率(X)とケイ素元素溶解率(Y)とが、特定の狭い範囲(式(1)に示す範囲)で一致するということを示し、すなわち、鉄元素の溶解と共にケイ素元素も近い比率で溶解していくことであり、ケイ素元素が磁性酸化鉄内に均一に存在していることを意味するものである。なお、各範囲での鉄元素溶解率(X)は、その範囲内のいずれの溶解率を選択してもよく、鉄元素溶解率(X%)が20<X20〜40≦40%、40<X40〜60≦60%、60<X60〜80≦80%の各範囲において、それぞれ20〜40%、40〜60%、60〜80%の範囲内のいずれの点の測定値でケイ素元素溶解率(Y)を評価してもよい。なお、式(1)は鉄元素溶解率(X%)が20<X20〜40≦40%、40<X40〜60≦60%、60<X60〜80≦80%の各範囲において満足する必要がある。Formula (1) shows the relationship among iron element dissolution rate (X), silicon element dissolution rate (a) and silicon element dissolution rate (Y) at black iron oxide dissolution rate of 10%, for black magnetic iron oxide particles. It shows the distribution of Si in the black magnetic iron oxide particles. That is, in the present invention, to satisfy the formula (1) means that the iron element dissolution rate (X) and the silicon element dissolution rate (Y) in each range are shown in a specific narrow range (formula (1) Range), that is, the silicon element is dissolved at a similar ratio with the dissolution of the iron element, which means that the silicon element is uniformly present in the magnetic iron oxide. It is. In addition, iron element dissolution rate (X) in each range may select any dissolution rate within the range, and iron element dissolution rate (X%) is 20 <X 20-40 ≦ 40%, 40 In each range of <X 40 to 60 ≦ 60%, 60 <X 60 to 80 ≦ 80%, silicon measured at any point within the range of 20 to 40%, 40 to 60%, and 60 to 80%, respectively. The elemental dissolution rate (Y) may be evaluated. In addition, Formula (1) is satisfied in each range of iron element dissolution rate (X%) of 20 <X 20-40 ≦ 40%, 40 <X 40-60 ≦ 60%, 60 <X 60-80 ≦ 80%. There is a need to.

式(1)において、Yが下限値未満の場合には、粒子中心部にSiが多量に存在することになり好ましくない。また、Yが上限値を超える場合には、粒子表面近くにSiが多量に存在することになり好ましくない。すなわち、ある範囲での鉄元素溶解率(X)においてケイ素元素溶解率(Y)が下限値未満であるということは、その鉄元素溶解範囲までに溶解したケイ素元素の割合が鉄元素の溶解割合に比べて低すぎるということであり、まだ溶解していない粒子の中に溶解していないケイ素元素がまだ多量にあるということであり、ケイ素元素は粒子中心部に偏在化しており、均一に存在していないことになる。一方、ケイ素元素溶解率(Y)が上限値を超える場合は、その鉄元素溶解範囲までに溶解したケイ素元素の割合が鉄元素の溶解割合に比べて多すぎるということであり、すでに溶解した部分にケイ素元素が多量に含まれているということであり、ケイ素元素は粒子表面付近に偏在化しており、均一に存在していないことになる。   In the formula (1), when Y is less than the lower limit value, a large amount of Si is present in the center of the particle, which is not preferable. In addition, when Y exceeds the upper limit value, a large amount of Si is present near the particle surface, which is not preferable. That is, in the iron element dissolution rate (X) in a certain range, the silicon element dissolution rate (Y) is less than the lower limit value, the ratio of silicon element dissolved up to the iron element dissolution range is the dissolution rate of iron element It is too low compared to the above, and there is still a large amount of silicon element not dissolved in the undissolved particles, and the silicon element is localized at the center of the particle and is uniformly present. It will not be. On the other hand, when the silicon element dissolution rate (Y) exceeds the upper limit value, the ratio of silicon element dissolved to the iron element dissolution range is too large compared to the dissolution rate of iron element, and the already dissolved portion In this case, the silicon element is contained in a large amount, and the silicon element is localized near the particle surface and is not uniformly present.

式(2)において、aが下限値未満の場合には、粒子中心部にSiが多量に存在することになり好ましくない。また、aが上限値を超える場合には、粒子表面に過剰のSi成分が存在することになり好ましくない。より好ましくは10.5≦a≦75、更により好ましくは11.0≦a≦70である。   In the formula (2), when a is less than the lower limit value, a large amount of Si is present in the center of the particle, which is not preferable. In addition, when a exceeds the upper limit value, an excessive Si component is present on the particle surface, which is not preferable. More preferably, 10.5 ≦ a ≦ 75, and even more preferably, 11.0 ≦ a ≦ 70.

本発明に係る黒色磁性酸化鉄粒子中のナトリウム含有量は0.02〜0.10重量%が好ましい。より好ましいナトリウム含有量は0.03〜0.9重量%である。ナトリウム含有量を前記範囲に制御することによって吸湿性が高くならない点で好ましい。   The content of sodium in the black magnetic iron oxide particles according to the present invention is preferably 0.02 to 0.10% by weight. The more preferable sodium content is 0.03 to 0.9% by weight. It is preferable in that the hygroscopicity is not increased by controlling the sodium content to the above range.

また、本発明に係る黒色磁性酸化鉄粒子のナトリウム元素は、全鉄元素量に対して鉄元素溶解率50%のときのナトリウム元素溶解率が、全ナトリウム元素溶解量(全ナトリウム含有量)に対して50%以上であることが好ましい。これは、黒色磁性酸化鉄粒子中に存在するナトリウム元素は、粒子の中心部よりも表面近傍に多量に存在することを表している。より好ましくは、全鉄元素量に対して鉄元素溶解率50%のときのナトリウム元素溶解率が、全ナトリウム元素溶解量(全ナトリウム含有量)に対して55%以上であることが好ましい。   In the black magnetic iron oxide particles according to the present invention, the sodium element dissolution rate when the iron element dissolution rate is 50% with respect to the total iron element amount is the total sodium element dissolution amount (total sodium content). The proportion is preferably 50% or more. This indicates that the sodium element present in the black magnetic iron oxide particles is present in greater amounts in the vicinity of the surface than in the center of the particles. More preferably, it is preferable that the dissolution rate of sodium element when the dissolution rate of iron element is 50% with respect to the total amount of iron elements is 55% or more with respect to the total dissolution amount of sodium element (total sodium content).

本発明に係る黒色磁性酸化鉄粒子粉末の平均粒子径は0.05〜0.30μmが好ましい。平均粒子径が0.05μm未満の場合には、単位容積中の粒子が多くなり過ぎ粒子間の接点数が増えるため、粉体層間の付着力が大きくなり、磁性トナーとする場合に、樹脂中への分散性が悪くなる。平均粒子径が0.30μmを越える場合には、一個のトナー粒子中に含まれる黒色磁性酸化鉄粒子の個数が少なくなり、各トナー粒子について黒色磁性酸化鉄粒子の分布に偏りが生じ、その結果、トナーの帯電の均一性が損なわれる。より好ましい平均粒子径は0.07〜0.28μmの範囲である。   The average particle diameter of the black magnetic iron oxide particle powder according to the present invention is preferably 0.05 to 0.30 μm. When the average particle size is less than 0.05 μm, the number of particles in a unit volume increases excessively and the number of contact points between particles increases, so the adhesion between powder layers increases, and when it is used as a magnetic toner, in the resin Dispersion to When the average particle size exceeds 0.30 μm, the number of black magnetic iron oxide particles contained in one toner particle decreases, and the distribution of black magnetic iron oxide particles in each toner particle is uneven, and the result is as a result. And the uniformity of charging of the toner is impaired. A more preferable average particle size is in the range of 0.07 to 0.28 μm.

本発明に係る黒色磁性酸化鉄粒子粉末の粒度分布における変化係数が30%以下であることが好ましい。粒度分布の変化係数が30%以下であることによって、微粒子成分の影響が小さくなり黒色度が向上する。より好ましい変化係数は29%以下である。   The variation coefficient in the particle size distribution of the black magnetic iron oxide particle powder according to the present invention is preferably 30% or less. When the change coefficient of the particle size distribution is 30% or less, the influence of the fine particle component is reduced and the blackness is improved. A more preferable change coefficient is 29% or less.

本発明に係る黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23〜26μm(代表的には24μm)の塗膜のb*値が2以下であることが好ましい。前記b*値が2.0以下であることによって、優れた黒色度を有するものである。より好ましいb*値は0〜1.8である。   It is preferable that the b * value of the coating film with a film thickness of 23 to 26 μm (typically 24 μm) prepared using the black magnetic iron oxide particle powder according to the present invention is 2 or less. When the b * value is 2.0 or less, the blackness is excellent. More preferable b * value is 0 to 1.8.

また、本発明に係る黒色磁性酸化鉄粒子粉末を用いて作成した塗膜の膜厚を種々変化させて測定したa*が下記関係式を満たすことが好ましい。
a*(I):塗膜膜厚4〜6μm(代表的には5μm)でのa*値
a*(II):塗膜膜厚23〜26μm(代表的には24μm)でのa*値
α=a*(I)/a*(II)としたときに、1.0≦α≦2.0を満たす。前記αが1.0〜2.0であることによって、優れた黒色度を有するものである。より好ましいα値は1.1〜1.9である。
Moreover, it is preferable that a * which changed and measured the film thickness of the coating film created using the black magnetic iron oxide particle powder which concerns on this invention variously satisfy | fills the following relational expression.
a * (I): a * value at a coating film thickness of 4 to 6 μm (typically 5 μm) a * (II): a * value at a coating film thickness of 23 to 26 μm (typically 24 μm) When α = a * (I) / a * (II), 1.0 ≦ α ≦ 2.0 is satisfied. When the α is 1.0 to 2.0, the blackness is excellent. The more preferable α value is 1.1 to 1.9.

本発明に係る黒色磁性酸化鉄粒子粉末はBET比表面積が3〜30m/gが好ましい。より好ましくは4〜20m/gである。BET比表面積が3m/g未満の場合、平均粒子径が0.50μmを超えることとなり、上述した通り、トナー粒子とした場合にトナーの帯電の均一性が損なわれるとともに、着色力が小さくなり高解像度のトナーを得られない。BET比表面積が30m/gを超える場合、粉体層間の付着力が大きくなり、磁性トナーとする場合に、樹脂中への分散性が悪くなる。より好ましいBET比表面積は4〜20m/gである。The black magnetic iron oxide particles according to the present invention preferably have a BET specific surface area of 3 to 30 m 2 / g. More preferably, it is 4 to 20 m 2 / g. When the BET specific surface area is less than 3 m 2 / g, the average particle size exceeds 0.50 μm, and as described above, when it is used as toner particles, the charging uniformity of the toner is impaired and the coloring power is reduced. I can not get high resolution toner. When the BET specific surface area exceeds 30 m 2 / g, the adhesion between the powder layers becomes large, and in the case of using a magnetic toner, the dispersibility in the resin becomes worse. A more preferred BET specific surface area is 4 to 20 m 2 / g.

本発明に係る黒色磁性酸化鉄粒子の外部磁場796kA/m(10kOe)における飽和磁化が85.0〜92.0Am/kgが好ましく、より好ましくは86.0〜90.0Am/kgであり、特に高速複写機用のトナーとして用いた場合に好適である。Saturation magnetization of preferably 85.0~92.0Am 2 / kg in the external magnetic field 796 kA / m of the black magnetic iron oxide particles according to the present invention (10 kOe), more preferably be 86.0~90.0Am 2 / kg In particular, it is suitable when used as a toner for high speed copying machines.

本発明に係る黒色磁性酸化鉄粒子は、粒子表面にSi化合物またはAl化合物若しくはSi化合物及びAl化合物を有することが好ましく、Siを0.02〜1.0重量%含有し、Al量が0.02〜1.0重量%含有することが黒色磁性酸化鉄粒子に耐熱層形成のために好ましい。Al量、Si量が1.0重量%を超える場合には吸着水分量が増加する場合があり、トナーとした場合、トナーの環境安定性に影響を及ぼす場合がある。Al量、Si量が0.02重量%未満では、耐熱層として不十分である。   The black magnetic iron oxide particles according to the present invention preferably have a Si compound, an Al compound or a Si compound and an Al compound on the particle surface, contain 0.02 to 1.0% by weight of Si, and have an Al content of 0. It is preferable for the heat-resistant layer formation to the black magnetic iron oxide particles to contain 02 to 1.0% by weight. When the amount of Al or Si exceeds 1.0% by weight, the amount of adsorbed water may increase, and when it is used as a toner, it may affect the environmental stability of the toner. If the amount of Al and the amount of Si are less than 0.02% by weight, the heat-resistant layer is insufficient.

本発明に係る黒色磁性酸化鉄粒子粉末の成型体密度が2.7g/cm成型物の15Vの直流電圧印加時の電気抵抗値は1×10Ωcm以下が好ましく、より好ましくは8×10Ωcm以下である。The molded product density of the black magnetic iron oxide particles according to the present invention is preferably 2.7 × 10 5 Ωcm or less, more preferably 8 × 10 5 at a DC voltage of 15 g of a molded product of 2.7 g / cm 3. It is 4 Ωcm or less.

また、本発明の黒色磁性酸化鉄粒子粉末は、八面体形状であって、鉄元素に対してケイ素元素換算で0.19〜1.90原子%のケイ素を含有し、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23〜26μmのときの塗膜のb*値が2以下であり、
a*(I):塗膜膜厚4〜6μmでのa*値
a*(II):塗膜膜厚23〜26μmでのa*値
α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする黒色磁性酸化鉄粒子粉末である。上記黒色磁性酸化鉄粒子粉末は、上述の本発明1の式(1)、(2)を満足することが好ましく、また本発明2〜6の規定および上記記載を満足することが好ましい。
In addition, the black magnetic iron oxide particle powder of the present invention has an octahedral shape, and contains 0.19 to 1.90 atomic% silicon in terms of silicon element with respect to iron element, and black magnetic iron oxide particle powder The b * value of the coating film is 2 or less when the film thickness is 23 to 26 μm, prepared using
a * (I): a * value at a coating film thickness of 4 to 6 μm a * (II): a * value at a coating film thickness of 23 to 26 μm α = a * (I) / a * (II) When you
It is a black magnetic iron oxide particle powder characterized by satisfying 1.0 ≦ α ≦ 2.0. The black magnetic iron oxide particle powder preferably satisfies the above-mentioned formulas (1) and (2) of the first invention, and preferably satisfies the definitions of the second to sixth inventions and the above description.

次に、本発明に係る黒色磁性酸化鉄粒子粉末の製造法について述べる。   Next, the method for producing the black magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る黒色磁性酸化鉄粒子粉末は、第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し0.90〜1.00等量の水酸化アルカリ水溶液と、第一鉄塩溶液中のFeに対しSi換算で0.05〜1.00原子%の水可溶性ケイ酸塩とを反応させて得られた水酸化第一鉄コロイドを含む反応溶液のpHを8〜9に調整し、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が7〜12%まで酸化反応を行い、核晶マグネタイト粒子を生成させる第一段反応、該第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01〜1.50当量となるように水酸化アルカリ水溶液を添加し、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40〜60%まで酸化反応を行う第二段反応、第二段反応終了後pHを5〜9に一旦調整し、その後pHを9.5以上に再調整した後、水可溶性ケイ酸塩を第一段反応で添加した水可溶性ケイ酸塩に対して20〜200%(第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下)添加し70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行って(第三段反応)得ることができる。   A black magnetic iron oxide particle powder according to the present invention comprises a ferrous salt aqueous solution, an aqueous alkali hydroxide solution of 0.90 to 1.00 equivalents with respect to a ferrous salt in the ferrous salt aqueous solution, The pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting 0.05 to 1.00 atomic% of a water-soluble silicate in terms of Si to Fe in a monoiron salt solution Adjust to 9 and pass oxygen containing gas while heating to a temperature range of 70 to 100 ° C to perform oxidation reaction to 7 to 12% of iron oxidation reaction rate to generate nuclear crystal magnetite particles An aqueous alkali hydroxide solution is added in an amount of 1.01 to 1.50 equivalents with respect to the ferrous salt reaction solution containing the nucleated magnetite particles and ferrous hydroxide colloid after completion of the first stage reaction; Oxidation of iron by passing oxygen-containing gas while heating to a temperature range of 70 to 100 ° C. The second step reaction of oxidation reaction to 40 to 60% of the reaction rate, the pH is once adjusted to 5 to 9 after completion of the second step reaction, and then the pH is readjusted to 9.5 or more, and then the water-soluble silicic acid 20 to 200% (total of 1.9 at% or less of silicon element added in the first reaction and the third reaction) to the water-soluble silicate added in the first reaction The oxidation reaction can be carried out by passing oxygen-containing gas while heating to a temperature range of 100 ° C. (third stage reaction).

本発明における第一鉄塩水溶液としては、硫酸第一鉄水溶液、又は、硫酸第一鉄及び塩化第一鉄水溶液等を使用することができる。   As the ferrous salt aqueous solution in the present invention, ferrous sulfate aqueous solution, ferrous sulfate and ferrous chloride aqueous solution can be used.

本発明における水酸化アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物の水溶液、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属の水酸化物の水溶液、また、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等の炭酸アルカリ水溶液及びアンモニア水等を使用することができる。   The aqueous alkali hydroxide solution in the present invention includes an aqueous solution of an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide, an aqueous solution of an alkaline earth metal hydroxide such as magnesium hydroxide and calcium hydroxide, Aqueous alkali carbonate solutions such as sodium carbonate, potassium carbonate, ammonium carbonate and the like, aqueous ammonia and the like can be used.

第一段反応において水酸化アルカリ水溶液の添加量は、第一鉄塩水溶液中のFe2+に対して0.90〜1.0当量である。好ましくは0.92〜0.99当量の範囲である。0.90当量未満の場合には、針状晶ゲータイト粒子が混在してくる。1.0当量を超える場合には、ケイ素元素が取り込まれやすくなり、黒色度に優れる磁性酸化鉄粒子を得ることができない。The amount of the aqueous alkali hydroxide solution added in the first stage reaction is 0.90 to 1.0 equivalent with respect to Fe 2+ in the ferrous salt aqueous solution. Preferably, it is in the range of 0.92 to 0.99 equivalents. If it is less than 0.90 equivalent, needle-like goethite particles are mixed. When it exceeds 1.0 equivalent, the silicon element is easily taken in, and magnetic iron oxide particles excellent in blackness can not be obtained.

第一段反応において水可溶性ケイ酸塩の添加量は、第一鉄塩溶液中のFeに対しSi換算で0.05〜1.00原子%である。水可溶性ケイ酸塩の添加量が前記範囲外の場合には、ケイ素元素の分布が一定にはならず、黒色度に優れる磁性酸化鉄粒子を得ることができない。より好ましい水可溶性ケイ酸塩の添加量は0.07〜0.95原子%である。   The amount of water-soluble silicate added in the first stage reaction is 0.05 to 1.00 atomic% in terms of Si based on Fe in the ferrous salt solution. When the addition amount of the water-soluble silicate is out of the above range, the distribution of the silicon element is not constant, and magnetic iron oxide particles excellent in blackness can not be obtained. The more preferable addition amount of water-soluble silicate is 0.07 to 0.95 atomic%.

本発明において使用される水可溶性ケイ酸塩としては、ケイ酸ナトリウムや、ケイ酸カリウム等が使用できる。   As water-soluble silicates used in the present invention, sodium silicate, potassium silicate and the like can be used.

第一鉄塩水溶液、水酸化アルカリ水溶液及び水可溶性ケイ酸塩を反応させた反応溶液のpHを8〜9に調整する。反応溶液のpHを前記範囲に調整することによって、粒子中心部のSi分布を抑制できる。   The pH of the reaction solution obtained by reacting the aqueous ferrous salt solution, the aqueous alkali hydroxide solution and the water-soluble silicate is adjusted to 8-9. By adjusting the pH of the reaction solution to the above range, it is possible to suppress the Si distribution at the center of the particle.

反応溶液のpHを調製した後、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気する。70℃未満である場合には、針状晶ゲータイト粒子が混在してくる。100℃を越える場合もマグネタイト粒子は生成するが、オートクレーブ等の装置を必要とするため工業的に容易ではない。より好ましい温度範囲は75〜98℃である。   After adjusting the pH of the reaction solution, the oxygen-containing gas is bubbled while heating to a temperature range of 70 to 100 ° C. When the temperature is less than 70 ° C., needle-like goethite particles are mixed. When the temperature exceeds 100 ° C., magnetite particles are formed, but this is not industrially easy because an apparatus such as an autoclave is required. A more preferable temperature range is 75 to 98 ° C.

酸化手段は酸素含有ガス(例えば、空気)を液中に通気することにより行う。   The oxidation means is performed by venting an oxygen-containing gas (for example, air) into the liquid.

本発明では、反応溶液に酸素含有ガスを通気して、鉄の酸化反応率が7〜12%まで酸化反応を行って、核晶マグネタイト粒子を生成させる第一段反応とする。酸化反応率が7%未満では、黒色磁性酸化鉄の粒度分布が悪くなり黒色度に優れる磁性酸化鉄粒子を得ることができない。12%を超えると八面体以外の六面体、多面体や球状の粒子が混入してくる。より好ましい酸化反応率は8〜11である。鉄の酸化反応率を7〜12%に調整する方法としては、後述する実施例に示す方法で反応溶液中のFe2+含有量を経時的に測定して酸化反応率(%)を求めながら、上記範囲の酸化反応率となった時点で第一段反応を終了させる。In the present invention, an oxygen-containing gas is bubbled through the reaction solution to carry out the oxidation reaction to an iron oxidation reaction rate of 7 to 12%, thereby forming a first-stage reaction that produces nuclear crystal magnetite particles. When the oxidation reaction rate is less than 7%, the particle size distribution of the black magnetic iron oxide is deteriorated, and magnetic iron oxide particles excellent in blackness can not be obtained. If it exceeds 12%, hexahedrons other than octahedrons, polyhedrons and spherical particles are mixed. A more preferable oxidation reaction rate is 8-11. As a method of adjusting the oxidation reaction rate of iron to 7 to 12%, the Fe 2+ content in the reaction solution is measured over time by the method shown in the examples described later to obtain the oxidation reaction rate (%), When the oxidation reaction rate in the above range is reached, the first stage reaction is terminated.

前記第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01〜1.50当量となるように水酸化アルカリ水溶液を添加する。水酸化アルカリ水溶液の添加量が1.01当量未満の場合には、八面体以外の六面体、多面体や球状の粒子が混入してくる。水酸化アルカリ水溶液の添加量が1.5当量を超える場合には、粒度分布が大きくなり、均一な粒子径のものが得られない。より好ましい水酸化アルカリ水溶液の添加量は、1.02〜1.48である。   An aqueous alkali hydroxide solution is added so as to be 1.01 to 1.50 equivalents with respect to the ferrous salt reaction solution containing the nucleated magnetite particles and ferrous hydroxide colloid after completion of the first stage reaction. When the addition amount of the aqueous alkali hydroxide solution is less than 1.01 equivalent, hexahedrons, polyhedrons and spherical particles other than octahedrons are mixed. When the addition amount of the aqueous alkali hydroxide solution exceeds 1.5 equivalents, the particle size distribution becomes large, and a uniform particle size can not be obtained. The addition amount of the aqueous alkali hydroxide solution is more preferably 1.02 to 1.48.

70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40〜60%まで酸化反応を行う第二段反応を行う。70℃未満である場合には、針状晶ゲータイト粒子が混在してくる。100℃を越える場合もマグネタイト粒子は生成するが、オートクレーブ等の装置を必要とするため工業的に容易ではない。   While heating to a temperature range of 70 to 100 ° C., an oxygen-containing gas is passed to perform a second step reaction in which the oxidation reaction rate of iron is oxidized to 40 to 60%. When the temperature is less than 70 ° C., needle-like goethite particles are mixed. When the temperature exceeds 100 ° C., magnetite particles are formed, but this is not industrially easy because an apparatus such as an autoclave is required.

本発明の第二段反応では反応溶液に酸素含有ガスを通気して、鉄の酸化反応率が40〜60%まで酸化反応を行う。酸化反応率が40%未満では、後段の酸化反応が長くなり粒度分布が大きくなり、均一な粒子径のものが得られない。60%を超えると第三段反応における酸化反応が短くなり粒度分布が大きくなり、均一な粒子径のものが得られない。鉄の酸化反応率を40〜60%に調整する方法としては、後述する実施例に示す方法で反応溶液中のFe2+含有量を経時的に測定して酸化反応率(%)を求めながら、上記範囲の酸化反応率となった時点で第二段反応を終了させる。In the second stage reaction of the present invention, an oxygen-containing gas is passed through the reaction solution to carry out the oxidation reaction to an iron oxidation reaction rate of 40 to 60%. If the oxidation reaction rate is less than 40%, the oxidation reaction in the latter stage becomes long, the particle size distribution becomes large, and a uniform particle size can not be obtained. If it exceeds 60%, the oxidation reaction in the third step reaction becomes short, the particle size distribution becomes large, and a uniform particle size can not be obtained. As a method of adjusting the oxidation reaction rate of iron to 40 to 60%, the Fe 2+ content in the reaction solution is measured over time by the method shown in the examples described later to obtain the oxidation reaction rate (%), When the oxidation reaction rate in the above range is reached, the second stage reaction is terminated.

前記第二段反応終了後、反応溶液のpHを、一旦、5〜9に調整する(中継条件)。前記pHの範囲に調整しない場合には、水酸化第一鉄コロイドを含む第一鉄反応水溶液の粘性が高くなり、反応温度の均一性や反応速度の均一性が損なわれ、結果として粒子の結晶成長速度が不均一となり結晶性が悪く、均一な粒子径のものが得られない。   After completion of the second stage reaction, the pH of the reaction solution is temporarily adjusted to 5 to 9 (relay conditions). If the pH is not adjusted, the viscosity of the aqueous ferrous reaction solution containing ferrous hydroxide colloid becomes high, the uniformity of the reaction temperature and the uniformity of the reaction rate are impaired, and as a result, the crystals of the particles are formed. The growth rate is nonuniform, the crystallinity is poor, and particles having a uniform particle size can not be obtained.

その後、反応溶液のpHを9.5以上に再調整する。使用する水酸化アルカリ水溶液の量は残存するFe2+に対して1.00当量以上である。1.00当量未満の場合、残存するFe2+が全量沈殿しない場合がある。実用上、1.00当量以上であって工業性を考慮した量が好ましい。Thereafter, the pH of the reaction solution is readjusted to 9.5 or more. The amount of the aqueous alkali hydroxide solution used is at least 1.00 equivalent to the remaining Fe 2+ . If it is less than 1.00 equivalent, the total amount of remaining Fe 2+ may not be precipitated. For practical use, an amount of 1.00 equivalent or more in consideration of industrial efficiency is preferable.

前記第二段反応を行った反応溶液に、再度、水可溶性ケイ酸塩を添加する。第三段反応において、添加する水可溶性ケイ酸塩は、第一段反応で添加した水可溶性ケイ酸塩に対してモル比で20〜200%であり、第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下であることが好ましい。   The water soluble silicate is again added to the reaction solution subjected to the second stage reaction. In the third stage reaction, the water-soluble silicate to be added is 20 to 200% in molar ratio to the water-soluble silicate added in the first stage reaction, and the first stage reaction and the third stage reaction The total amount of silicon elements to be added is preferably 1.9 atomic% or less.

次いで、反応溶液を70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行う。より好ましい温度範囲は72〜98℃である。   Then, while the reaction solution is heated to a temperature range of 70 to 100 ° C., an oxidation reaction is carried out by bubbling an oxygen-containing gas. A more preferred temperature range is 72-98 ° C.

また、黒色磁性酸化鉄粒子の粒子表面に、Al、又はAl及びSiからなる化合物を形成する場合には、第二段反応終了後の黒色磁性酸化鉄粒子を含む懸濁液中に水可溶性アルミニウム塩、又は水可溶性アルミニウム塩及び水可溶性塩珪酸塩をAl量が0.02から1.0重量%、Si量が0.02〜1.0重量%になるように添加した後、pHを5〜9の範囲に調整してSiとAlを黒色磁性酸化鉄粒子表面に析出沈着させることにより得ることができる。   Also, when forming a compound consisting of Al or Al and Si on the particle surface of the black magnetic iron oxide particles, the water-soluble aluminum in the suspension containing the black magnetic iron oxide particles after completion of the second stage reaction After adding salts or water-soluble aluminum salts and water-soluble salt silicates so that the amount of Al is 0.02 to 1.0% by weight and the amount of Si is 0.02 to 1.0% by weight, the pH is 5 It can be obtained by depositing Si and Al on the surface of the black magnetic iron oxide particles by adjusting to a range of ̃9.

<作用>
本発明に係る黒色磁性酸化鉄粒子粉末は、八面体形状であって粒子内部に含有されるケイ素元素の分布を一定にすることにより、塗膜膜厚が薄くなってもa*の値が小さく黒色度に優れるものであり、磁性トナーとして使用した場合においても黒色度の優れているものである。
<Function>
The black magnetic iron oxide particle powder according to the present invention has an octahedral shape, and by making the distribution of silicon element contained in the inside of the particles constant, the value of a * is small even if the coating film thickness becomes thin. It is excellent in blackness and is excellent in blackness even when used as a magnetic toner.

本発明に係る黒色磁性酸化鉄粒子粉末は、八面体形状であって粒子内部に含有されるケイ素元素の分布を一定にすることができたので、黒色度に優れたマグネタイト粒子とすることができたものである。   The black magnetic iron oxide particle powder according to the present invention has an octahedral shape and can keep the distribution of the silicon element contained in the inside of the particle constant, so that magnetite particles excellent in blackness can be obtained. It is

本発明の代表的な実施例は次の通りである。   Representative examples of the present invention are as follows.

形状・平均粒子径・変化係数:
黒色磁性酸化鉄粒子の粒子形状及び平均粒子径は、「走査型電子顕微鏡S−4800」((株)日立ハイテクノロジーズ製)により観察し、電子顕微鏡写真から測定した数値の平均値で示した。
Shape, average particle size, change coefficient:
The particle shape and the average particle diameter of the black magnetic iron oxide particles were observed by "Scanning Electron Microscope S-4800" (manufactured by Hitachi High-Technologies Corp.), and were shown by the average value of the values measured from the electron micrograph.

粒度分布における変化係数は個数分布の標準偏差σを平均粒子径で割って100をかけて%で表わした。   The variation coefficient in the particle size distribution was expressed as% by dividing the standard deviation σ of the number distribution by the average particle size and multiplying by 100.

比表面積:
比表面積は「Mono Sorb MS−II」(湯浅アイオニックス株式会社製)を用いて比表面積はBET法により測定した値で示した。
Specific surface area:
The specific surface area was shown by the value measured by BET method using "Mono Sorb MS-II" (made by Yuasa Ionix Co., Ltd.).

酸化反応率:
第一段反応および第二段反応の第一鉄塩の酸化反応率は、反応溶液中のFe2+含有量を測定し、下記式によって算出した。
(A−B)÷A×100=酸化反応率(%)
但し、Aは第一鉄塩水溶液とアルカリ水溶液との混合直後の反応溶液中のFe2+の含有量、Bは水酸化第一鉄とマグネタイト粒子との混合物を含む第一鉄塩反応溶液中のFe2+含有量である。
Oxidation rate:
The oxidation reaction rate of the ferrous salt in the first stage reaction and the second stage reaction was calculated according to the following equation by measuring the Fe 2+ content in the reaction solution.
(AB) ÷ A × 100 = oxidation reaction rate (%)
Where A is the content of Fe 2+ in the reaction solution immediately after mixing the aqueous ferrous salt solution and the aqueous alkali solution, and B is the ferrous salt reaction solution containing a mixture of ferrous hydroxide and magnetite particles. Fe 2+ content.

SiおよびAl元素量:
黒色磁性酸化鉄粒子粉末のSi量及びAl量は「蛍光X線分析装置RIX−2100」(理学電気工業株式会社製)にて測定し、黒色磁性酸化鉄粒子粉末に対して元素換算で求めた値である。
Si and Al elemental amounts:
The amount of Si and the amount of Al of the black magnetic iron oxide particle powder were measured by "Fluorescent X-ray analyzer RIX-2100" (manufactured by Rigaku Denki Kogyo Co., Ltd.), and determined in terms of element with respect to the black magnetic iron oxide particle powder. It is a value.

表面Si量:
黒色磁性酸化鉄粒子粉末の粒子表面のSi量は、黒色磁性酸化鉄粒子粉末とイオン交換水を混合した後、分散させて懸濁液としたものを水酸化アルカリ水溶液と混合して30分間以上攪拌した後、懸濁液を濾過、乾燥して得られた黒色磁性酸化鉄粒子粉末のSi量を測定し、前記アルカリによる処理前の全Si量との差をもって粒子表面のSi量とした。
Surface Si content:
The amount of Si on the particle surface of the black magnetic iron oxide particle powder is obtained by mixing the black magnetic iron oxide particle powder and ion-exchanged water, and then dispersing it to form a suspension and mixing it with an aqueous alkali hydroxide solution for 30 minutes or more After stirring, the suspension was filtered and dried, the amount of Si of the black magnetic iron oxide particle powder obtained was measured, and the difference with the total amount of Si before the treatment with the alkali was taken as the amount of Si on the particle surface.

ケイ素元素およびナトリウム元素溶解率:
鉄元素の溶解率に対するケイ素元素およびナトリウム元素の溶解率は、次の方法により求めることができる。
3mol/lの塩酸溶液3Lに黒色磁性酸化鉄粒子粉末30gを懸濁させる。ついで50℃に黒色磁性酸化鉄粒子懸濁塩酸溶液を保ち、黒色磁性酸化鉄粒子が全て溶解するまで一定時間毎にサンプリングし、これをメンブランフィルタで濾過し濾液を得る。この濾液を誘導プラズマ原子発光分光光度計で鉄元素及びケイ素元素の定量を行う。鉄元素溶解率およびケイ素元素溶解率は、次式により計算される。
Elemental silicon and elemental sodium dissolution rates:
The dissolution rate of elemental silicon and elemental sodium relative to the dissolution rate of elemental iron can be determined by the following method.
30 g of black magnetic iron oxide particles are suspended in 3 L of 3 mol / l hydrochloric acid solution. Next, the black magnetic iron oxide particle-suspended hydrochloric acid solution is kept at 50 ° C., sampling is carried out at regular intervals until all the black magnetic iron oxide particles are dissolved, and this is filtered with a membrane filter to obtain a filtrate. This filtrate is subjected to determination of elemental iron and elemental silicon with an inductively-plasma atomic emission spectrophotometer. The elemental iron dissolution rate and the elemental silicon dissolution rate are calculated by the following equations.

鉄元素溶解率(%)=サンプル中の鉄元素濃度(mg/l)/完全に溶解したときの鉄元素濃度(mg/l)×100
ケイ素元素溶解率(%)=サンプル中のケイ素元素濃度(mg/l)/完全に溶解したときのケイ素元素濃度(mg/l)×100
ナトリウム素元素溶解率(%)=サンプル中のナトリウム元素濃度(mg/l)/完全に溶解したときのナトリウム元素濃度(mg/l)×100
Elemental iron dissolution rate (%) = elemental iron concentration in the sample (mg / l) / elemental iron concentration when completely dissolved (mg / l) × 100
Elemental silicon dissolution rate (%) = elemental silicon concentration in sample (mg / l) / elemental silicon concentration when completely dissolved (mg / l) x 100
Sodium element dissolution rate (%) = elemental sodium concentration in the sample (mg / l) / elemental sodium concentration when completely dissolved (mg / l) × 100

塗膜色特性:
黒色磁性酸化鉄粒子粉末を用いた塗膜のa*値、b*値は、以下のようにして測定した。
ポリエステル樹脂8gをトルエン20gに溶解させる。このトルエンにポリエステル樹脂が溶解した溶液に黒色磁性酸化鉄粒子粉末8gと1.5mmφガラスビーズ50gを加えペイントコンディショナーで4時間分散させ分散液を得る。この分散液をウエットの膜厚が12μm、40μm、100μmのバーを用いてキャストコート紙上にバーコーターを用いて塗布する。乾燥後、分光測色濃度計X−rite939を用いて測色する。
Coating color characteristics:
The a * value and the b * value of the coating film using the black magnetic iron oxide particle powder were measured as follows.
8 g of polyester resin is dissolved in 20 g of toluene. 8 g of black magnetic iron oxide particle powder and 50 g of 1.5 mmφ glass beads are added to a solution in which a polyester resin is dissolved in toluene, and dispersed with a paint conditioner for 4 hours to obtain a dispersion. This dispersion is applied on cast coated paper using a bar with a wet film thickness of 12 μm, 40 μm, and 100 μm. After drying, the color is measured using a spectrometric densitometer X-rite 939.

塗布膜の膜厚はデジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて、先ず、キャストコート紙の厚み(A)を測定する。次に、キャストコート紙と該キャストコート紙上に形成された塗布膜の厚み(B)(キャストコート紙の厚みと塗布膜の厚みとの総和)を同様にして測定する。塗布膜の膜厚は(B)−(A)であり、30回測定を行いその平均値を塗布膜の膜厚とした。   First, the thickness (A) of cast coated paper is measured using a digital electronic micrometer K351C (manufactured by Adachi Electric Co., Ltd.). Next, the cast coated paper and the thickness (B) of the coating film formed on the cast coated paper (the sum of the thickness of the cast coated paper and the thickness of the coated film) are measured in the same manner. The film thickness of the coating film was (B)-(A), and measurement was performed 30 times, and the average value was made into the film thickness of the coating film.

電気抵抗:
黒色磁性酸化鉄粒子粉末の電気抵抗値は、測定対象の粒子粉末0.5gを秤量し、KBr錠剤成形器(島津製作所製)を用い、ハンドプレス(島津製作所製 SSP−10型)のゲージ読み値で14MPaの圧力で10秒間、加圧成形する(この条件で、密度が2.7g/cm程度の成型体が得られるが、他の成形器を使用する場合は、適宜、密度が2.7g/cm程度となる条件を設定すればよい。なお、密度が2.5〜2.8g/cm大幅に超える場合には、電気抵抗値が変化し、測定値の比較が困難となる。)。次に、加圧成形した試料をステンレス電極間にセットする。その際、電極間をフッ素樹脂性ホルダーで外部と完全に隔離する。セットした試料にホイーストンブリッジ(横河電機社製 TYPE 2768型)で15Vの電圧を印加して抵抗値を測定する。そのときの測定値R(Ω)と試料の電極面積A(cm)および厚みt(cm)を測定し、下記の式により体積固有抵抗値X(Ωcm)を計算する。
X=R/(A/t)
Electrical resistance:
The electrical resistance value of the black magnetic iron oxide particle powder was obtained by weighing 0.5 g of the particle powder to be measured, and using a KBr tablet molding machine (manufactured by Shimadzu Corporation), the gauge reading of a hand press (SSP-10 manufactured by Shimadzu Corporation) The pressure molding is performed for 10 seconds at a pressure of 14 MPa in this value (under this condition, a molded body with a density of about 2.7 g / cm 3 can be obtained, but when using another molding machine, the density is appropriately 2 The condition should be set to about 7 g / cm 3. If the density greatly exceeds 2.5 to 2.8 g / cm 3 , the electrical resistance value changes, making it difficult to compare the measured values. Become.). Next, the pressure-molded sample is set between the stainless steel electrodes. At this time, the electrodes are completely isolated from the outside with a fluoroplastic holder. The resistance value is measured by applying a voltage of 15 V to the set sample with a Wheaton Bridge (Type 2768 type manufactured by Yokogawa Electric Corporation). The measured value R (Ω) at that time and the electrode area A (cm 2 ) and thickness t (cm) of the sample are measured, and the volume specific resistance value X (Ω cm) is calculated by the following equation.
X = R / (A / t)

実施例1:
Fe2+:1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+:24mol)と3.0Nの水酸化ナトリウム溶液15.2l(Fe2+に対し0.95当量に該当する。)を混合し、pH8.2に調整して第一鉄塩懸濁液の生成を行った。この際、ケイ素成分として3号水ガラス(SiO:28.8wt%)13.3g(Feに対してSi換算で0.25原子%に該当する。)を0.5lのイオン交換水に希釈したものを、あらかじめ、水酸化ナトリウムに添加した。上記第一鉄塩懸濁液を温度90℃において毎分70lの空気を通気して、第一鉄塩の酸化反応率が10%になるところまで酸化反応を行い、マグネタイト核晶粒子を含む第一鉄塩懸濁液を得た(第一段反応)。
Example 1:
Fe 2+ : A mixture of 16 l of an aqueous ferrous sulfate solution containing 1.5 mol / l (Fe 2+ : 24 mol) and 15.2 l of a 3.0 N sodium hydroxide solution (corresponding to 0.95 equivalents to Fe 2+ ) is mixed. And adjusted to pH 8.2 to produce a ferrous salt suspension. At this time, 13.3 g of a No. 3 water glass (SiO 2 : 28.8 wt%) (corresponding to 0.25 atomic% in terms of Si based on Fe) as a silicon component is diluted in 0.5 l of ion-exchanged water Were added to sodium hydroxide in advance. The above ferrous salt suspension is aerated at 70.degree. C. at a temperature of 90.degree. C. to carry out an oxidation reaction until the oxidation reaction rate of the ferrous salt reaches 10%. A monoiron salt suspension was obtained (first stage reaction).

次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に3.0Nの水酸化ナトリウム溶液3.2lを加え(Fe2+ に対し1.15当量に該当する。)、温度90℃において毎分70lの空気を通気して、第一鉄塩の酸化反応率が50%になるところまで酸化反応を行った(第二段反応)。Then, 3.2 l of 3.0 N sodium hydroxide solution is added to the ferrous salt suspension containing the magnetite nuclear crystal particles (corresponding to 1.15 equivalents with respect to Fe 2+ ), and at a temperature of 90 ° C. A portion of 70 l of air was bubbled to carry out the oxidation reaction until the oxidation reaction rate of the ferrous salt became 50% (second stage reaction).

次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に16.1Nの硫酸を適量加えpH8に調整した(中継条件)。   Then, an appropriate amount of 16.1 N sulfuric acid was added to the ferrous salt suspension containing the magnetite nucleated crystal particles to adjust to pH 8 (relay condition).

次いで、3.0Nの水酸化ナトリウム溶液を適量加えpH10.5調整した。この際、ケイ素成分として3号水ガラス(SiO 28.8wt%)21.3g(Feに対してSi換算で0.40原子%に相当する。第一段反応で添加した水可溶性ケイ酸塩に対して160%であり、第一段反応と第三段反応で添加するケイ素元素の合計は0.65原子%である)を0.5lのイオン交換水に希釈したものを上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に添加し、温度90℃において毎分70lの空気を通気してマグネタイト粒子を生成させた(第三段反応)。Then, an appropriate amount of 3.0 N sodium hydroxide solution was added to adjust the pH to 10.5. At this time, 21.3 g of No. 3 water glass (SiO 2 28.8 wt%) (corresponding to 0.40 atomic% in terms of Si based on Fe) as a silicon component. Water-soluble silicate added in the first step reaction And the total of silicon elements added in the first step reaction and the third step reaction is 0.65 atomic%) diluted in 0.5 l of ion-exchanged water to the above magnetite nucleus crystals. It was added to the ferrous salt suspension containing the particles and air was blown at 70 l / min at a temperature of 90 ° C. to produce magnetite particles (third stage reaction).

生成粒子は、常法により、水洗、濾別、乾燥、粉砕した。得られたマグネタイト粒子は八面体であり、平均粒子径が0.14μm、粒度分布における変化係数が26%、Si含有量が0.65原子%であった。   The produced particles were washed with water, separated by filtration, dried and crushed by a conventional method. The obtained magnetite particles were octahedron, and had an average particle diameter of 0.14 μm, a variation coefficient in particle size distribution of 26%, and an Si content of 0.65 atomic%.

また、鉄元素溶解率10%におけるケイ素元素溶解率(a)が10.8%、鉄元素溶解率が20<X20〜40≦40%、40<X40〜60≦60%、60<X60〜80≦80%の各範囲におけるケイ素元素溶解率(Y)はX20〜40の鉄元素溶解率が31.6%でケイ素元素溶解率は32.5%、X40〜60の鉄元素溶解率が53.6%でケイ素元素溶解率は53.9%、X60〜80の鉄元素溶解率が72.8%でケイ素元素溶解率は71.2%であり、鉄元素溶解率50%におけるナトリウム元素溶解率は63%であった。In addition, silicon element dissolution rate (a) at an iron element dissolution rate of 10% is 10.8%, iron element dissolution rate is 20 <X 20 to 40 ≦ 40%, 40 <X 40 to 60 ≦ 60%, 60 <X The dissolution rate of silicon element (Y) in each range of 60 to 80 ≦ 80% is 31.6% for iron element dissolution rate of X 20 to 40 and 32.5% for iron element dissolution rate, iron element for X 40 to 60 The dissolution rate is 53.6%, the dissolution rate of silicon element is 53.9%, the dissolution rate of iron element of X 60 to 80 is 72.8%, the dissolution rate of silicon element is 71.2%, and the dissolution rate of iron element is 50 The elemental sodium dissolution rate in% was 63%.

また、この黒色磁性粒子粉末は、塗膜膜厚24μmでのb*値は0.3、a*値(a*(II))は0.4、塗膜膜厚5μmでのa*値(a*(I))は0.5で、塗膜膜厚5μmのa*値の塗膜膜厚24μmでのa*値に対する比α(a*(I)/a*(II))は1.3であった。   Further, this black magnetic particle powder has a b * value of 0.3 at a coating film thickness of 24 μm, an a * value (a * (II)) of 0.4, and an a * value at a coating film thickness of 5 μm ( The a * (I) is 0.5, and the ratio α (a * (I) / a * (II)) of the a * value of the coating film thickness 5 μm to the a * value at the coating film thickness 24 μm is 1 It was .3.

また、この黒色磁性粒子粉末の電気抵抗が5×10Ωcmであった。この黒色磁性粉末は、粒子内部に含有されるケイ素元素の分布が一定で、黒色度に優れているものであった。Moreover, the electrical resistance of this black magnetic particle powder was 5 × 10 4 Ωcm. The black magnetic powder had a uniform distribution of silicon element contained in the inside of the particles and was excellent in blackness.

実施例2〜12、比較例5〜9:
第一段反応における当量比、ケイ素元素量、酸化反応率10%までのpH、第二段反応における当量比、酸化反応率、中継条件のpH、第三段反応におけるpH、ケイ素元素量を表に示すように変更した以外は実施例1と同様にして、黒色磁性粉末を得た。
またSiおよびAlの被覆層は、マグネタイト粒子を含む懸濁液にケイ素成分として3号水ガラス、アルミニウム成分として1.9mol/lの硫酸アルミニウム溶液1用いて表に示すように適量加えpH7に調整し、被覆層を形成した。
Examples 2 to 12 and Comparative Examples 5 to 9:
The equivalent ratio in the first stage reaction, the amount of silicon element, the pH up to 10% oxidation reaction ratio, the equivalent ratio in the second stage reaction, the oxidation reaction ratio, the pH of relay condition, the pH in the third stage reaction, the amount of silicon element A black magnetic powder was obtained in the same manner as in Example 1 except that it was changed as shown in Table 1.
In addition, the coating layer of Si and Al is adjusted to pH 7 by adding a suitable amount of suspension containing magnetite particles to the No. 3 water glass as silicon component and aluminum sulfate solution 1 of 1.9 mol / l as aluminum component as shown in the table. And formed a covering layer.

比較例1:
Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+ 24mol)と3.0Nの水酸化ナトリウム溶液16.8l(Fe2+に対し1.05当量に該当する。)を混合し、第一鉄塩懸濁液の生成を行った。この際、ケイ素成分として3号水ガラス(SiO 28.8wt%)を75.7g(Feに対してSi換算で1.42原子%に該当する。)を0.5lのイオン交換水に希釈したものを水酸化ナトリウムに添加した。上記第一鉄塩懸濁液を温度90℃において毎分70lの空気を通気して酸化反応を行い、マグネタイト粒子を生成した。
Comparative Example 1:
Fe 2+ 1.5 mol / l containing ferrous solution 16l sulfate (Fe 2+ 24 mol) and sodium hydroxide 3.0N solution 16.8l (Fe 2+ to 1.05 corresponds to eq.) Were mixed, A ferrous salt suspension was produced. Under the present circumstances, 75.7g (it corresponds to 1.42 atomic% in conversion of Si with respect to Fe) is diluted to 0.5 liter ion-exchange water as No. 3 water glass (SiO 2 28.8wt%) as a silicon component. Was added to sodium hydroxide. The above ferrous salt suspension was subjected to an oxidation reaction at a temperature of 90 ° C. by passing air at 70 l / min to produce magnetite particles.

比較例2:
Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+ 24mol)にケイ素成分として3号水ガラス(SiO 28.8wt%)を80.0g(Feに対してSi換算で1.50原子%に該当する。)0.5lのイオン交換水に希釈し添加した。この水溶液と3.0Nの水酸化ナトリウム溶液16.3l(Fe2+に対し1.02当量に該当する。)を混合し、第一鉄塩懸濁液を得た。水酸化ナトリウム溶液を用いて、この第一鉄塩懸濁液のpHを12に調整した。上記第一鉄塩懸濁液を温度90℃において毎分30lの空気を通気して酸化反応を行い、酸化反応率が50%を越えた時点で通気量を毎分20lに減少させた。更に酸化反応率が75%を越えた時点で通気量を毎分10lに減少させた。そして酸化反応率が90%を越えた時点で通気量を毎分5lに減少させFe2+イオンがなくなるまで酸化を行い、マグネタイト粒子を生成した。
Comparative example 2:
1 in terms of Si with respect to ferrous sulfate aqueous solution 16l (Fe 2+ 24mol) No. 3 water glass (SiO 2 28.8wt%) as the silicon component 80.0 g (Fe containing Fe 2+ 1.5mol / l. (Equivalent to 50 atomic%)) diluted with 0.5 l of ion exchange water and added. This aqueous solution was mixed with 16.3 l of a 3.0 N sodium hydroxide solution (corresponding to 1.02 equivalents to Fe 2+ ) to obtain a ferrous salt suspension. The pH of this ferrous salt suspension was adjusted to 12 using sodium hydroxide solution. The above ferrous salt suspension was subjected to an oxidation reaction at a temperature of 90 ° C. by passing air at a rate of 30 l / min, and when the oxidation conversion exceeded 50%, the aeration amount was reduced to 20 l / min. Furthermore, the air flow rate was reduced to 10 l / min when the oxidation conversion exceeded 75%. Then, when the oxidation conversion rate exceeded 90%, the aeration amount was reduced to 5 l / min, and oxidation was performed until Fe 2+ ions disappeared, to generate magnetite particles.

比較例3:
Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+ 24mol)と3.0Nの水酸化ナトリウム溶液18.4l(Fe2+に対し1.15当量に該当する。)を混合し、第一鉄塩懸濁液の生成を行った。上記第一鉄塩懸濁液を温度90℃において毎分70lの空気を通気して、第一鉄塩の酸化反応率が50%になるところまで酸化反応を行い、マグネタイト核晶粒子を含む第一鉄塩懸濁液を得た(第一段反応)。
Comparative example 3:
Fe 2+ 1.5 mol / l containing ferrous solution 16l sulfate (Fe 2+ 24 mol) and sodium hydroxide 3.0N solution 18.4l (Fe 2+ to 1.15 corresponds to eq.) Were mixed, A ferrous salt suspension was produced. The above ferrous salt suspension is aerated at 70.degree. C. at a temperature of 90.degree. C. to carry out an oxidation reaction until the oxidation conversion of the ferrous salt reaches 50%. A monoiron salt suspension was obtained (first stage reaction).

次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に16.1Nの硫酸を適量加えpH8に調整した(中継条件)。   Then, an appropriate amount of 16.1 N sulfuric acid was added to the ferrous salt suspension containing the magnetite nucleated crystal particles to adjust to pH 8 (relay condition).

次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に3.0Nの水酸化ナトリウム溶液9.2lを加え(残存するFe2+ に対し1.15当量に該当する。)、この際、ケイ素成分として3号水ガラス(SiO 28.8wt%)を20.8g(Feに対してSi換算で0.39原子%に該当する。)を0.5lのイオン交換水に希釈したものを水酸化ナトリウムに添加した。温度90℃において毎分70lの空気を通気してマグネタイト粒子を生成させた(第二段反応)。Then, 9.2 l of 3.0 N sodium hydroxide solution is added to the ferrous salt suspension containing the magnetite nuclear crystal particles (corresponding to 1.15 equivalents with respect to the remaining Fe 2+ ), in which case 20.8 g (corresponding to 0.39 atomic% in terms of Si based on Fe) of No. 3 water glass (SiO 2 28.8 wt%) diluted with 0.5 l of ion-exchanged water as a silicon component Added to sodium hydroxide. At a temperature of 90 ° C., 70 l / min of air was blown to generate magnetite particles (second stage reaction).

このときの製造条件を表1に、生成マグネタイト粒子粉末の諸特性を表2にそれぞれ示す。   The production conditions at this time are shown in Table 1, and the various properties of the resulting magnetite particle powder are shown in Table 2.

比較例4:
比較例3に基づいて、種々条件を変更して黒色磁性酸化鉄粒子粉末を得た。
Comparative example 4:
Based on Comparative Example 3, various conditions were changed to obtain black magnetic iron oxide particle powder.

このときの製造条件を表1に、生成マグネタイト粒子粉末の諸特性を表2にそれぞれ示す。   The production conditions at this time are shown in Table 1, and the various properties of the resulting magnetite particle powder are shown in Table 2.

Figure 0006521254
Figure 0006521254

Figure 0006521254
Figure 0006521254

本発明に係る黒色磁性酸化鉄粒子は、環境安定性に優れていることから電子写真用磁性トナーの磁性粉末として好適に用いることができる。   The black magnetic iron oxide particles according to the present invention can be suitably used as a magnetic powder of a magnetic toner for electrophotography since they are excellent in environmental stability.

Claims (8)

八面体形状であって、鉄元素に対してケイ素元素換算で0.19〜1.90原子%のケイ素を含有し、鉄元素溶解率(X)が20<X20〜40≦40%、40<X40〜60≦60%、60<X60〜80≦80%の各範囲におけるケイ素元素溶解率(Y)が、鉄元素溶解率(X)と鉄元素溶解率が10%のときのケイ素元素溶解率(a)とからなる下記式(1)、(2)を満足することを特徴とする黒色磁性酸化鉄粒子粉末。
{(100−a)X+100(a−10)}/90−10(1−a/100)≦Y≦{(100−a)X+100(a−10)}/90+10(1−a/100) ・・・(1)
10≦a≦80 ・・・(2)
(但し、10≦X≦100、10≦Y≦100)
The octahedral shape contains 0.19 to 1.90 atomic% silicon in terms of silicon element with respect to iron element, and iron element dissolution rate (X) is 20 <X 20 to 40 ≦ 40%, 40 Silicon element dissolution rate (Y) in each range of <X 40 to 60 ≦ 60%, 60 <X 60 to 80 ≦ 80% is silicon when iron element dissolution rate (X) and iron element dissolution rate are 10% A black magnetic iron oxide particle powder characterized by satisfying the following formulas (1) and (2) consisting of the element dissolution rate (a).
{(100-a) X + 100 (a-10)} / 90-10 (1-a / 100) ≦ Y ≦ {(100-a) X + 100 (a-10)} / 90 + 10 (1-a / 100). (1)
10 ≦ a ≦ 80 (2)
(However, 10 ≦ X ≦ 100, 10 ≦ Y ≦ 100)
黒色磁性酸化鉄粒子中のナトリウム含有量が0.02〜0.10重量%であって、全鉄元素量に対して鉄元素溶解率50%におけるナトリウム元素溶解率が、全ナトリウム元素溶解量に対して50%以上である請求項1記載の黒色磁性酸化鉄粒子粉末。   The sodium content in black magnetic iron oxide particles is 0.02 to 0.10% by weight, and the sodium element dissolution rate at an iron element dissolution rate of 50% with respect to the total iron element amount is the total sodium element dissolution amount The black magnetic iron oxide particle powder according to claim 1, which is 50% or more. 平均粒子径が0.05〜0.30μmである請求項1又は2記載の黒色磁性酸化鉄粒子粉末。   The black magnetic iron oxide particle powder according to claim 1 or 2, which has an average particle size of 0.05 to 0.30 μm. 粒度分布における変化係数が30%以下である請求項1〜3のいずれかに記載の黒色磁性酸化鉄粒子粉末。   The black magnetic iron oxide particle powder according to any one of claims 1 to 3, wherein the variation coefficient in the particle size distribution is 30% or less. 黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23〜26μmのときの塗膜のb*値が2以下であり、
a*(I):塗膜膜厚4〜6μmでのa*値
a*(II):塗膜膜厚23〜26μmでのa*値
α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする請求項1〜4のいずれかに記載の黒色磁性酸化鉄粒子粉末。
B * value of the coating film is 2 or less when the film thickness is 23 to 26 μm, which is prepared using the black magnetic iron oxide particle powder,
a * (I): a * value at a coating film thickness of 4 to 6 μm a * (II): a * value at a coating film thickness of 23 to 26 μm α = a * (I) / a * (II) When you
The black magnetic iron oxide particle powder according to any one of claims 1 to 4, wherein 1.0 1.0 α 2.0 2.0 is satisfied.
Si及びAlの被覆層を有する請求項1〜5のいずれかに記載の黒色磁性酸化鉄粒子粉末。   The black magnetic iron oxide particle powder according to any one of claims 1 to 5, which has a coating layer of Si and Al. 八面体形状であって、鉄元素に対してケイ素元素換算で0.19〜1.90原子%のケイ素を含有する黒色磁性酸化鉄粒子粉末であって、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23〜26μmのときの塗膜のb*値が2以下であり、
a*(I):塗膜膜厚4〜6μmでのa*値
a*(II):塗膜膜厚23〜26μmでのa*値
α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする黒色磁性酸化鉄粒子粉末。
A black magnetic iron oxide particle powder which is octahedral in shape and contains 0.19 to 1.90 atomic% silicon in terms of silicon element with respect to iron element, and is prepared using black magnetic iron oxide particle powder B * value of the coating film when the film thickness is 23 to 26 μm is 2 or less,
a * (I): a * value at a coating film thickness of 4 to 6 μm a * (II): a * value at a coating film thickness of 23 to 26 μm α = a * (I) / a * (II) When you
Black magnetic iron oxide particle powder characterized by satisfying 1.0 ≦ α ≦ 2.0.
第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し0.90〜1.00等量の水酸化アルカリ水溶液と、第一鉄塩溶液中のFeに対しSi換算で0.05〜1.00原子%の水可溶性ケイ酸塩とを反応させて得られた水酸化第一鉄コロイドを含む反応溶液のpHを8〜9に調整し、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が7〜12%まで酸化反応を行い、核晶マグネタイト粒子を生成させる第一段反応、該第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01〜1.50当量となるように水酸化アルカリ水溶液を添加し、70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40〜60%まで酸化反応を行う第二段反応、第二段反応終了後pHを5〜9に一旦調整し、その後、反応溶液のpHを9.5以上に再調整した後、水可溶性ケイ酸塩を第一段反応で添加した水可溶性ケイ酸塩に対して20〜200%であって、第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下となるように添加し70〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行う(第三段反応)ことを特徴とする請求項1〜7のいずれかに記載の黒色磁性酸化鉄粒子粉末の製造方法。 An aqueous solution of an aqueous solution of ferrous salt, an aqueous solution of an alkali hydroxide of 0.90 to 1.00 equivalents with respect to a ferrous salt in the aqueous solution of ferrous salt, and a ratio of Si to Fe in a solution of ferrous salt The pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting with 0.05 to 1.00 atomic% water-soluble silicate is adjusted to 8 to 9, and the temperature range of 70 to 100 ° C. The first reaction, which causes the oxidation reaction rate of iron to generate 7-12% of oxidation reaction rate by passing oxygen-containing gas while heating to generate nuclear magnetite particles, nuclear magnetite after completion of the first reaction An aqueous solution of alkali hydroxide is added so as to be 1.01 to 1.50 equivalents to a ferrous salt reaction solution containing particles and ferrous hydroxide colloid, and oxygen is heated to a temperature range of 70 to 100 ° C. Aeration of contained gas to perform oxidation reaction to 40 to 60% of iron oxidation reaction rate After completion of the two-stage reaction and the second-stage reaction, the pH was once adjusted to 5 to 9, and then the pH of the reaction solution was readjusted to 9.5 or more, and then water-soluble silicate was added in the first-stage reaction a 20 to 200% relative to the water-soluble silicate, added pressure tooth 70 to 100 ° C. as the silicon element is 1.9 atomic% or less in total to be added in the first stage reaction and the third step reaction The method for producing a black magnetic iron oxide particle powder according to any one of claims 1 to 7, wherein the oxidation reaction is carried out by passing oxygen-containing gas while heating to a temperature range of (3).
JP2015526413A 2013-07-12 2014-07-10 Black magnetic iron oxide particle powder and method for producing the same Active JP6521254B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013146156 2013-07-12
JP2013146156 2013-07-12
PCT/JP2014/068500 WO2015005452A1 (en) 2013-07-12 2014-07-10 Black magnetic iron oxide particle powder and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2015005452A1 JPWO2015005452A1 (en) 2017-03-02
JP6521254B2 true JP6521254B2 (en) 2019-05-29

Family

ID=52280129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526413A Active JP6521254B2 (en) 2013-07-12 2014-07-10 Black magnetic iron oxide particle powder and method for producing the same

Country Status (2)

Country Link
JP (1) JP6521254B2 (en)
WO (1) WO2015005452A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102174020B1 (en) * 2018-09-19 2020-11-04 유태호 method for manufacturing black iron oxide pigment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327337A (en) * 1999-05-24 2000-11-28 Kawasaki Steel Corp Production of magnetite and apparatus for producing magnetite
JP4409335B2 (en) * 2004-03-31 2010-02-03 三井金属鉱業株式会社 Magnetite particles and method for producing the same
US7597958B2 (en) * 2007-02-23 2009-10-06 Toda Kogyo Corporation Black magnetic iron oxide particles having a specific dissolution of sulfur element
JP5491708B2 (en) * 2008-07-25 2014-05-14 三井金属鉱業株式会社 Magnetite particles and method for producing the same
JP5164715B2 (en) * 2008-07-25 2013-03-21 キヤノン株式会社 toner
JP5741890B2 (en) * 2010-03-31 2015-07-01 戸田工業株式会社 Black magnetic iron oxide particle powder and method for producing the same

Also Published As

Publication number Publication date
JPWO2015005452A1 (en) 2017-03-02
WO2015005452A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
EP0187434B1 (en) Spherical magnetite particles
JP5273519B2 (en) Black magnetic iron oxide particle powder
JP5741890B2 (en) Black magnetic iron oxide particle powder and method for producing the same
JP5136749B2 (en) Black magnetic iron oxide particle powder
JP4026982B2 (en) Magnetite particles and method for producing the same
WO2020241065A1 (en) Cobalt ferrite particle production method and cobalt ferrite particles produced thereby
JP6521254B2 (en) Black magnetic iron oxide particle powder and method for producing the same
JPH05213620A (en) Magnetite particles and its production
JPS6251208B2 (en)
JP4259830B2 (en) Magnetite particles
JP4373662B2 (en) Iron oxide particles and method for producing the same
JP5113397B2 (en) Magnetite particle powder
CN101403869A (en) Production method for spherical iron oxide black magnetic powder used for laser printing, and spherical iron oxide black magnetic powder
JP5826453B2 (en) Black magnetic iron oxide particle powder
JP5180482B2 (en) Method for producing magnetic iron oxide particles
JP4815075B2 (en) Magnetite containing toner
JP2005255426A (en) Composite black oxide particle, method for producing the same, black coating material and black matrix
JP4259831B2 (en) Method for producing magnetite particles
JP5281294B2 (en) Magnetic iron oxide particles
JP2000335922A (en) Iron oxide particle
JP2003277066A (en) Method for making low-si magnetite
JPH10279313A (en) Magnetite particle and its production
JP3437714B2 (en) Magnetite particles and method for producing the same
JP3433879B2 (en) Magnetite particles and method for producing the same
WO2003033407A1 (en) Iron oxide particles and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6521254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250