WO2015005452A1 - Black magnetic iron oxide particle powder and method for producing same - Google Patents

Black magnetic iron oxide particle powder and method for producing same Download PDF

Info

Publication number
WO2015005452A1
WO2015005452A1 PCT/JP2014/068500 JP2014068500W WO2015005452A1 WO 2015005452 A1 WO2015005452 A1 WO 2015005452A1 JP 2014068500 W JP2014068500 W JP 2014068500W WO 2015005452 A1 WO2015005452 A1 WO 2015005452A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
black magnetic
magnetic iron
particle powder
oxide particle
Prior art date
Application number
PCT/JP2014/068500
Other languages
French (fr)
Japanese (ja)
Inventor
亮 岩井
伸哉 志茂
内田 直樹
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to JP2015526413A priority Critical patent/JP6521254B2/en
Publication of WO2015005452A1 publication Critical patent/WO2015005452A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0836Other physical parameters of the magnetic components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron

Definitions

  • the black magnetic iron oxide particles according to the present invention are octahedral and black, they can be used as black coloring pigments for paints, resins, printing inks, etc. When used as particles, a magnetic toner with high blackness can be obtained.
  • a so-called “one-component magnetic toner” in which a composite particle in which magnetic particle powder such as magnetite particle powder is mixed and dispersed in a resin without using a carrier is used as a developer is used as a developer.
  • a composite particle in which magnetic particle powder such as magnetite particle powder is mixed and dispersed in a resin without using a carrier is used as a developer.
  • the blackness of the magnetic toner greatly depends on the blackness of magnetite contained in the magnetic toner. Therefore, there is a strong demand for black magnetic particles with high blackness.
  • magnetite particles having an octahedral particle shape are known to have high blackness.
  • Patent Documents 1 to 3 Various attempts have been made to obtain magnetite particles with higher blackness.
  • black magnetic iron oxide particles having fine particles and excellent blackness are currently most demanded, but such black magnetic iron oxide particles are still provided. Absent.
  • the magnetite particle powder described in the above-mentioned Patent Document 2 is not sufficiently black because the silicon element distribution is not constant.
  • the magnetite particles described in the above-mentioned Patent Document 3 are not sufficiently black because the distribution of silicon element is not constant.
  • the present invention is an octahedral shape, in which silicon element is uniformly distributed inside the particle, and even when a thin coating film is formed, the black magnetic material suitably used for a magnetic toner having excellent blackness It is a technical subject to provide iron oxide particle powder.
  • the present invention is octahedral, contains 0.19 to 1.90 atomic% of silicon in terms of silicon element, and has an iron element dissolution rate (X%) of 20 ⁇ X 20
  • the sodium content in the black magnetic iron oxide particles is 0.02 to 0.10% by weight, and the sodium element dissolution rate at an iron element dissolution rate of 50% with respect to the total iron element amount is
  • This is the black magnetic iron oxide particle powder according to the first aspect of the present invention, which is 50% or more based on the total dissolved amount of sodium element (second aspect of the present invention).
  • the present invention is the black magnetic iron oxide particle powder according to the present invention 1 or 2 having an average particle size of 0.05 to 0.30 ⁇ m (Invention 3).
  • the present invention is the black magnetic iron oxide particle powder according to any one of the present inventions 1 to 3 having a change coefficient in particle size distribution of 30% or less (Invention 4).
  • the b * value of the coating film when the film thickness prepared using black magnetic iron oxide particle powder is 23 to 26 ⁇ m is 2 or less
  • a * (II): a * value when the coating film thickness is 23 to 26 ⁇ m ⁇ a * (I) / a * (II)
  • the black magnetic iron oxide particle powder according to any one of the present inventions 1 to 4, wherein 1.0 ⁇ ⁇ ⁇ 2.0 is satisfied (Invention 5).
  • the present invention is the black magnetic iron oxide particle powder according to any one of the present inventions 1 to 5 having a coating layer of Si and Al (Invention 6).
  • the present invention also relates to black magnetic iron oxide particles having octahedral shape and containing 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to iron element.
  • It is a black magnetic iron oxide particle powder characterized by satisfying 1.0 ⁇ ⁇ ⁇ 2.0 (Invention 7).
  • the present invention also provides an aqueous ferrous salt solution, an aqueous alkali hydroxide solution of 0.90 to 1.00 equivalent to the ferrous salt in the aqueous ferrous salt solution,
  • the pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting Fe with 0.05 to 1.00 atomic% of water-soluble silicate in terms of Si was adjusted to 8 to 9;
  • a first-stage reaction in which oxygen-containing gas is aerated while heating in a temperature range of ⁇ 100 ° C., and the oxidation reaction rate of iron is reduced to 7 to 12% to generate nucleated magnetite particles, the first-stage reaction
  • An aqueous alkali hydroxide solution is added to the ferrous salt reaction liquid containing the nucleated magnetite particles and the ferrous hydroxide colloid after completion so as to be 1.01 to 1.50 equivalent, and the temperature is 70 to 100 ° C.
  • the oxygen oxidation reaction rate is 40-60% by aeration of oxygen-containing gas while heating in the range
  • the pH is temporarily adjusted to 5 to 9, and then the pH of the reaction solution is readjusted to 9.5 or higher, and then the water-soluble silicate is added.
  • Add 20 to 200% to the water-soluble silicate added in the first stage reaction total of 1.9 atomic% or less of silicon elements added in the first stage reaction and the third stage reaction
  • add 70 to 100 ° C. 8 The method for producing black magnetic iron oxide particle powder according to any one of the present inventions 1 to 7, wherein an oxidation reaction is performed by aeration of an oxygen-containing gas while heating to a temperature range (third stage reaction). (Invention 8).
  • the black magnetic iron oxide particle powder according to the present invention has an octahedral shape, and by making the distribution of silicon element contained inside the particle constant, the crystallinity of the black magnetic iron oxide particle becomes uniform, and the average particle diameter is Even fine particles of 0.05 to 0.30 ⁇ m are excellent in blackness, and therefore can be suitably used as magnetic particle powders for electrophotographic magnetic toners.
  • the black magnetic iron oxide particles according to the present invention are composed of magnetite ((FeO) x ⁇ Fe 2 O 3 , 0 ⁇ x ⁇ 1) in terms of composition.
  • the particle shape of the black magnetic iron oxide particle powder according to the present invention is an octahedron. In this invention, it is set as the black magnetic iron oxide particle powder with a high blackness because a particle shape is an octahedron.
  • the black magnetic iron oxide particle powder according to the present invention contains 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to iron element.
  • silicon content is less than 0.19 atomic%, the magnetic particle size distribution of black magnetic iron oxide is deteriorated and magnetic iron oxide particles having excellent blackness cannot be obtained.
  • silicon content exceeds 1.90 atomic%, by-products other than magnetite are generated, and magnetic iron oxide particles having excellent blackness cannot be obtained.
  • the silicon content is preferably 0.25 to 1.87 atomic%, more preferably 0.30 to 1.85 atomic%.
  • the black magnetic iron oxide particle powder according to the present invention has an iron element dissolution rate (X%) of 20 ⁇ X 20-40 ⁇ 40%, 40 ⁇ X 40-60 ⁇ 60%, 60 ⁇ X 60-80 ⁇ 80%.
  • the black magnetic iron oxide characterized by satisfying the following formulas (1) and (2) in which the silicon element dissolution rate (Y%) in each range of the above consists of the silicon element dissolution rate a% at an iron element dissolution rate of 10% Particle powder.
  • the black magnetic iron oxide particle powder according to the present invention obtains a magnetic iron oxide particle powder excellent in blackness while being fine by satisfying the relational expression.
  • the iron element dissolution rate (X) is the ratio of the dissolved Fe to the Fe of the entire particle, where 0% is not dissolved and 100% is all dissolved.
  • the silicon element dissolution rate (Y) is 0% in a state where silicon is not dissolved, and 100% is a state in which all silicon existing in the magnetic iron oxide particles is dissolved.
  • Formula (1) shows the relationship between the iron element dissolution rate (X), the silicon element dissolution rate (a), and the silicon element dissolution rate (Y) at an iron element dissolution rate of 10% for black magnetic iron oxide particles. Yes, it shows the distribution state of Si in the black magnetic iron oxide particles. That is, in the present invention, satisfying the formula (1) means that the iron element dissolution rate (X) and the silicon element dissolution rate (Y) in each range are shown in a specific narrow range (formula (1)). Range)), that is, the dissolution of the iron element and the dissolution of the silicon element at a close ratio, which means that the silicon element is uniformly present in the magnetic iron oxide It is.
  • the iron element dissolution rate in the range (X) may select one of the dissolution rate within that range, the iron element dissolution ratio (X%) is 20 ⁇ X 20 ⁇ 40 ⁇ 40 %, 40 ⁇ X 40-60 ⁇ 60%, 60 ⁇ X 60-80 ⁇ 80%, in each range of 20-40%, 40-60%, 60-80%.
  • the element dissolution rate (Y) may be evaluated.
  • Formula (1) is satisfied when the iron element dissolution rate (X%) is 20 ⁇ X 20 to 40 ⁇ 40%, 40 ⁇ X 40 to 60 ⁇ 60%, and 60 ⁇ X 60 to 80 ⁇ 80%. There is a need to.
  • the silicon element dissolution rate (Y) exceeds the upper limit value, it means that the ratio of silicon element dissolved up to the iron element dissolution range is too much compared with the dissolution ratio of iron element, and the already dissolved part This means that the silicon element contains a large amount of silicon element, and the silicon element is unevenly distributed in the vicinity of the particle surface and is not present uniformly.
  • the sodium content in the black magnetic iron oxide particles according to the present invention is preferably 0.02 to 0.10% by weight.
  • a more preferable sodium content is 0.03 to 0.9% by weight. It is preferable in that the hygroscopicity does not increase by controlling the sodium content within the above range.
  • the sodium element of the black magnetic iron oxide particles according to the present invention has a sodium element dissolution rate when the iron element dissolution rate is 50% with respect to the total iron element amount, and the total sodium element dissolution amount (total sodium content). On the other hand, it is preferably 50% or more. This indicates that the sodium element present in the black magnetic iron oxide particles is present in a larger amount near the surface than in the center of the particles. More preferably, the sodium element dissolution rate when the iron element dissolution rate is 50% with respect to the total iron element amount is preferably 55% or more with respect to the total sodium element dissolution amount (total sodium content).
  • the average particle size of the black magnetic iron oxide particle powder according to the present invention is preferably 0.05 to 0.30 ⁇ m.
  • the average particle diameter is less than 0.05 ⁇ m, the number of particles in a unit volume increases so that the number of contacts between the particles increases, so that the adhesion between the powder layers increases, and in the case of using a magnetic toner, The dispersibility to become worse.
  • the average particle diameter exceeds 0.30 ⁇ m, the number of black magnetic iron oxide particles contained in one toner particle is reduced, and the distribution of black magnetic iron oxide particles is uneven for each toner particle. In addition, the uniformity of charging of the toner is impaired.
  • a more preferable average particle diameter is in the range of 0.07 to 0.28 ⁇ m.
  • the change coefficient in the particle size distribution of the black magnetic iron oxide particles according to the present invention is preferably 30% or less.
  • the change coefficient of the particle size distribution is 30% or less, the influence of the fine particle component is reduced and the blackness is improved.
  • a more preferable change coefficient is 29% or less.
  • the b * value of a coating film having a film thickness of 23 to 26 ⁇ m (typically 24 ⁇ m) prepared using the black magnetic iron oxide particles according to the present invention is preferably 2 or less.
  • the b * value is 2.0 or less, it has excellent blackness.
  • a more preferred b * value is 0 to 1.8.
  • a * measured by changing the film thickness of the coating film prepared using the black magnetic iron oxide particle powder according to the present invention satisfies the following relational expression.
  • a * (I) / a * (II)
  • 1.0 ⁇ ⁇ ⁇ 2.0 is satisfied.
  • the ⁇ is 1.0 to 2.0, it has excellent blackness.
  • a more preferable ⁇ value is 1.1 to 1.9.
  • the black magnetic iron oxide particles according to the present invention preferably have a BET specific surface area of 3 to 30 m 2 / g. More preferably, it is 4 to 20 m 2 / g.
  • the BET specific surface area is less than 3 m 2 / g, the average particle diameter exceeds 0.50 ⁇ m.
  • the BET specific surface area exceeds 30 m 2 / g, the adhesion between the powder layers is increased, and when the magnetic toner is used, the dispersibility in the resin is deteriorated.
  • a more preferable BET specific surface area is 4 to 20 m 2 / g.
  • the saturation magnetization of the black magnetic iron oxide particles according to the present invention in an external magnetic field of 796 kA / m (10 kOe) is preferably 85.0 to 92.0 Am 2 / kg, more preferably 86.0 to 90.0 Am 2 / kg. Particularly, it is suitable when used as a toner for a high-speed copying machine.
  • the black magnetic iron oxide particles according to the present invention preferably have an Si compound, an Al compound, an Si compound and an Al compound on the particle surface, contain 0.02 to 1.0% by weight of Si, and have an Al content of 0.1.
  • the content of 02 to 1.0% by weight is preferable for forming a heat-resistant layer on the black magnetic iron oxide particles.
  • the amount of Al or Si exceeds 1.0% by weight, the amount of adsorbed water may increase.
  • toner the environmental stability of the toner may be affected.
  • the amount of Al and the amount of Si are less than 0.02% by weight, it is insufficient as a heat-resistant layer.
  • the electric resistance value of the black magnetic iron oxide particle powder according to the present invention when the molded body density is 2.7 g / cm 3 and a DC voltage of 15 V is applied is preferably 1 ⁇ 10 5 ⁇ cm or less, more preferably 8 ⁇ 10. 4 ⁇ cm or less.
  • the black magnetic iron oxide particle powder of the present invention has an octahedral shape and contains 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to the iron element.
  • the black magnetic iron oxide particle powder preferably satisfies the above-described formulas (1) and (2) of the present invention 1, and preferably satisfies the definitions of the present inventions 2 to 6 and the above description.
  • the black magnetic iron oxide particle powder according to the present invention comprises an aqueous ferrous salt solution, an alkaline hydroxide aqueous solution of 0.90 to 1.00 equivalent to the ferrous salt in the ferrous salt aqueous solution,
  • the pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting 0.05 to 1.00 atomic% of water-soluble silicate in terms of Si with respect to Fe in the ferrous salt solution is 8 to
  • the first-stage reaction that produces nucleated magnetite particles by adjusting the temperature to 9 and conducting an oxygen-containing gas while heating in a temperature range of 70 to 100 ° C. to conduct an oxidation reaction of iron to a rate of 7 to 12%.
  • an alkali hydroxide aqueous solution is added so as to be 1.01 to 1.50 equivalent to the ferrous salt reaction solution containing the nucleated magnetite particles and the ferrous hydroxide colloid after the completion of the first stage reaction, While heating in the temperature range of 70-100 ° C, oxygen-containing gas is vented to iron acid
  • the second stage reaction in which the reaction rate is 40 to 60%, the pH is once adjusted to 5 to 9 after the completion of the second stage reaction, and then the pH is readjusted to 9.5 or more. 20 to 200% (total of 1.9 atomic% or less of silicon elements added in the first stage reaction and third stage reaction) is added to the water-soluble silicate added in the first stage reaction. It can be obtained by conducting an oxidation reaction by passing an oxygen-containing gas while heating in a temperature range of 100 ° C. (third stage reaction).
  • ferrous salt aqueous solution in the present invention ferrous sulfate aqueous solution, ferrous sulfate and ferrous chloride aqueous solution or the like can be used.
  • alkali hydroxide aqueous solution in the present invention examples include an aqueous solution of an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide, an aqueous solution of an alkaline earth metal hydroxide such as magnesium hydroxide and calcium hydroxide, An aqueous alkali carbonate such as sodium carbonate, potassium carbonate or ammonium carbonate, aqueous ammonia, or the like can be used.
  • the addition amount of the alkali hydroxide aqueous solution is 0.90 to 1.0 equivalent with respect to Fe 2+ in the ferrous salt aqueous solution.
  • the range is preferably 0.92 to 0.99 equivalent.
  • the amount is less than 0.90 equivalent, acicular goethite particles are mixed.
  • exceeding 1.0 equivalent a silicon element becomes easy to be taken in and the magnetic iron oxide particle which is excellent in blackness cannot be obtained.
  • the amount of water-soluble silicate added is 0.05 to 1.00 atomic% in terms of Si with respect to Fe in the ferrous salt solution.
  • the addition amount of the water-soluble silicate is outside the above range, the distribution of silicon element is not constant, and magnetic iron oxide particles having excellent blackness cannot be obtained.
  • a more preferred amount of water-soluble silicate is 0.07 to 0.95 atomic%.
  • water-soluble silicate used in the present invention sodium silicate, potassium silicate and the like can be used.
  • the pH of the reaction solution obtained by reacting the ferrous salt aqueous solution, the alkali hydroxide aqueous solution and the water-soluble silicate is adjusted to 8-9.
  • an oxygen-containing gas is aerated while heating in the temperature range of 70 to 100 ° C.
  • acicular goethite particles are mixed. Magnetite particles are produced even when the temperature exceeds 100 ° C., but it is not industrially easy because an apparatus such as an autoclave is required.
  • a more preferred temperature range is 75 to 98 ° C.
  • the oxidation means is performed by venting an oxygen-containing gas (for example, air) into the liquid.
  • an oxygen-containing gas for example, air
  • an oxygen-containing gas is bubbled through the reaction solution, and the oxidation reaction is performed to an iron oxidation reaction rate of 7 to 12%, thereby forming the first stage reaction in which nucleated magnetite particles are generated.
  • the oxidation reaction rate is less than 7%, the particle size distribution of the black magnetic iron oxide is deteriorated and magnetic iron oxide particles having excellent blackness cannot be obtained.
  • it exceeds 12% hexahedrons other than octahedrons, polyhedrons, and spherical particles are mixed.
  • a more preferable oxidation reaction rate is 8-11.
  • An aqueous alkali hydroxide solution is added so as to be 1.01 to 1.50 equivalent to the ferrous salt reaction solution containing the nucleated magnetite particles and the ferrous hydroxide colloid after the completion of the first stage reaction.
  • the addition amount of the alkali hydroxide aqueous solution is less than 1.01 equivalent, hexahedral, polyhedral and spherical particles other than octahedron are mixed.
  • the addition amount of the alkali hydroxide aqueous solution exceeds 1.5 equivalents, the particle size distribution becomes large and a uniform particle size cannot be obtained.
  • a more preferable addition amount of the aqueous alkali hydroxide solution is 1.02 to 1.48.
  • a second-stage reaction is performed in which an oxygen-containing gas is vented while heating in a temperature range of 70 to 100 ° C. to perform an oxidation reaction until the iron oxidation reaction rate reaches 40 to 60%.
  • a temperature range of 70 to 100 ° C. When the temperature is lower than 70 ° C., acicular goethite particles are mixed. Magnetite particles are produced even when the temperature exceeds 100 ° C., but it is not industrially easy because an apparatus such as an autoclave is required.
  • an oxygen-containing gas is passed through the reaction solution to carry out the oxidation reaction until the iron oxidation reaction rate is 40 to 60%. If the oxidation reaction rate is less than 40%, the subsequent oxidation reaction becomes long and the particle size distribution becomes large, and it is impossible to obtain a product having a uniform particle size. If it exceeds 60%, the oxidation reaction in the third stage reaction becomes short, the particle size distribution becomes large, and a uniform particle size cannot be obtained.
  • the pH of the reaction solution is once adjusted to 5 to 9 (relay condition). If the pH is not adjusted, the viscosity of the ferrous reaction aqueous solution containing ferrous hydroxide colloid is increased, and the uniformity of the reaction temperature and the uniformity of the reaction rate are impaired. The growth rate is not uniform, the crystallinity is poor, and a uniform particle size cannot be obtained.
  • the pH of the reaction solution is readjusted to 9.5 or higher.
  • the amount of the aqueous alkali hydroxide used is 1.00 equivalent or more with respect to the remaining Fe 2+ . If the amount is less than 1.00 equivalent, the remaining Fe 2+ may not precipitate in its entirety. Practically, the amount is preferably 1.00 equivalent or more and considering industrial properties.
  • the water-soluble silicate is added again to the reaction solution subjected to the second stage reaction.
  • the water-soluble silicate to be added is 20 to 200% in molar ratio with respect to the water-soluble silicate added in the first stage reaction. It is preferable that silicon elements to be added are 1.9 atomic% or less in total.
  • an oxygen-containing gas is passed through the reaction solution while heating the reaction solution to a temperature range of 70 to 100 ° C. to perform an oxidation reaction.
  • a more preferred temperature range is 72 to 98 ° C.
  • water-soluble aluminum is contained in the suspension containing the black magnetic iron oxide particles after the second stage reaction.
  • a salt, or a water-soluble aluminum salt and a water-soluble salt silicate so that the Al amount is 0.02 to 1.0 wt% and the Si amount is 0.02 to 1.0 wt%, the pH is 5 It can be obtained by precipitating and depositing Si and Al on the surface of the black magnetic iron oxide particles while adjusting to a range of ⁇ 9.
  • the black magnetic iron oxide particle powder according to the present invention has an octahedral shape, and by making the distribution of silicon element contained inside the particle constant, the value of a * is small even when the coating film thickness is thin. It has excellent blackness, and even when used as a magnetic toner, it has excellent blackness.
  • the black magnetic iron oxide particle powder according to the present invention has an octahedral shape and the distribution of silicon element contained in the particle can be made constant, so that magnetite particles having excellent blackness can be obtained. It is a thing.
  • a typical embodiment of the present invention is as follows.
  • Shape, average particle size, coefficient of change The particle shape and average particle diameter of the black magnetic iron oxide particles were observed by “Scanning Electron Microscope S-4800” (manufactured by Hitachi High-Technologies Corporation), and indicated by average values measured from electron micrographs.
  • the change coefficient in the particle size distribution was expressed as% by dividing the standard deviation ⁇ of the number distribution by the average particle diameter and multiplying by 100.
  • the specific surface area was represented by a value measured by BET method using “Mono Sorb MS-II” (manufactured by Yuasa Ionics Co., Ltd.).
  • Oxidation reaction rate The oxidation reaction rate of the ferrous salt in the first stage reaction and the second stage reaction was calculated by the following formula by measuring the Fe 2+ content in the reaction solution.
  • (AB) ⁇ A ⁇ 100 Oxidation reaction rate (%)
  • A is the content of Fe 2+ in the reaction solution immediately after mixing the aqueous ferrous salt solution and the aqueous alkaline solution
  • B is the ferrous salt reaction solution containing a mixture of ferrous hydroxide and magnetite particles. Fe 2+ content.
  • Si and Al element amounts The amount of Si and the amount of Al in the black magnetic iron oxide particle powder were measured with a “fluorescence X-ray analyzer RIX-2100” (manufactured by Rigaku Denki Kogyo Co., Ltd.), and found in terms of elements with respect to the black magnetic iron oxide particle powder Value.
  • the amount of Si on the surface of the black magnetic iron oxide particle powder is 30 minutes or more by mixing the black magnetic iron oxide particle powder and ion-exchanged water and then dispersing and mixing it with an aqueous alkali hydroxide solution. After stirring, the amount of Si in the black magnetic iron oxide particle powder obtained by filtering and drying the suspension was measured, and the difference from the total amount of Si before treatment with the alkali was defined as the amount of Si on the particle surface.
  • Dissolution rate of silicon element and sodium element The dissolution rates of silicon element and sodium element relative to the dissolution rate of iron element can be determined by the following method. 30 g of black magnetic iron oxide particle powder is suspended in 3 L of 3 mol / l hydrochloric acid solution. Next, the black magnetic iron oxide particle suspension hydrochloric acid solution is kept at 50 ° C., and sampling is performed at regular intervals until all the black magnetic iron oxide particles are dissolved, and this is filtered through a membrane filter to obtain a filtrate. The filtrate is subjected to quantitative determination of iron element and silicon element with an induction plasma atomic emission spectrophotometer. The iron element dissolution rate and the silicon element dissolution rate are calculated by the following equations.
  • Iron element dissolution rate (%) iron element concentration in sample (mg / l) / iron element concentration when completely dissolved (mg / l) ⁇ 100
  • Dissolution rate of silicon element (%) concentration of silicon element in sample (mg / l) / concentration of silicon element when completely dissolved (mg / l) ⁇ 100
  • Sodium element dissolution rate (%) concentration of sodium element in sample (mg / l) / concentration of sodium element when completely dissolved (mg / l) ⁇ 100
  • Film color characteristics The a * value and b * value of the coating film using the black magnetic iron oxide particle powder were measured as follows. 8 g of the polyester resin is dissolved in 20 g of toluene. 8 g of black magnetic iron oxide particle powder and 50 g of 1.5 mm ⁇ glass beads are added to a solution in which a polyester resin is dissolved in toluene, and dispersed by a paint conditioner for 4 hours to obtain a dispersion. This dispersion is applied onto a cast-coated paper using a bar coater using a bar having a wet film thickness of 12 ⁇ m, 40 ⁇ m, or 100 ⁇ m. After drying, colorimetry is performed using a spectrocolorimetric densitometer X-rite 939.
  • the thickness (A) of the cast coated paper is measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.).
  • the thickness (B) of the cast coated paper and the coating film formed on the cast coated paper is measured in the same manner.
  • the film thickness of the coating film was (B)-(A), 30 measurements were taken, and the average value was taken as the film thickness of the coating film.
  • the electrical resistance value of the black magnetic iron oxide particle powder was measured by measuring 0.5 g of the particle powder to be measured and using a KBr tablet molding machine (manufactured by Shimadzu Corporation) with a hand reading (SSP-10 model manufactured by Shimadzu Corporation)
  • the pressure molding is performed at a pressure of 14 MPa for 10 seconds (under this condition, a molded body having a density of about 2.7 g / cm 3 is obtained.
  • the density is suitably 2 It is sufficient to set a condition of about 0.7 g / cm 3, and if the density greatly exceeds 2.5 to 2.8 g / cm 3 , the electric resistance value changes and it is difficult to compare the measured values. Become.).
  • Example 1 Fe 2+ : mixed with 16 l of ferrous sulfate aqueous solution containing 1.5 mol / l (Fe 2+ : 24 mol) and 15.2 l of 3.0N sodium hydroxide solution (corresponding to 0.95 equivalent to Fe 2+ ). Then, the pH was adjusted to 8.2 to produce a ferrous salt suspension. At this time, 13.3 g of No. 3 water glass (SiO 2 : 28.8 wt%) as a silicon component (corresponding to 0.25 atomic% in terms of Si with respect to Fe) was diluted in 0.5 l of ion-exchanged water. This was previously added to sodium hydroxide. The ferrous salt suspension was aerated at 70 ° C. per minute at a temperature of 90 ° C. to carry out the oxidation reaction until the ferrous salt oxidation reaction rate reached 10%. A ferrous salt suspension was obtained (first stage reaction).
  • the generated particles were washed with water, filtered, dried and pulverized by a conventional method.
  • the obtained magnetite particles were octahedral, the average particle size was 0.14 ⁇ m, the coefficient of change in particle size distribution was 26%, and the Si content was 0.65 atomic%.
  • the silicon element dissolution rate (a) at an iron element dissolution rate of 10% is 10.8%
  • the iron element dissolution rate is 20 ⁇ X 20-40 ⁇ 40%, 40 ⁇ X 40-60 ⁇ 60%, 60 ⁇ X
  • the silicon element dissolution rate (Y) in each range of 60 to 80 ⁇ 80% is 31.6% for the iron element dissolution rate of X 20 to 40 , 32.5% for the silicon element dissolution rate, and the iron element of X 40 to 60
  • the dissolution rate is 53.6%
  • the silicon element dissolution rate is 53.9%
  • the iron element dissolution rate of X 60-80 is 72.8%
  • the silicon element dissolution rate is 71.2%
  • the iron element dissolution rate is 50%. %
  • the dissolution rate of sodium element was 63%.
  • This black magnetic particle powder has a b * value of 0.3 at a coating film thickness of 24 ⁇ m, an a * value (a * (II)) of 0.4, and an a * value at a coating film thickness of 5 ⁇ m ( a * (I)) is 0.5, and the ratio ⁇ (a * (I) / a * (II)) of the a * value at a coating film thickness of 5 ⁇ m to the a * value at a coating film thickness of 24 ⁇ m is 1. .3.
  • the electric resistance of the black magnetic particle powder was 5 ⁇ 10 4 ⁇ cm. This black magnetic powder had a uniform distribution of silicon elements contained in the particles and was excellent in blackness.
  • Examples 2-12, Comparative Examples 5-9 Equivalent ratio in first stage reaction, silicon element amount, oxidation reaction rate up to 10% pH, equivalent ratio in second stage reaction, oxidation reaction rate, pH of relay conditions, pH in third stage reaction, silicon element amount A black magnetic powder was obtained in the same manner as in Example 1 except that the changes were made as shown in FIG.
  • the coating layer of Si and Al was adjusted to pH 7 by adding appropriate amounts as shown in the table using No. 3 water glass as the silicon component and 1.9 mol / l aluminum sulfate solution 1 as the aluminum component in the suspension containing magnetite particles. Then, a coating layer was formed.
  • Comparative Example 1 Fe 2+ 1.5 mol / l containing ferrous solution 16l sulfate (Fe 2+ 24 mol) and sodium hydroxide 3.0N solution 16.8l (Fe 2+ to 1.05 corresponds to eq.)
  • a ferrous salt suspension was produced.
  • 75.7 g of No. 3 water glass (SiO 2 28.8 wt%) as a silicon component (corresponding to 1.42 atomic% in terms of Si with respect to Fe) was diluted in 0.5 l of ion-exchanged water. was added to sodium hydroxide.
  • the ferrous salt suspension was oxidized at a temperature of 90 ° C. by passing 70 l of air per minute to generate magnetite particles.
  • Comparative Example 2 1 in terms of Si with respect to ferrous sulfate aqueous solution 16l (Fe 2+ 24mol) No. 3 water glass (SiO 2 28.8wt%) as the silicon component 80.0 g (Fe containing Fe 2+ 1.5mol / l. It corresponds to 50 atomic%.) Diluted in 0.5 l of ion exchange water and added. This aqueous solution was mixed with 16.3 l of a 3.0N sodium hydroxide solution (corresponding to 1.02 equivalent to Fe 2+ ) to obtain a ferrous salt suspension. The pH of this ferrous salt suspension was adjusted to 12 using sodium hydroxide solution. The ferrous salt suspension was oxidized at a temperature of 90 ° C.
  • Comparative Example 3 Fe 2+ 1.5 mol / l containing ferrous solution 16l sulfate (Fe 2+ 24 mol) and sodium hydroxide 3.0N solution 18.4l (Fe 2+ to 1.15 corresponds to eq.) Were mixed, A ferrous salt suspension was produced. The ferrous salt suspension was aerated at 70 ° C. per minute at a temperature of 90 ° C. to carry out an oxidation reaction until the oxidation reaction rate of the ferrous salt reached 50%. A ferrous salt suspension was obtained (first stage reaction).
  • Comparative Example 4 Based on Comparative Example 3, various conditions were changed to obtain black magnetic iron oxide particles.
  • black magnetic iron oxide particles according to the present invention are excellent in environmental stability, they can be suitably used as magnetic powder for magnetic toner for electrophotography.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The present invention pertains to a black magnetic iron oxide particle powder comprising a magnetite particle powder which is octahedral in shape, has silicon evenly distributed throughout the particle interior, and exhibits excellent blackness even when the applied coat thereof is thin. When producing a magnetic toner by using the black magnetic iron oxide particle powder in the present invention, it is possible to obtain a magnetic toner which exhibits excellent blackness. The black magnetic iron oxide particle powder is characterized by: being octahedral in shape; containing silicon in the amount of 0.19-1.90 at% calculated on a silicon element basis in relation to iron; and the silicon element solubility (Y), when the iron element solubility (X) is in the ranges of 20<X20-40≤40%, 40<X40-60≤60% and 60<X60-80≤80%, satisfying a specific relational expression comprising the iron element solubility (X) and the silicon element solubility (a) when the iron element solubility is 10%.

Description

黒色磁性酸化鉄粒子粉末及びその製造方法Black magnetic iron oxide particle powder and method for producing the same
 本発明に係る黒色磁性酸化鉄粒子粉末は、八面体形状であり、黒色であることから、塗料用、樹脂用、印刷インキ等の黒色着色顔料として用いることができ、また、磁性トナー用黒色磁性粒子として用いた場合には、黒色度の高い磁性トナーを得ることができる。 Since the black magnetic iron oxide particles according to the present invention are octahedral and black, they can be used as black coloring pigments for paints, resins, printing inks, etc. When used as particles, a magnetic toner with high blackness can be obtained.
 従来、静電潜像現像法の一つとして、キャリアを使用せずに樹脂中にマグネタイト粒子粉末等の磁性粒子粉末を混合分散させた複合体粒子を現像剤として用いる所謂「一成分系磁性トナー」による現像法が広く知られ、汎用されている。 Conventionally, as one of the electrostatic latent image developing methods, a so-called “one-component magnetic toner” in which a composite particle in which magnetic particle powder such as magnetite particle powder is mixed and dispersed in a resin without using a carrier is used as a developer. Is widely known and widely used.
 近時、レーザービームプリンターやデジタル複写機の高性能化に伴い、現像剤である磁性トナーの黒色度のより高いものが要求されている。 Recently, with the enhancement of the performance of laser beam printers and digital copying machines, magnetic toners with higher blackness are required.
 前記磁性トナーの黒色度は、磁性トナー中に含有するマグネタイトの黒色度に大きく依存するものである。そこで、黒色度の高い黒色磁性粒子が強く要求されている。 The blackness of the magnetic toner greatly depends on the blackness of magnetite contained in the magnetic toner. Therefore, there is a strong demand for black magnetic particles with high blackness.
 特に粒子形状が八面体であるマグネタイト粒子は、黒色度が高いことが知られている。 In particular, magnetite particles having an octahedral particle shape are known to have high blackness.
 より黒色度の高いマグネタイト粒子を得るために様々な試みがなされている(特許文献1~3)。 Various attempts have been made to obtain magnetite particles with higher blackness (Patent Documents 1 to 3).
特開平3-131866号公報Japanese Patent Laid-Open No. 3-131866 特開2008-184338号公報JP 2008-184338 A 特開2011-213548号公報JP 2011-213548 A
 上述の諸問題に鑑み、微細粒子であり、黒色度に優れている黒色磁性酸化鉄粒子粉末は、現在最も要求されているところであるが、このような黒色磁性酸化鉄粒子粉末は未だ提供されていない。 In view of the above-mentioned problems, black magnetic iron oxide particles having fine particles and excellent blackness are currently most demanded, but such black magnetic iron oxide particles are still provided. Absent.
 前出特許文献1記載のマグネタイト粒子は、珪素元素の分布が一定ではないため、黒色度が十分とは言い難い。 The magnetite particles described in the above-mentioned Patent Document 1 cannot be said to have sufficient blackness because the distribution of silicon element is not constant.
 また、前出特許文献2記載のマグネタイト粒子粉末は、珪素元素の分布が一定ではないため、黒色度が十分とは言い難い。 Further, the magnetite particle powder described in the above-mentioned Patent Document 2 is not sufficiently black because the silicon element distribution is not constant.
 また、前出特許文献3記載のマグネタイト粒子は、珪素元素の分布が一定ではないため、黒色度が十分とは言い難い。 In addition, the magnetite particles described in the above-mentioned Patent Document 3 are not sufficiently black because the distribution of silicon element is not constant.
 そこで、本発明は、八面体形状であって、粒子内部にケイ素元素が一定に分布し、薄い厚さの塗膜とした場合においても黒色度に優れている磁性トナーに好適に用いられる黒色磁性酸化鉄粒子粉末を提供することを技術的課題とする。 Therefore, the present invention is an octahedral shape, in which silicon element is uniformly distributed inside the particle, and even when a thin coating film is formed, the black magnetic material suitably used for a magnetic toner having excellent blackness It is a technical subject to provide iron oxide particle powder.
 前記技術的課題は、次の通りの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
 即ち、本発明は、八面体形状であって、鉄元素に対してケイ素元素換算で0.19~1.90原子%のケイ素を含有し、鉄元素溶解率(X%)が20<X20~40≦40%、40<X40~60≦60%、60<X60~80≦80%の各範囲におけるケイ素元素溶解率(Y%)が、鉄元素溶解率(X%)と鉄元素溶解率が10%のときのケイ素元素溶解率(a%)とからなる下記式(1)、(2)を満足することを特徴とする黒色磁性酸化鉄粒子粉末である(本発明1)。 That is, the present invention is octahedral, contains 0.19 to 1.90 atomic% of silicon in terms of silicon element, and has an iron element dissolution rate (X%) of 20 <X 20 The silicon element dissolution rate (Y%) in each range of ≦ 40 ≦ 40%, 40 <X 40-60 ≦ 60%, 60 <X 60-80 ≦ 80%, the iron element dissolution rate (X%) and the iron element A black magnetic iron oxide particle powder characterized by satisfying the following formulas (1) and (2) consisting of a silicon element dissolution rate (a%) when the dissolution rate is 10% (Invention 1).
{(100-a)X+100(a-10)}/90-10(1-a/100)≦Y≦{(100-a)X+100(a-10)}/90+10(1-a/100) ・・・(1)
10≦a≦80 ・・・(2)
(但し、10≦X≦100、10≦Y≦100)
{(100−a) X + 100 (a−10)} / 90−10 (1−a / 100) ≦ Y ≦ {(100−a) X + 100 (a−10)} / 90 + 10 (1−a / 100) (1)
10 ≦ a ≦ 80 (2)
(However, 10 ≦ X ≦ 100, 10 ≦ Y ≦ 100)
 また、本発明は、黒色磁性酸化鉄粒子中のナトリウム含有量が0.02~0.10重量%であって、全鉄元素量に対して鉄元素溶解率50%におけるナトリウム元素溶解率が、全ナトリウム元素溶解量に対して50%以上である本発明1記載の黒色磁性酸化鉄粒子粉末である(本発明2)。 Further, in the present invention, the sodium content in the black magnetic iron oxide particles is 0.02 to 0.10% by weight, and the sodium element dissolution rate at an iron element dissolution rate of 50% with respect to the total iron element amount is This is the black magnetic iron oxide particle powder according to the first aspect of the present invention, which is 50% or more based on the total dissolved amount of sodium element (second aspect of the present invention).
 また、本発明は、平均粒子径が0.05~0.30μmである本発明1又は2記載の黒色磁性酸化鉄粒子粉末である(本発明3)。 Further, the present invention is the black magnetic iron oxide particle powder according to the present invention 1 or 2 having an average particle size of 0.05 to 0.30 μm (Invention 3).
 また、本発明は、粒度分布における変化係数が30%以下である本発明1~3のいずれかに記載の黒色磁性酸化鉄粒子粉末である(本発明4)。 Further, the present invention is the black magnetic iron oxide particle powder according to any one of the present inventions 1 to 3 having a change coefficient in particle size distribution of 30% or less (Invention 4).
 また、本発明は、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23~26μmのときの塗膜のb*値が2以下であり、
   a*(I) : 塗膜膜厚4~6μmでのa*値
   a*(II) : 塗膜膜厚23~26μmでのa*値
   α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする本発明1~4のいずれかに記載の黒色磁性酸化鉄粒子粉末である(本発明5)。
Further, in the present invention, the b * value of the coating film when the film thickness prepared using black magnetic iron oxide particle powder is 23 to 26 μm is 2 or less,
a * (I): a * value when the coating film thickness is 4 to 6 μm a * (II): a * value when the coating film thickness is 23 to 26 μm α = a * (I) / a * (II) When
The black magnetic iron oxide particle powder according to any one of the present inventions 1 to 4, wherein 1.0 ≦ α ≦ 2.0 is satisfied (Invention 5).
 また、本発明は、Si及びAlの被覆層を有する本発明1~5のいずれかに記載の黒色磁性酸化鉄粒子粉末である(本発明6)。 Further, the present invention is the black magnetic iron oxide particle powder according to any one of the present inventions 1 to 5 having a coating layer of Si and Al (Invention 6).
 また、本発明は、八面体形状であって、鉄元素に対してケイ素元素換算で0.19~1.90原子%のケイ素を含有する黒色磁性酸化鉄粒子粉末であって、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23~26μmのときの塗膜のb*値が2以下であり、
   a*(I):塗膜膜厚4~6μmでのa*値
   a*(II):塗膜膜厚23~26μmでのa*値
   α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする黒色磁性酸化鉄粒子粉末である(本発明7)。
The present invention also relates to black magnetic iron oxide particles having octahedral shape and containing 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to iron element. The b * value of the coating film when the film thickness prepared using the particle powder is 23 to 26 μm is 2 or less,
a * (I): a * value when the film thickness is 4 to 6 μm a * (II): a * value when the film thickness is 23 to 26 μm α = a * (I) / a * (II) When
It is a black magnetic iron oxide particle powder characterized by satisfying 1.0 ≦ α ≦ 2.0 (Invention 7).
 また、本発明は、第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し0.90~1.00等量の水酸化アルカリ水溶液と、第一鉄塩溶液中のFeに対しSi換算で0.05~1.00原子%の水可溶性ケイ酸塩とを反応させて得られた水酸化第一鉄コロイドを含む反応溶液のpHを8~9に調整し、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が7~12%まで酸化反応を行い、核晶マグネタイト粒子を生成させる第一段反応、該第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01~1.50当量となるように水酸化アルカリ水溶液を添加し、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40~60%まで酸化反応を行う第二段反応、第二段反応終了後pHを5~9に一旦調整し、その後、反応溶液のpHを9.5以上に再調整した後、水可溶性ケイ酸塩を第一段反応で添加した水可溶性ケイ酸塩に対して20~200%(第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下)添加し70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行う(第三段反応)ことを特徴とする本発明1~7のいずれかに記載の黒色磁性酸化鉄粒子粉末の製造方法である(本発明8)。 The present invention also provides an aqueous ferrous salt solution, an aqueous alkali hydroxide solution of 0.90 to 1.00 equivalent to the ferrous salt in the aqueous ferrous salt solution, The pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting Fe with 0.05 to 1.00 atomic% of water-soluble silicate in terms of Si was adjusted to 8 to 9; A first-stage reaction in which oxygen-containing gas is aerated while heating in a temperature range of ˜100 ° C., and the oxidation reaction rate of iron is reduced to 7 to 12% to generate nucleated magnetite particles, the first-stage reaction An aqueous alkali hydroxide solution is added to the ferrous salt reaction liquid containing the nucleated magnetite particles and the ferrous hydroxide colloid after completion so as to be 1.01 to 1.50 equivalent, and the temperature is 70 to 100 ° C. The oxygen oxidation reaction rate is 40-60% by aeration of oxygen-containing gas while heating in the range After the completion of the second stage reaction, the pH is temporarily adjusted to 5 to 9, and then the pH of the reaction solution is readjusted to 9.5 or higher, and then the water-soluble silicate is added. Add 20 to 200% to the water-soluble silicate added in the first stage reaction (total of 1.9 atomic% or less of silicon elements added in the first stage reaction and the third stage reaction) and add 70 to 100 ° C. 8. The method for producing black magnetic iron oxide particle powder according to any one of the present inventions 1 to 7, wherein an oxidation reaction is performed by aeration of an oxygen-containing gas while heating to a temperature range (third stage reaction). (Invention 8).
 本発明に係る黒色磁性酸化鉄粒子粉末は八面体形状であって、粒子内部に含有されるケイ素元素の分布を一定にすることで黒色磁性酸化鉄粒子の結晶性が均一となり、平均粒子径が0.05~0.30μmの微細粒子であっても黒色度に優れていることから、電子写真用磁性トナー用の磁性粒子粉末として好適に用いることができる。 The black magnetic iron oxide particle powder according to the present invention has an octahedral shape, and by making the distribution of silicon element contained inside the particle constant, the crystallinity of the black magnetic iron oxide particle becomes uniform, and the average particle diameter is Even fine particles of 0.05 to 0.30 μm are excellent in blackness, and therefore can be suitably used as magnetic particle powders for electrophotographic magnetic toners.
 本発明の構成をより詳しく説明すれば次の通りである。 The configuration of the present invention will be described in more detail as follows.
 先ず、本発明に係る黒色磁性酸化鉄粒子粉末について述べる。 First, the black magnetic iron oxide particle powder according to the present invention will be described.
 本発明に係る黒色磁性酸化鉄粒子粉末は、組成的にはマグネタイト((FeO)x・Fe、0<x≦1)からなる。 The black magnetic iron oxide particles according to the present invention are composed of magnetite ((FeO) x · Fe 2 O 3 , 0 <x ≦ 1) in terms of composition.
 本発明に係る黒色磁性酸化鉄粒子粉末の粒子形状は八面体である。本発明では、粒子形状が八面体であることによって、黒色度が高い黒色磁性酸化鉄粒子粉末とするものである。 The particle shape of the black magnetic iron oxide particle powder according to the present invention is an octahedron. In this invention, it is set as the black magnetic iron oxide particle powder with a high blackness because a particle shape is an octahedron.
 本発明に係る黒色磁性酸化鉄粒子粉末は、鉄元素に対してケイ素元素換算で0.19~1.90原子%のケイ素を含有する。ケイ素の含有量が0.19原子%未満では、黒色磁性酸化鉄の粒度分布が悪くなり黒色度に優れる磁性酸化鉄粒子を得ることができない。ケイ素の含有量が1.90原子%を超える場合、マグネタイト以外の副生成物が生成し、黒色度に優れる磁性酸化鉄粒子を得ることができない。好ましいケイ素の含有量は0.25~1.87原子%であり、より好ましくは0.30~1.85原子%である。 The black magnetic iron oxide particle powder according to the present invention contains 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to iron element. When the silicon content is less than 0.19 atomic%, the magnetic particle size distribution of black magnetic iron oxide is deteriorated and magnetic iron oxide particles having excellent blackness cannot be obtained. When the silicon content exceeds 1.90 atomic%, by-products other than magnetite are generated, and magnetic iron oxide particles having excellent blackness cannot be obtained. The silicon content is preferably 0.25 to 1.87 atomic%, more preferably 0.30 to 1.85 atomic%.
 本発明に係る黒色磁性酸化鉄粒子粉末は、鉄元素溶解率(X%)が20<X20~40≦40%、40<X40~60≦60%、60<X60~80≦80%の各範囲におけるケイ素元素溶解率(Y%)が、鉄元素溶解率10%におけるケイ素元素溶解率a%からなる下記式(1)、(2)を満足することを特徴とする黒色磁性酸化鉄粒子粉末である。 The black magnetic iron oxide particle powder according to the present invention has an iron element dissolution rate (X%) of 20 <X 20-40 ≦ 40%, 40 <X 40-60 ≦ 60%, 60 <X 60-80 ≦ 80%. The black magnetic iron oxide characterized by satisfying the following formulas (1) and (2) in which the silicon element dissolution rate (Y%) in each range of the above consists of the silicon element dissolution rate a% at an iron element dissolution rate of 10% Particle powder.
{(100-a)X+100(a-10)}/90-10(1-a/100)≦Y≦{(100-a)X+100(a-10)}/90+10(1-a/100) ・・・(1)
10≦a≦80 ・・・(2)
(但し、10≦X≦100、10≦Y≦100)
{(100−a) X + 100 (a−10)} / 90−10 (1−a / 100) ≦ Y ≦ {(100−a) X + 100 (a−10)} / 90 + 10 (1−a / 100) (1)
10 ≦ a ≦ 80 (2)
(However, 10 ≦ X ≦ 100, 10 ≦ Y ≦ 100)
 本発明に係る黒色磁性酸化鉄粒子粉末は、前記関係式を満たすことによって、微細でありながら、黒色度に優れた磁性酸化鉄粒子粉末を得るものである。
 ここで、鉄元素溶解率(X)は粒子全体のFeに対する溶解したFeの割合であり、0%は溶解していない状態、100%はすべて溶解した状態である。また、ケイ素元素溶解率(Y)も同様に、0%はケイ素が溶解していない状態、100%は磁性酸化鉄粒子中に存在する全てのケイ素がすべて溶解された状態である。とくに、鉄元素溶解率が10%(X=10%)のときのケイ素元素溶解率を(a)とするものである。
The black magnetic iron oxide particle powder according to the present invention obtains a magnetic iron oxide particle powder excellent in blackness while being fine by satisfying the relational expression.
Here, the iron element dissolution rate (X) is the ratio of the dissolved Fe to the Fe of the entire particle, where 0% is not dissolved and 100% is all dissolved. Similarly, the silicon element dissolution rate (Y) is 0% in a state where silicon is not dissolved, and 100% is a state in which all silicon existing in the magnetic iron oxide particles is dissolved. In particular, the silicon element dissolution rate when the iron element dissolution rate is 10% (X = 10%) is defined as (a).
 式(1)は、黒色磁性酸化鉄粒子について、鉄元素溶解率(X)、鉄元素溶解率10%におけるケイ素元素溶解率(a)及びケイ素元素溶解率(Y)の関係を示したものであり、黒色磁性酸化鉄粒子中のSiの分布状態を示すものである。すなわち、本発明において、式(1)を満足するということは、各範囲での鉄元素溶解率(X)とケイ素元素溶解率(Y)とが、特定の狭い範囲(式(1)に示す範囲)で一致するということを示し、すなわち、鉄元素の溶解と共にケイ素元素も近い比率で溶解していくことであり、ケイ素元素が磁性酸化鉄内に均一に存在していることを意味するものである。なお、各範囲での鉄元素溶解率(X)は、その範囲内のいずれの溶解率を選択してもよく、鉄元素溶解率(X%)が20<X20~40≦40%、40<X40~60≦60%、60<X60~80≦80%の各範囲において、それぞれ20~40%、40~60%、60~80%の範囲内のいずれの点の測定値でケイ素元素溶解率(Y)を評価してもよい。なお、式(1)は鉄元素溶解率(X%)が20<X20~40≦40%、40<X40~60≦60%、60<X60~80≦80%の各範囲において満足する必要がある。 Formula (1) shows the relationship between the iron element dissolution rate (X), the silicon element dissolution rate (a), and the silicon element dissolution rate (Y) at an iron element dissolution rate of 10% for black magnetic iron oxide particles. Yes, it shows the distribution state of Si in the black magnetic iron oxide particles. That is, in the present invention, satisfying the formula (1) means that the iron element dissolution rate (X) and the silicon element dissolution rate (Y) in each range are shown in a specific narrow range (formula (1)). Range)), that is, the dissolution of the iron element and the dissolution of the silicon element at a close ratio, which means that the silicon element is uniformly present in the magnetic iron oxide It is. Incidentally, the iron element dissolution rate in the range (X) may select one of the dissolution rate within that range, the iron element dissolution ratio (X%) is 20 <X 20 ~ 40 ≦ 40 %, 40 <X 40-60 ≦ 60%, 60 <X 60-80 ≦ 80%, in each range of 20-40%, 40-60%, 60-80%. The element dissolution rate (Y) may be evaluated. Formula (1) is satisfied when the iron element dissolution rate (X%) is 20 <X 20 to 40 ≦ 40%, 40 <X 40 to 60 ≦ 60%, and 60 <X 60 to 80 ≦ 80%. There is a need to.
 式(1)において、Yが下限値未満の場合には、粒子中心部にSiが多量に存在することになり好ましくない。また、Yが上限値を超える場合には、粒子表面近くにSiが多量に存在することになり好ましくない。すなわち、ある範囲での鉄元素溶解率(X)においてケイ素元素溶解率(Y)が下限値未満であるということは、その鉄元素溶解範囲までに溶解したケイ素元素の割合が鉄元素の溶解割合に比べて低すぎるということであり、まだ溶解していない粒子の中に溶解していないケイ素元素がまだ多量にあるということであり、ケイ素元素は粒子中心部に偏在化しており、均一に存在していないことになる。一方、ケイ素元素溶解率(Y)が上限値を超える場合は、その鉄元素溶解範囲までに溶解したケイ素元素の割合が鉄元素の溶解割合に比べて多すぎるということであり、すでに溶解した部分にケイ素元素が多量に含まれているということであり、ケイ素元素は粒子表面付近に偏在化しており、均一に存在していないことになる。 In Formula (1), when Y is less than the lower limit, a large amount of Si is present in the center of the particle, which is not preferable. Further, when Y exceeds the upper limit value, a large amount of Si is present near the particle surface, which is not preferable. That is, in the iron element dissolution rate (X) in a certain range, the silicon element dissolution rate (Y) is less than the lower limit value, which means that the ratio of the silicon element dissolved up to the iron element dissolution range is the iron element dissolution rate. This means that there is still a large amount of undissolved silicon element in the particles that are not yet dissolved, and the silicon element is unevenly distributed in the center of the particle and exists uniformly. It will not be. On the other hand, when the silicon element dissolution rate (Y) exceeds the upper limit value, it means that the ratio of silicon element dissolved up to the iron element dissolution range is too much compared with the dissolution ratio of iron element, and the already dissolved part This means that the silicon element contains a large amount of silicon element, and the silicon element is unevenly distributed in the vicinity of the particle surface and is not present uniformly.
 式(2)において、aが下限値未満の場合には、粒子中心部にSiが多量に存在することになり好ましくない。また、aが上限値を超える場合には、粒子表面に過剰のSi成分が存在することになり好ましくない。より好ましくは10.5≦a≦75、更により好ましくは11.0≦a≦70である。 In Formula (2), when a is less than the lower limit, a large amount of Si is present in the center of the particle, which is not preferable. Moreover, when a exceeds the upper limit, an excessive Si component is present on the particle surface, which is not preferable. More preferably, 10.5 ≦ a ≦ 75, and still more preferably 11.0 ≦ a ≦ 70.
 本発明に係る黒色磁性酸化鉄粒子中のナトリウム含有量は0.02~0.10重量%が好ましい。より好ましいナトリウム含有量は0.03~0.9重量%である。ナトリウム含有量を前記範囲に制御することによって吸湿性が高くならない点で好ましい。 The sodium content in the black magnetic iron oxide particles according to the present invention is preferably 0.02 to 0.10% by weight. A more preferable sodium content is 0.03 to 0.9% by weight. It is preferable in that the hygroscopicity does not increase by controlling the sodium content within the above range.
 また、本発明に係る黒色磁性酸化鉄粒子のナトリウム元素は、全鉄元素量に対して鉄元素溶解率50%のときのナトリウム元素溶解率が、全ナトリウム元素溶解量(全ナトリウム含有量)に対して50%以上であることが好ましい。これは、黒色磁性酸化鉄粒子中に存在するナトリウム元素は、粒子の中心部よりも表面近傍に多量に存在することを表している。より好ましくは、全鉄元素量に対して鉄元素溶解率50%のときのナトリウム元素溶解率が、全ナトリウム元素溶解量(全ナトリウム含有量)に対して55%以上であることが好ましい。 Further, the sodium element of the black magnetic iron oxide particles according to the present invention has a sodium element dissolution rate when the iron element dissolution rate is 50% with respect to the total iron element amount, and the total sodium element dissolution amount (total sodium content). On the other hand, it is preferably 50% or more. This indicates that the sodium element present in the black magnetic iron oxide particles is present in a larger amount near the surface than in the center of the particles. More preferably, the sodium element dissolution rate when the iron element dissolution rate is 50% with respect to the total iron element amount is preferably 55% or more with respect to the total sodium element dissolution amount (total sodium content).
 本発明に係る黒色磁性酸化鉄粒子粉末の平均粒子径は0.05~0.30μmが好ましい。平均粒子径が0.05μm未満の場合には、単位容積中の粒子が多くなり過ぎ粒子間の接点数が増えるため、粉体層間の付着力が大きくなり、磁性トナーとする場合に、樹脂中への分散性が悪くなる。平均粒子径が0.30μmを越える場合には、一個のトナー粒子中に含まれる黒色磁性酸化鉄粒子の個数が少なくなり、各トナー粒子について黒色磁性酸化鉄粒子の分布に偏りが生じ、その結果、トナーの帯電の均一性が損なわれる。より好ましい平均粒子径は0.07~0.28μmの範囲である。 The average particle size of the black magnetic iron oxide particle powder according to the present invention is preferably 0.05 to 0.30 μm. When the average particle diameter is less than 0.05 μm, the number of particles in a unit volume increases so that the number of contacts between the particles increases, so that the adhesion between the powder layers increases, and in the case of using a magnetic toner, The dispersibility to become worse. When the average particle diameter exceeds 0.30 μm, the number of black magnetic iron oxide particles contained in one toner particle is reduced, and the distribution of black magnetic iron oxide particles is uneven for each toner particle. In addition, the uniformity of charging of the toner is impaired. A more preferable average particle diameter is in the range of 0.07 to 0.28 μm.
 本発明に係る黒色磁性酸化鉄粒子粉末の粒度分布における変化係数が30%以下であることが好ましい。粒度分布の変化係数が30%以下であることによって、微粒子成分の影響が小さくなり黒色度が向上する。より好ましい変化係数は29%以下である。 The change coefficient in the particle size distribution of the black magnetic iron oxide particles according to the present invention is preferably 30% or less. When the change coefficient of the particle size distribution is 30% or less, the influence of the fine particle component is reduced and the blackness is improved. A more preferable change coefficient is 29% or less.
 本発明に係る黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23~26μm(代表的には24μm)の塗膜のb*値が2以下であることが好ましい。前記b*値が2.0以下であることによって、優れた黒色度を有するものである。より好ましいb*値は0~1.8である。 The b * value of a coating film having a film thickness of 23 to 26 μm (typically 24 μm) prepared using the black magnetic iron oxide particles according to the present invention is preferably 2 or less. When the b * value is 2.0 or less, it has excellent blackness. A more preferred b * value is 0 to 1.8.
 また、本発明に係る黒色磁性酸化鉄粒子粉末を用いて作成した塗膜の膜厚を種々変化させて測定したa*が下記関係式を満たすことが好ましい。
   a*(I):塗膜膜厚4~6μm(代表的には5μm)でのa*値
   a*(II):塗膜膜厚23~26μm(代表的には24μm)でのa*値
   α=a*(I)/a*(II)としたときに、1.0≦α≦2.0を満たす。前記αが1.0~2.0であることによって、優れた黒色度を有するものである。より好ましいα値は1.1~1.9である。
Moreover, it is preferable that a * measured by changing the film thickness of the coating film prepared using the black magnetic iron oxide particle powder according to the present invention satisfies the following relational expression.
a * (I): a * value when the film thickness is 4 to 6 μm (typically 5 μm) a * (II): a * value when the film thickness is 23 to 26 μm (typically 24 μm) When α = a * (I) / a * (II), 1.0 ≦ α ≦ 2.0 is satisfied. When the α is 1.0 to 2.0, it has excellent blackness. A more preferable α value is 1.1 to 1.9.
 本発明に係る黒色磁性酸化鉄粒子粉末はBET比表面積が3~30m/gが好ましい。より好ましくは4~20m/gである。BET比表面積が3m/g未満の場合、平均粒子径が0.50μmを超えることとなり、上述した通り、トナー粒子とした場合にトナーの帯電の均一性が損なわれるとともに、着色力が小さくなり高解像度のトナーを得られない。BET比表面積が30m/gを超える場合、粉体層間の付着力が大きくなり、磁性トナーとする場合に、樹脂中への分散性が悪くなる。より好ましいBET比表面積は4~20m/gである。 The black magnetic iron oxide particles according to the present invention preferably have a BET specific surface area of 3 to 30 m 2 / g. More preferably, it is 4 to 20 m 2 / g. When the BET specific surface area is less than 3 m 2 / g, the average particle diameter exceeds 0.50 μm. As described above, when toner particles are used, the uniformity of charging of the toner is impaired and the coloring power is reduced. High-resolution toner cannot be obtained. When the BET specific surface area exceeds 30 m 2 / g, the adhesion between the powder layers is increased, and when the magnetic toner is used, the dispersibility in the resin is deteriorated. A more preferable BET specific surface area is 4 to 20 m 2 / g.
 本発明に係る黒色磁性酸化鉄粒子の外部磁場796kA/m(10kOe)における飽和磁化が85.0~92.0Am/kgが好ましく、より好ましくは86.0~90.0Am/kgであり、特に高速複写機用のトナーとして用いた場合に好適である。 The saturation magnetization of the black magnetic iron oxide particles according to the present invention in an external magnetic field of 796 kA / m (10 kOe) is preferably 85.0 to 92.0 Am 2 / kg, more preferably 86.0 to 90.0 Am 2 / kg. Particularly, it is suitable when used as a toner for a high-speed copying machine.
 本発明に係る黒色磁性酸化鉄粒子は、粒子表面にSi化合物またはAl化合物若しくはSi化合物及びAl化合物を有することが好ましく、Siを0.02~1.0重量%含有し、Al量が0.02~1.0重量%含有することが黒色磁性酸化鉄粒子に耐熱層形成のために好ましい。Al量、Si量が1.0重量%を超える場合には吸着水分量が増加する場合があり、トナーとした場合、トナーの環境安定性に影響を及ぼす場合がある。Al量、Si量が0.02重量%未満では、耐熱層として不十分である。 The black magnetic iron oxide particles according to the present invention preferably have an Si compound, an Al compound, an Si compound and an Al compound on the particle surface, contain 0.02 to 1.0% by weight of Si, and have an Al content of 0.1. The content of 02 to 1.0% by weight is preferable for forming a heat-resistant layer on the black magnetic iron oxide particles. When the amount of Al or Si exceeds 1.0% by weight, the amount of adsorbed water may increase. When toner is used, the environmental stability of the toner may be affected. When the amount of Al and the amount of Si are less than 0.02% by weight, it is insufficient as a heat-resistant layer.
 本発明に係る黒色磁性酸化鉄粒子粉末の成型体密度が2.7g/cm成型物の15Vの直流電圧印加時の電気抵抗値は1×10Ωcm以下が好ましく、より好ましくは8×10Ωcm以下である。 The electric resistance value of the black magnetic iron oxide particle powder according to the present invention when the molded body density is 2.7 g / cm 3 and a DC voltage of 15 V is applied is preferably 1 × 10 5 Ωcm or less, more preferably 8 × 10. 4 Ωcm or less.
 また、本発明の黒色磁性酸化鉄粒子粉末は、八面体形状であって、鉄元素に対してケイ素元素換算で0.19~1.90原子%のケイ素を含有し、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23~26μmのときの塗膜のb*値が2以下であり、
   a*(I):塗膜膜厚4~6μmでのa*値
   a*(II):塗膜膜厚23~26μmでのa*値
   α=a*(I)/a*(II)としたときに、
1.0≦α≦2.0を満たすことを特徴とする黒色磁性酸化鉄粒子粉末である。上記黒色磁性酸化鉄粒子粉末は、上述の本発明1の式(1)、(2)を満足することが好ましく、また本発明2~6の規定および上記記載を満足することが好ましい。
The black magnetic iron oxide particle powder of the present invention has an octahedral shape and contains 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to the iron element. The b * value of the coating film is 2 or less when the film thickness prepared using is 23 to 26 μm,
a * (I): a * value when the film thickness is 4 to 6 μm a * (II): a * value when the film thickness is 23 to 26 μm α = a * (I) / a * (II) When
It is black magnetic iron oxide particle powder characterized by satisfying 1.0 ≦ α ≦ 2.0. The black magnetic iron oxide particle powder preferably satisfies the above-described formulas (1) and (2) of the present invention 1, and preferably satisfies the definitions of the present inventions 2 to 6 and the above description.
 次に、本発明に係る黒色磁性酸化鉄粒子粉末の製造法について述べる。 Next, a method for producing black magnetic iron oxide particles according to the present invention will be described.
 本発明に係る黒色磁性酸化鉄粒子粉末は、第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し0.90~1.00等量の水酸化アルカリ水溶液と、第一鉄塩溶液中のFeに対しSi換算で0.05~1.00原子%の水可溶性ケイ酸塩とを反応させて得られた水酸化第一鉄コロイドを含む反応溶液のpHを8~9に調整し、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が7~12%まで酸化反応を行い、核晶マグネタイト粒子を生成させる第一段反応、該第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01~1.50当量となるように水酸化アルカリ水溶液を添加し、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40~60%まで酸化反応を行う第二段反応、第二段反応終了後pHを5~9に一旦調整し、その後pHを9.5以上に再調整した後、水可溶性ケイ酸塩を第一段反応で添加した水可溶性ケイ酸塩に対して20~200%(第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下)添加し70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行って(第三段反応)得ることができる。 The black magnetic iron oxide particle powder according to the present invention comprises an aqueous ferrous salt solution, an alkaline hydroxide aqueous solution of 0.90 to 1.00 equivalent to the ferrous salt in the ferrous salt aqueous solution, The pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting 0.05 to 1.00 atomic% of water-soluble silicate in terms of Si with respect to Fe in the ferrous salt solution is 8 to The first-stage reaction that produces nucleated magnetite particles by adjusting the temperature to 9 and conducting an oxygen-containing gas while heating in a temperature range of 70 to 100 ° C. to conduct an oxidation reaction of iron to a rate of 7 to 12%. Then, an alkali hydroxide aqueous solution is added so as to be 1.01 to 1.50 equivalent to the ferrous salt reaction solution containing the nucleated magnetite particles and the ferrous hydroxide colloid after the completion of the first stage reaction, While heating in the temperature range of 70-100 ° C, oxygen-containing gas is vented to iron acid The second stage reaction in which the reaction rate is 40 to 60%, the pH is once adjusted to 5 to 9 after the completion of the second stage reaction, and then the pH is readjusted to 9.5 or more. 20 to 200% (total of 1.9 atomic% or less of silicon elements added in the first stage reaction and third stage reaction) is added to the water-soluble silicate added in the first stage reaction. It can be obtained by conducting an oxidation reaction by passing an oxygen-containing gas while heating in a temperature range of 100 ° C. (third stage reaction).
 本発明における第一鉄塩水溶液としては、硫酸第一鉄水溶液、又は、硫酸第一鉄及び塩化第一鉄水溶液等を使用することができる。 As the ferrous salt aqueous solution in the present invention, ferrous sulfate aqueous solution, ferrous sulfate and ferrous chloride aqueous solution or the like can be used.
 本発明における水酸化アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物の水溶液、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属の水酸化物の水溶液、また、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等の炭酸アルカリ水溶液及びアンモニア水等を使用することができる。 Examples of the alkali hydroxide aqueous solution in the present invention include an aqueous solution of an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide, an aqueous solution of an alkaline earth metal hydroxide such as magnesium hydroxide and calcium hydroxide, An aqueous alkali carbonate such as sodium carbonate, potassium carbonate or ammonium carbonate, aqueous ammonia, or the like can be used.
 第一段反応において水酸化アルカリ水溶液の添加量は、第一鉄塩水溶液中のFe2+に対して0.90~1.0当量である。好ましくは0.92~0.99当量の範囲である。0.90当量未満の場合には、針状晶ゲータイト粒子が混在してくる。1.0当量を超える場合には、ケイ素元素が取り込まれやすくなり、黒色度に優れる磁性酸化鉄粒子を得ることができない。 In the first stage reaction, the addition amount of the alkali hydroxide aqueous solution is 0.90 to 1.0 equivalent with respect to Fe 2+ in the ferrous salt aqueous solution. The range is preferably 0.92 to 0.99 equivalent. When the amount is less than 0.90 equivalent, acicular goethite particles are mixed. When exceeding 1.0 equivalent, a silicon element becomes easy to be taken in and the magnetic iron oxide particle which is excellent in blackness cannot be obtained.
 第一段反応において水可溶性ケイ酸塩の添加量は、第一鉄塩溶液中のFeに対しSi換算で0.05~1.00原子%である。水可溶性ケイ酸塩の添加量が前記範囲外の場合には、ケイ素元素の分布が一定にはならず、黒色度に優れる磁性酸化鉄粒子を得ることができない。より好ましい水可溶性ケイ酸塩の添加量は0.07~0.95原子%である。 In the first stage reaction, the amount of water-soluble silicate added is 0.05 to 1.00 atomic% in terms of Si with respect to Fe in the ferrous salt solution. When the addition amount of the water-soluble silicate is outside the above range, the distribution of silicon element is not constant, and magnetic iron oxide particles having excellent blackness cannot be obtained. A more preferred amount of water-soluble silicate is 0.07 to 0.95 atomic%.
 本発明において使用される水可溶性ケイ酸塩としては、ケイ酸ナトリウムや、ケイ酸カリウム等が使用できる。 As the water-soluble silicate used in the present invention, sodium silicate, potassium silicate and the like can be used.
 第一鉄塩水溶液、水酸化アルカリ水溶液及び水可溶性ケイ酸塩を反応させた反応溶液のpHを8~9に調整する。反応溶液のpHを前記範囲に調整することによって、粒子中心部のSi分布を抑制できる。 The pH of the reaction solution obtained by reacting the ferrous salt aqueous solution, the alkali hydroxide aqueous solution and the water-soluble silicate is adjusted to 8-9. By adjusting the pH of the reaction solution within the above range, the Si distribution at the center of the particles can be suppressed.
 反応溶液のpHを調製した後、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気する。70℃未満である場合には、針状晶ゲータイト粒子が混在してくる。100℃を越える場合もマグネタイト粒子は生成するが、オートクレーブ等の装置を必要とするため工業的に容易ではない。より好ましい温度範囲は75~98℃である。 After adjusting the pH of the reaction solution, an oxygen-containing gas is aerated while heating in the temperature range of 70 to 100 ° C. When the temperature is lower than 70 ° C., acicular goethite particles are mixed. Magnetite particles are produced even when the temperature exceeds 100 ° C., but it is not industrially easy because an apparatus such as an autoclave is required. A more preferred temperature range is 75 to 98 ° C.
 酸化手段は酸素含有ガス(例えば、空気)を液中に通気することにより行う。 The oxidation means is performed by venting an oxygen-containing gas (for example, air) into the liquid.
 本発明では、反応溶液に酸素含有ガスを通気して、鉄の酸化反応率が7~12%まで酸化反応を行って、核晶マグネタイト粒子を生成させる第一段反応とする。酸化反応率が7%未満では、黒色磁性酸化鉄の粒度分布が悪くなり黒色度に優れる磁性酸化鉄粒子を得ることができない。12%を超えると八面体以外の六面体、多面体や球状の粒子が混入してくる。より好ましい酸化反応率は8~11である。鉄の酸化反応率を7~12%に調整する方法としては、後述する実施例に示す方法で反応溶液中のFe2+含有量を経時的に測定して酸化反応率(%)を求めながら、上記範囲の酸化反応率となった時点で第一段反応を終了させる。 In the present invention, an oxygen-containing gas is bubbled through the reaction solution, and the oxidation reaction is performed to an iron oxidation reaction rate of 7 to 12%, thereby forming the first stage reaction in which nucleated magnetite particles are generated. When the oxidation reaction rate is less than 7%, the particle size distribution of the black magnetic iron oxide is deteriorated and magnetic iron oxide particles having excellent blackness cannot be obtained. When it exceeds 12%, hexahedrons other than octahedrons, polyhedrons, and spherical particles are mixed. A more preferable oxidation reaction rate is 8-11. As a method of adjusting the oxidation reaction rate of iron to 7 to 12%, while measuring the Fe 2+ content in the reaction solution with time by the method shown in the examples described later to obtain the oxidation reaction rate (%), When the oxidation reaction rate falls within the above range, the first stage reaction is terminated.
 前記第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01~1.50当量となるように水酸化アルカリ水溶液を添加する。水酸化アルカリ水溶液の添加量が1.01当量未満の場合には、八面体以外の六面体、多面体や球状の粒子が混入してくる。水酸化アルカリ水溶液の添加量が1.5当量を超える場合には、粒度分布が大きくなり、均一な粒子径のものが得られない。より好ましい水酸化アルカリ水溶液の添加量は、1.02~1.48である。 An aqueous alkali hydroxide solution is added so as to be 1.01 to 1.50 equivalent to the ferrous salt reaction solution containing the nucleated magnetite particles and the ferrous hydroxide colloid after the completion of the first stage reaction. When the addition amount of the alkali hydroxide aqueous solution is less than 1.01 equivalent, hexahedral, polyhedral and spherical particles other than octahedron are mixed. When the addition amount of the alkali hydroxide aqueous solution exceeds 1.5 equivalents, the particle size distribution becomes large and a uniform particle size cannot be obtained. A more preferable addition amount of the aqueous alkali hydroxide solution is 1.02 to 1.48.
 70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40~60%まで酸化反応を行う第二段反応を行う。70℃未満である場合には、針状晶ゲータイト粒子が混在してくる。100℃を越える場合もマグネタイト粒子は生成するが、オートクレーブ等の装置を必要とするため工業的に容易ではない。 A second-stage reaction is performed in which an oxygen-containing gas is vented while heating in a temperature range of 70 to 100 ° C. to perform an oxidation reaction until the iron oxidation reaction rate reaches 40 to 60%. When the temperature is lower than 70 ° C., acicular goethite particles are mixed. Magnetite particles are produced even when the temperature exceeds 100 ° C., but it is not industrially easy because an apparatus such as an autoclave is required.
 本発明の第二段反応では反応溶液に酸素含有ガスを通気して、鉄の酸化反応率が40~60%まで酸化反応を行う。酸化反応率が40%未満では、後段の酸化反応が長くなり粒度分布が大きくなり、均一な粒子径のものが得られない。60%を超えると第三段反応における酸化反応が短くなり粒度分布が大きくなり、均一な粒子径のものが得られない。鉄の酸化反応率を40~60%に調整する方法としては、後述する実施例に示す方法で反応溶液中のFe2+含有量を経時的に測定して酸化反応率(%)を求めながら、上記範囲の酸化反応率となった時点で第二段反応を終了させる。 In the second stage reaction of the present invention, an oxygen-containing gas is passed through the reaction solution to carry out the oxidation reaction until the iron oxidation reaction rate is 40 to 60%. If the oxidation reaction rate is less than 40%, the subsequent oxidation reaction becomes long and the particle size distribution becomes large, and it is impossible to obtain a product having a uniform particle size. If it exceeds 60%, the oxidation reaction in the third stage reaction becomes short, the particle size distribution becomes large, and a uniform particle size cannot be obtained. As a method for adjusting the oxidation reaction rate of iron to 40 to 60%, while measuring the Fe 2+ content in the reaction solution over time by the method shown in the examples described later to obtain the oxidation reaction rate (%), When the oxidation reaction rate falls within the above range, the second stage reaction is terminated.
 前記第二段反応終了後、反応溶液のpHを、一旦、5~9に調整する(中継条件)。前記pHの範囲に調整しない場合には、水酸化第一鉄コロイドを含む第一鉄反応水溶液の粘性が高くなり、反応温度の均一性や反応速度の均一性が損なわれ、結果として粒子の結晶成長速度が不均一となり結晶性が悪く、均一な粒子径のものが得られない。 After completion of the second stage reaction, the pH of the reaction solution is once adjusted to 5 to 9 (relay condition). If the pH is not adjusted, the viscosity of the ferrous reaction aqueous solution containing ferrous hydroxide colloid is increased, and the uniformity of the reaction temperature and the uniformity of the reaction rate are impaired. The growth rate is not uniform, the crystallinity is poor, and a uniform particle size cannot be obtained.
 その後、反応溶液のpHを9.5以上に再調整する。使用する水酸化アルカリ水溶液の量は残存するFe2+に対して1.00当量以上である。1.00当量未満の場合、残存するFe2+が全量沈殿しない場合がある。実用上、1.00当量以上であって工業性を考慮した量が好ましい。 Thereafter, the pH of the reaction solution is readjusted to 9.5 or higher. The amount of the aqueous alkali hydroxide used is 1.00 equivalent or more with respect to the remaining Fe 2+ . If the amount is less than 1.00 equivalent, the remaining Fe 2+ may not precipitate in its entirety. Practically, the amount is preferably 1.00 equivalent or more and considering industrial properties.
 前記第二段反応を行った反応溶液に、再度、水可溶性ケイ酸塩を添加する。第三段反応において、添加する水可溶性ケイ酸塩は、第一段反応で添加した水可溶性ケイ酸塩に対してモル比で20~200%であり、第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下であることが好ましい。 The water-soluble silicate is added again to the reaction solution subjected to the second stage reaction. In the third stage reaction, the water-soluble silicate to be added is 20 to 200% in molar ratio with respect to the water-soluble silicate added in the first stage reaction. It is preferable that silicon elements to be added are 1.9 atomic% or less in total.
 次いで、反応溶液を70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行う。より好ましい温度範囲は72~98℃である。 Next, an oxygen-containing gas is passed through the reaction solution while heating the reaction solution to a temperature range of 70 to 100 ° C. to perform an oxidation reaction. A more preferred temperature range is 72 to 98 ° C.
 また、黒色磁性酸化鉄粒子の粒子表面に、Al、又はAl及びSiからなる化合物を形成する場合には、第二段反応終了後の黒色磁性酸化鉄粒子を含む懸濁液中に水可溶性アルミニウム塩、又は水可溶性アルミニウム塩及び水可溶性塩珪酸塩をAl量が0.02から1.0重量%、Si量が0.02~1.0重量%になるように添加した後、pHを5~9の範囲に調整してSiとAlを黒色磁性酸化鉄粒子表面に析出沈着させることにより得ることができる。 Further, when forming a compound comprising Al or Al and Si on the surface of the black magnetic iron oxide particles, water-soluble aluminum is contained in the suspension containing the black magnetic iron oxide particles after the second stage reaction. After adding a salt, or a water-soluble aluminum salt and a water-soluble salt silicate so that the Al amount is 0.02 to 1.0 wt% and the Si amount is 0.02 to 1.0 wt%, the pH is 5 It can be obtained by precipitating and depositing Si and Al on the surface of the black magnetic iron oxide particles while adjusting to a range of ˜9.
<作用>
 本発明に係る黒色磁性酸化鉄粒子粉末は、八面体形状であって粒子内部に含有されるケイ素元素の分布を一定にすることにより、塗膜膜厚が薄くなってもa*の値が小さく黒色度に優れるものであり、磁性トナーとして使用した場合においても黒色度の優れているものである。
<Action>
The black magnetic iron oxide particle powder according to the present invention has an octahedral shape, and by making the distribution of silicon element contained inside the particle constant, the value of a * is small even when the coating film thickness is thin. It has excellent blackness, and even when used as a magnetic toner, it has excellent blackness.
 本発明に係る黒色磁性酸化鉄粒子粉末は、八面体形状であって粒子内部に含有されるケイ素元素の分布を一定にすることができたので、黒色度に優れたマグネタイト粒子とすることができたものである。 The black magnetic iron oxide particle powder according to the present invention has an octahedral shape and the distribution of silicon element contained in the particle can be made constant, so that magnetite particles having excellent blackness can be obtained. It is a thing.
 本発明の代表的な実施例は次の通りである。 A typical embodiment of the present invention is as follows.
 形状・平均粒子径・変化係数:
 黒色磁性酸化鉄粒子の粒子形状及び平均粒子径は、「走査型電子顕微鏡S-4800」((株)日立ハイテクノロジーズ製)により観察し、電子顕微鏡写真から測定した数値の平均値で示した。
Shape, average particle size, coefficient of change:
The particle shape and average particle diameter of the black magnetic iron oxide particles were observed by “Scanning Electron Microscope S-4800” (manufactured by Hitachi High-Technologies Corporation), and indicated by average values measured from electron micrographs.
 粒度分布における変化係数は個数分布の標準偏差σを平均粒子径で割って100をかけて%で表わした。 The change coefficient in the particle size distribution was expressed as% by dividing the standard deviation σ of the number distribution by the average particle diameter and multiplying by 100.
 比表面積:
 比表面積は「Mono Sorb MS-II」(湯浅アイオニックス株式会社製)を用いて比表面積はBET法により測定した値で示した。
Specific surface area:
The specific surface area was represented by a value measured by BET method using “Mono Sorb MS-II” (manufactured by Yuasa Ionics Co., Ltd.).
 酸化反応率:
 第一段反応および第二段反応の第一鉄塩の酸化反応率は、反応溶液中のFe2+含有量を測定し、下記式によって算出した。
(A-B)÷A×100=酸化反応率(%)
但し、Aは第一鉄塩水溶液とアルカリ水溶液との混合直後の反応溶液中のFe2+の含有量、Bは水酸化第一鉄とマグネタイト粒子との混合物を含む第一鉄塩反応溶液中のFe2+含有量である。
Oxidation reaction rate:
The oxidation reaction rate of the ferrous salt in the first stage reaction and the second stage reaction was calculated by the following formula by measuring the Fe 2+ content in the reaction solution.
(AB) ÷ A × 100 = Oxidation reaction rate (%)
However, A is the content of Fe 2+ in the reaction solution immediately after mixing the aqueous ferrous salt solution and the aqueous alkaline solution, and B is the ferrous salt reaction solution containing a mixture of ferrous hydroxide and magnetite particles. Fe 2+ content.
 SiおよびAl元素量:
 黒色磁性酸化鉄粒子粉末のSi量及びAl量は「蛍光X線分析装置RIX-2100」(理学電気工業株式会社製)にて測定し、黒色磁性酸化鉄粒子粉末に対して元素換算で求めた値である。
Si and Al element amounts:
The amount of Si and the amount of Al in the black magnetic iron oxide particle powder were measured with a “fluorescence X-ray analyzer RIX-2100” (manufactured by Rigaku Denki Kogyo Co., Ltd.), and found in terms of elements with respect to the black magnetic iron oxide particle powder Value.
 表面Si量:
 黒色磁性酸化鉄粒子粉末の粒子表面のSi量は、黒色磁性酸化鉄粒子粉末とイオン交換水を混合した後、分散させて懸濁液としたものを水酸化アルカリ水溶液と混合して30分間以上攪拌した後、懸濁液を濾過、乾燥して得られた黒色磁性酸化鉄粒子粉末のSi量を測定し、前記アルカリによる処理前の全Si量との差をもって粒子表面のSi量とした。
Surface Si amount:
The amount of Si on the surface of the black magnetic iron oxide particle powder is 30 minutes or more by mixing the black magnetic iron oxide particle powder and ion-exchanged water and then dispersing and mixing it with an aqueous alkali hydroxide solution. After stirring, the amount of Si in the black magnetic iron oxide particle powder obtained by filtering and drying the suspension was measured, and the difference from the total amount of Si before treatment with the alkali was defined as the amount of Si on the particle surface.
 ケイ素元素およびナトリウム元素溶解率:
 鉄元素の溶解率に対するケイ素元素およびナトリウム元素の溶解率は、次の方法により求めることができる。
 3mol/lの塩酸溶液3Lに黒色磁性酸化鉄粒子粉末30gを懸濁させる。ついで50℃に黒色磁性酸化鉄粒子懸濁塩酸溶液を保ち、黒色磁性酸化鉄粒子が全て溶解するまで一定時間毎にサンプリングし、これをメンブランフィルタで濾過し濾液を得る。この濾液を誘導プラズマ原子発光分光光度計で鉄元素及びケイ素元素の定量を行う。鉄元素溶解率およびケイ素元素溶解率は、次式により計算される。
Dissolution rate of silicon element and sodium element:
The dissolution rates of silicon element and sodium element relative to the dissolution rate of iron element can be determined by the following method.
30 g of black magnetic iron oxide particle powder is suspended in 3 L of 3 mol / l hydrochloric acid solution. Next, the black magnetic iron oxide particle suspension hydrochloric acid solution is kept at 50 ° C., and sampling is performed at regular intervals until all the black magnetic iron oxide particles are dissolved, and this is filtered through a membrane filter to obtain a filtrate. The filtrate is subjected to quantitative determination of iron element and silicon element with an induction plasma atomic emission spectrophotometer. The iron element dissolution rate and the silicon element dissolution rate are calculated by the following equations.
 鉄元素溶解率(%)=サンプル中の鉄元素濃度(mg/l)/完全に溶解したときの鉄元素濃度(mg/l)×100
 ケイ素元素溶解率(%)=サンプル中のケイ素元素濃度(mg/l)/完全に溶解したときのケイ素元素濃度(mg/l)×100
 ナトリウム素元素溶解率(%)=サンプル中のナトリウム元素濃度(mg/l)/完全に溶解したときのナトリウム元素濃度(mg/l)×100
Iron element dissolution rate (%) = iron element concentration in sample (mg / l) / iron element concentration when completely dissolved (mg / l) × 100
Dissolution rate of silicon element (%) = concentration of silicon element in sample (mg / l) / concentration of silicon element when completely dissolved (mg / l) × 100
Sodium element dissolution rate (%) = concentration of sodium element in sample (mg / l) / concentration of sodium element when completely dissolved (mg / l) × 100
 塗膜色特性:
 黒色磁性酸化鉄粒子粉末を用いた塗膜のa*値、b*値は、以下のようにして測定した。
 ポリエステル樹脂8gをトルエン20gに溶解させる。このトルエンにポリエステル樹脂が溶解した溶液に黒色磁性酸化鉄粒子粉末8gと1.5mmφガラスビーズ50gを加えペイントコンディショナーで4時間分散させ分散液を得る。この分散液をウエットの膜厚が12μm、40μm、100μmのバーを用いてキャストコート紙上にバーコーターを用いて塗布する。乾燥後、分光測色濃度計X-rite939を用いて測色する。
Film color characteristics:
The a * value and b * value of the coating film using the black magnetic iron oxide particle powder were measured as follows.
8 g of the polyester resin is dissolved in 20 g of toluene. 8 g of black magnetic iron oxide particle powder and 50 g of 1.5 mmφ glass beads are added to a solution in which a polyester resin is dissolved in toluene, and dispersed by a paint conditioner for 4 hours to obtain a dispersion. This dispersion is applied onto a cast-coated paper using a bar coater using a bar having a wet film thickness of 12 μm, 40 μm, or 100 μm. After drying, colorimetry is performed using a spectrocolorimetric densitometer X-rite 939.
 塗布膜の膜厚はデジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて、先ず、キャストコート紙の厚み(A)を測定する。次に、キャストコート紙と該キャストコート紙上に形成された塗布膜の厚み(B)(キャストコート紙の厚みと塗布膜の厚みとの総和)を同様にして測定する。塗布膜の膜厚は(B)-(A)であり、30回測定を行いその平均値を塗布膜の膜厚とした。 First, the thickness (A) of the cast coated paper is measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) of the cast coated paper and the coating film formed on the cast coated paper (total of the thickness of the cast coated paper and the coating film) is measured in the same manner. The film thickness of the coating film was (B)-(A), 30 measurements were taken, and the average value was taken as the film thickness of the coating film.
 電気抵抗:
 黒色磁性酸化鉄粒子粉末の電気抵抗値は、測定対象の粒子粉末0.5gを秤量し、KBr錠剤成形器(島津製作所製)を用い、ハンドプレス(島津製作所製 SSP-10型)のゲージ読み値で14MPaの圧力で10秒間、加圧成形する(この条件で、密度が2.7g/cm程度の成型体が得られるが、他の成形器を使用する場合は、適宜、密度が2.7g/cm程度となる条件を設定すればよい。なお、密度が2.5~2.8g/cm大幅に超える場合には、電気抵抗値が変化し、測定値の比較が困難となる。)。次に、加圧成形した試料をステンレス電極間にセットする。その際、電極間をフッ素樹脂性ホルダーで外部と完全に隔離する。セットした試料にホイーストンブリッジ(横河電機社製 TYPE 2768型)で15Vの電圧を印加して抵抗値を測定する。そのときの測定値R(Ω)と試料の電極面積A(cm)および厚みt(cm)を測定し、下記の式により体積固有抵抗値X(Ωcm)を計算する。
  X=R/(A/t)
Electrical resistance:
The electrical resistance value of the black magnetic iron oxide particle powder was measured by measuring 0.5 g of the particle powder to be measured and using a KBr tablet molding machine (manufactured by Shimadzu Corporation) with a hand reading (SSP-10 model manufactured by Shimadzu Corporation) The pressure molding is performed at a pressure of 14 MPa for 10 seconds (under this condition, a molded body having a density of about 2.7 g / cm 3 is obtained. However, when other molding machines are used, the density is suitably 2 It is sufficient to set a condition of about 0.7 g / cm 3, and if the density greatly exceeds 2.5 to 2.8 g / cm 3 , the electric resistance value changes and it is difficult to compare the measured values. Become.). Next, the pressure-formed sample is set between stainless steel electrodes. At that time, the electrodes are completely separated from the outside by a fluororesin holder. A voltage of 15 V is applied to the set sample with a Wheatstone bridge (TYPE 2768 manufactured by Yokogawa Electric Corporation), and the resistance value is measured. The measured value R (Ω) at that time, the electrode area A (cm 2 ) and the thickness t (cm) of the sample are measured, and the volume resistivity X (Ωcm) is calculated by the following equation.
X = R / (A / t)
 実施例1:
 Fe2+:1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+:24mol)と3.0Nの水酸化ナトリウム溶液15.2l(Fe2+に対し0.95当量に該当する。)を混合し、pH8.2に調整して第一鉄塩懸濁液の生成を行った。この際、ケイ素成分として3号水ガラス(SiO:28.8wt%)13.3g(Feに対してSi換算で0.25原子%に該当する。)を0.5lのイオン交換水に希釈したものを、あらかじめ、水酸化ナトリウムに添加した。上記第一鉄塩懸濁液を温度90℃において毎分70lの空気を通気して、第一鉄塩の酸化反応率が10%になるところまで酸化反応を行い、マグネタイト核晶粒子を含む第一鉄塩懸濁液を得た(第一段反応)。
Example 1:
Fe 2+ : mixed with 16 l of ferrous sulfate aqueous solution containing 1.5 mol / l (Fe 2+ : 24 mol) and 15.2 l of 3.0N sodium hydroxide solution (corresponding to 0.95 equivalent to Fe 2+ ). Then, the pH was adjusted to 8.2 to produce a ferrous salt suspension. At this time, 13.3 g of No. 3 water glass (SiO 2 : 28.8 wt%) as a silicon component (corresponding to 0.25 atomic% in terms of Si with respect to Fe) was diluted in 0.5 l of ion-exchanged water. This was previously added to sodium hydroxide. The ferrous salt suspension was aerated at 70 ° C. per minute at a temperature of 90 ° C. to carry out the oxidation reaction until the ferrous salt oxidation reaction rate reached 10%. A ferrous salt suspension was obtained (first stage reaction).
 次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に3.0Nの水酸化ナトリウム溶液3.2lを加え(Fe2+ に対し1.15当量に該当する。)、温度90℃において毎分70lの空気を通気して、第一鉄塩の酸化反応率が50%になるところまで酸化反応を行った(第二段反応)。 Next, 3.2 l of a 3.0N sodium hydroxide solution was added to the ferrous salt suspension containing the magnetite nuclei particles (corresponding to 1.15 equivalents with respect to Fe 2+ ). 70 l of air was ventilated to carry out the oxidation reaction until the ferrous salt oxidation reaction rate reached 50% (second stage reaction).
 次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に16.1Nの硫酸を適量加えpH8に調整した(中継条件)。 Next, an appropriate amount of 16.1 N sulfuric acid was added to the ferrous salt suspension containing the magnetite nuclei particles and adjusted to pH 8 (relay conditions).
 次いで、3.0Nの水酸化ナトリウム溶液を適量加えpH10.5調整した。この際、ケイ素成分として3号水ガラス(SiO 28.8wt%)21.3g(Feに対してSi換算で0.40原子%に相当する。第一段反応で添加した水可溶性ケイ酸塩に対して160%であり、第一段反応と第三段反応で添加するケイ素元素の合計は0.65原子%である)を0.5lのイオン交換水に希釈したものを上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に添加し、温度90℃において毎分70lの空気を通気してマグネタイト粒子を生成させた(第三段反応)。 Then, an appropriate amount of 3.0N sodium hydroxide solution was added to adjust the pH to 10.5. At this time, 21.3 g of No. 3 water glass (SiO 2 28.8 wt%) as a silicon component (corresponding to 0.40 atomic% in terms of Si with respect to Fe. Water-soluble silicate added in the first stage reaction) The total amount of silicon elements added in the first stage reaction and the third stage reaction is 0.65 atomic%) diluted in 0.5 l of ion-exchanged water. The mixture was added to the ferrous salt suspension containing the particles, and 70 l of air was aerated at a temperature of 90 ° C. to generate magnetite particles (third stage reaction).
 生成粒子は、常法により、水洗、濾別、乾燥、粉砕した。得られたマグネタイト粒子は八面体であり、平均粒子径が0.14μm、粒度分布における変化係数が26%、Si含有量が0.65原子%であった。 The generated particles were washed with water, filtered, dried and pulverized by a conventional method. The obtained magnetite particles were octahedral, the average particle size was 0.14 μm, the coefficient of change in particle size distribution was 26%, and the Si content was 0.65 atomic%.
 また、鉄元素溶解率10%におけるケイ素元素溶解率(a)が10.8%、鉄元素溶解率が20<X20~40≦40%、40<X40~60≦60%、60<X60~80≦80%の各範囲におけるケイ素元素溶解率(Y)はX20~40の鉄元素溶解率が31.6%でケイ素元素溶解率は32.5%、X40~60の鉄元素溶解率が53.6%でケイ素元素溶解率は53.9%、X60~80の鉄元素溶解率が72.8%でケイ素元素溶解率は71.2%であり、鉄元素溶解率50%におけるナトリウム元素溶解率は63%であった。 Further, the silicon element dissolution rate (a) at an iron element dissolution rate of 10% is 10.8%, the iron element dissolution rate is 20 <X 20-40 ≦ 40%, 40 <X 40-60 ≦ 60%, 60 <X The silicon element dissolution rate (Y) in each range of 60 to 80 ≦ 80% is 31.6% for the iron element dissolution rate of X 20 to 40 , 32.5% for the silicon element dissolution rate, and the iron element of X 40 to 60 The dissolution rate is 53.6%, the silicon element dissolution rate is 53.9%, the iron element dissolution rate of X 60-80 is 72.8%, the silicon element dissolution rate is 71.2%, and the iron element dissolution rate is 50%. %, The dissolution rate of sodium element was 63%.
 また、この黒色磁性粒子粉末は、塗膜膜厚24μmでのb*値は0.3、a*値(a*(II))は0.4、塗膜膜厚5μmでのa*値(a*(I))は0.5で、塗膜膜厚5μmのa*値の塗膜膜厚24μmでのa*値に対する比α(a*(I)/a*(II))は1.3であった。 This black magnetic particle powder has a b * value of 0.3 at a coating film thickness of 24 μm, an a * value (a * (II)) of 0.4, and an a * value at a coating film thickness of 5 μm ( a * (I)) is 0.5, and the ratio α (a * (I) / a * (II)) of the a * value at a coating film thickness of 5 μm to the a * value at a coating film thickness of 24 μm is 1. .3.
 また、この黒色磁性粒子粉末の電気抵抗が5×10Ωcmであった。この黒色磁性粉末は、粒子内部に含有されるケイ素元素の分布が一定で、黒色度に優れているものであった。 The electric resistance of the black magnetic particle powder was 5 × 10 4 Ωcm. This black magnetic powder had a uniform distribution of silicon elements contained in the particles and was excellent in blackness.
 実施例2~12、比較例5~9:
 第一段反応における当量比、ケイ素元素量、酸化反応率10%までのpH、第二段反応における当量比、酸化反応率、中継条件のpH、第三段反応におけるpH、ケイ素元素量を表に示すように変更した以外は実施例1と同様にして、黒色磁性粉末を得た。
またSiおよびAlの被覆層は、マグネタイト粒子を含む懸濁液にケイ素成分として3号水ガラス、アルミニウム成分として1.9mol/lの硫酸アルミニウム溶液1用いて表に示すように適量加えpH7に調整し、被覆層を形成した。
Examples 2-12, Comparative Examples 5-9:
Equivalent ratio in first stage reaction, silicon element amount, oxidation reaction rate up to 10% pH, equivalent ratio in second stage reaction, oxidation reaction rate, pH of relay conditions, pH in third stage reaction, silicon element amount A black magnetic powder was obtained in the same manner as in Example 1 except that the changes were made as shown in FIG.
The coating layer of Si and Al was adjusted to pH 7 by adding appropriate amounts as shown in the table using No. 3 water glass as the silicon component and 1.9 mol / l aluminum sulfate solution 1 as the aluminum component in the suspension containing magnetite particles. Then, a coating layer was formed.
  比較例1:
 Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+ 24mol)と3.0Nの水酸化ナトリウム溶液16.8l(Fe2+に対し1.05当量に該当する。)を混合し、第一鉄塩懸濁液の生成を行った。この際、ケイ素成分として3号水ガラス(SiO 28.8wt%)を75.7g(Feに対してSi換算で1.42原子%に該当する。)を0.5lのイオン交換水に希釈したものを水酸化ナトリウムに添加した。上記第一鉄塩懸濁液を温度90℃において毎分70lの空気を通気して酸化反応を行い、マグネタイト粒子を生成した。
Comparative Example 1:
Fe 2+ 1.5 mol / l containing ferrous solution 16l sulfate (Fe 2+ 24 mol) and sodium hydroxide 3.0N solution 16.8l (Fe 2+ to 1.05 corresponds to eq.) Were mixed, A ferrous salt suspension was produced. At this time, 75.7 g of No. 3 water glass (SiO 2 28.8 wt%) as a silicon component (corresponding to 1.42 atomic% in terms of Si with respect to Fe) was diluted in 0.5 l of ion-exchanged water. Was added to sodium hydroxide. The ferrous salt suspension was oxidized at a temperature of 90 ° C. by passing 70 l of air per minute to generate magnetite particles.
  比較例2:
 Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+ 24mol)にケイ素成分として3号水ガラス(SiO 28.8wt%)を80.0g(Feに対してSi換算で1.50原子%に該当する。)0.5lのイオン交換水に希釈し添加した。この水溶液と3.0Nの水酸化ナトリウム溶液16.3l(Fe2+に対し1.02当量に該当する。)を混合し、第一鉄塩懸濁液を得た。水酸化ナトリウム溶液を用いて、この第一鉄塩懸濁液のpHを12に調整した。上記第一鉄塩懸濁液を温度90℃において毎分30lの空気を通気して酸化反応を行い、酸化反応率が50%を越えた時点で通気量を毎分20lに減少させた。更に酸化反応率が75%を越えた時点で通気量を毎分10lに減少させた。そして酸化反応率が90%を越えた時点で通気量を毎分5lに減少させFe2+イオンがなくなるまで酸化を行い、マグネタイト粒子を生成した。
Comparative Example 2:
1 in terms of Si with respect to ferrous sulfate aqueous solution 16l (Fe 2+ 24mol) No. 3 water glass (SiO 2 28.8wt%) as the silicon component 80.0 g (Fe containing Fe 2+ 1.5mol / l. It corresponds to 50 atomic%.) Diluted in 0.5 l of ion exchange water and added. This aqueous solution was mixed with 16.3 l of a 3.0N sodium hydroxide solution (corresponding to 1.02 equivalent to Fe 2+ ) to obtain a ferrous salt suspension. The pH of this ferrous salt suspension was adjusted to 12 using sodium hydroxide solution. The ferrous salt suspension was oxidized at a temperature of 90 ° C. by aeration of 30 l of air per minute, and when the oxidation reaction rate exceeded 50%, the aeration rate was reduced to 20 l per minute. Further, when the oxidation reaction rate exceeded 75%, the aeration rate was reduced to 10 l per minute. When the oxidation reaction rate exceeded 90%, the aeration rate was reduced to 5 liters per minute and oxidation was performed until Fe 2+ ions disappeared to generate magnetite particles.
 比較例3:
 Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液16l(Fe2+ 24mol)と3.0Nの水酸化ナトリウム溶液18.4l(Fe2+に対し1.15当量に該当する。)を混合し、第一鉄塩懸濁液の生成を行った。上記第一鉄塩懸濁液を温度90℃において毎分70lの空気を通気して、第一鉄塩の酸化反応率が50%になるところまで酸化反応を行い、マグネタイト核晶粒子を含む第一鉄塩懸濁液を得た(第一段反応)。
Comparative Example 3:
Fe 2+ 1.5 mol / l containing ferrous solution 16l sulfate (Fe 2+ 24 mol) and sodium hydroxide 3.0N solution 18.4l (Fe 2+ to 1.15 corresponds to eq.) Were mixed, A ferrous salt suspension was produced. The ferrous salt suspension was aerated at 70 ° C. per minute at a temperature of 90 ° C. to carry out an oxidation reaction until the oxidation reaction rate of the ferrous salt reached 50%. A ferrous salt suspension was obtained (first stage reaction).
 次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に16.1Nの硫酸を適量加えpH8に調整した(中継条件)。 Next, an appropriate amount of 16.1 N sulfuric acid was added to the ferrous salt suspension containing the magnetite nuclei particles and adjusted to pH 8 (relay conditions).
 次いで、上記マグネタイト核晶粒子を含む第一鉄塩懸濁液に3.0Nの水酸化ナトリウム溶液9.2lを加え(残存するFe2+ に対し1.15当量に該当する。)、この際、ケイ素成分として3号水ガラス(SiO 28.8wt%)を20.8g(Feに対してSi換算で0.39原子%に該当する。)を0.5lのイオン交換水に希釈したものを水酸化ナトリウムに添加した。温度90℃において毎分70lの空気を通気してマグネタイト粒子を生成させた(第二段反応)。 Next, 9.2 l of a 3.0N sodium hydroxide solution was added to the ferrous salt suspension containing the magnetite nuclei particles (corresponding to 1.15 equivalents of the remaining Fe 2+ ). What diluted 20.8 g (corresponding to 0.39 atomic% in terms of Si with respect to Fe) of No. 3 water glass (SiO 2 28.8 wt%) as a silicon component in 0.5 l of ion-exchanged water Added to sodium hydroxide. Magnetite particles were generated by aeration of 70 l of air per minute at a temperature of 90 ° C. (second stage reaction).
 このときの製造条件を表1に、生成マグネタイト粒子粉末の諸特性を表2にそれぞれ示す。 The production conditions at this time are shown in Table 1, and the characteristics of the produced magnetite particle powder are shown in Table 2.
 比較例4:
 比較例3に基づいて、種々条件を変更して黒色磁性酸化鉄粒子粉末を得た。
Comparative Example 4:
Based on Comparative Example 3, various conditions were changed to obtain black magnetic iron oxide particles.
 このときの製造条件を表1に、生成マグネタイト粒子粉末の諸特性を表2にそれぞれ示す。 The production conditions at this time are shown in Table 1, and the characteristics of the produced magnetite particle powder are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る黒色磁性酸化鉄粒子は、環境安定性に優れていることから電子写真用磁性トナーの磁性粉末として好適に用いることができる。 Since the black magnetic iron oxide particles according to the present invention are excellent in environmental stability, they can be suitably used as magnetic powder for magnetic toner for electrophotography.

Claims (8)

  1.  八面体形状であって、鉄元素に対してケイ素元素換算で0.19~1.90原子%のケイ素を含有し、鉄元素溶解率(X)が20<X20~40≦40%、40<X40~60≦60%、60<X60~80≦80%の各範囲におけるケイ素元素溶解率(Y)が、鉄元素溶解率(X)と鉄元素溶解率が10%のときのケイ素元素溶解率(a)とからなる下記式(1)、(2)を満足することを特徴とする黒色磁性酸化鉄粒子粉末。
    {(100-a)X+100(a-10)}/90-10(1-a/100)≦Y≦{(100-a)X+100(a-10)}/90+10(1-a/100) ・・・(1)
    10≦a≦80 ・・・(2)
    (但し、10≦X≦100、10≦Y≦100)
    It has an octahedral shape, contains 0.19 to 1.90 atomic% of silicon in terms of silicon element, and has an iron element solubility (X) of 20 <X 20 to 40 ≦ 40%, 40 <X 40-60 ≦ 60%, 60 <X 60-80 ≦ 80% Silicon element dissolution rate (Y) is silicon when iron element dissolution rate (X) and iron element dissolution rate are 10% A black magnetic iron oxide particle powder characterized by satisfying the following formulas (1) and (2) consisting of an element dissolution rate (a).
    {(100−a) X + 100 (a−10)} / 90−10 (1−a / 100) ≦ Y ≦ {(100−a) X + 100 (a−10)} / 90 + 10 (1−a / 100) (1)
    10 ≦ a ≦ 80 (2)
    (However, 10 ≦ X ≦ 100, 10 ≦ Y ≦ 100)
  2.  黒色磁性酸化鉄粒子中のナトリウム含有量が0.02~0.10重量%であって、全鉄元素量に対して鉄元素溶解率50%におけるナトリウム元素溶解率が、全ナトリウム元素溶解量に対して50%以上である請求項1記載の黒色磁性酸化鉄粒子粉末。 The sodium content in the black magnetic iron oxide particles is 0.02 to 0.10% by weight, and the sodium element dissolution rate when the iron element dissolution rate is 50% with respect to the total iron element amount is the total sodium element dissolution amount. 2. The black magnetic iron oxide particle powder according to claim 1, which is 50% or more.
  3.  平均粒子径が0.05~0.30μmである請求項1又は2記載の黒色磁性酸化鉄粒子粉末。 The black magnetic iron oxide particle powder according to claim 1 or 2, having an average particle diameter of 0.05 to 0.30 µm.
  4.  粒度分布における変化係数が30%以下である請求項1~3のいずれかに記載の黒色磁性酸化鉄粒子粉末。 The black magnetic iron oxide particle powder according to any one of claims 1 to 3, wherein a change coefficient in particle size distribution is 30% or less.
  5.  黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23~26μmのときの塗膜のb*値が2以下であり、
       a*(I):塗膜膜厚4~6μmでのa*値
       a*(II):塗膜膜厚23~26μmでのa*値
       α=a*(I)/a*(II)としたときに、
    1.0≦α≦2.0を満たすことを特徴とする請求項1~4のいずれかに記載の黒色磁性酸化鉄粒子粉末。
    The b * value of the coating film when using a black magnetic iron oxide particle powder with a film thickness of 23 to 26 μm is 2 or less,
    a * (I): a * value when the film thickness is 4 to 6 μm a * (II): a * value when the film thickness is 23 to 26 μm α = a * (I) / a * (II) When
    The black magnetic iron oxide particle powder according to claim 1, wherein 1.0 ≦ α ≦ 2.0 is satisfied.
  6.  Si及びAlの被覆層を有する請求項1~5のいずれかに記載の黒色磁性酸化鉄粒子粉末。 The black magnetic iron oxide particle powder according to any one of claims 1 to 5, which has a coating layer of Si and Al.
  7.  八面体形状であって、鉄元素に対してケイ素元素換算で0.19~1.90原子%のケイ素を含有する黒色磁性酸化鉄粒子粉末であって、黒色磁性酸化鉄粒子粉末を用いて作成した膜厚が23~26μmのときの塗膜のb*値が2以下であり、
       a*(I):塗膜膜厚4~6μmでのa*値
       a*(II):塗膜膜厚23~26μmでのa*値
       α=a*(I)/a*(II)としたときに、
    1.0≦α≦2.0を満たすことを特徴とする黒色磁性酸化鉄粒子粉末。
    A black magnetic iron oxide particle powder having an octahedral shape and containing 0.19 to 1.90 atomic% of silicon in terms of silicon element with respect to iron element, and made using black magnetic iron oxide particle powder The b * value of the coating film when the film thickness is 23 to 26 μm is 2 or less,
    a * (I): a * value when the film thickness is 4 to 6 μm a * (II): a * value when the film thickness is 23 to 26 μm α = a * (I) / a * (II) When
    Black magnetic iron oxide particle powder characterized by satisfying 1.0 ≦ α ≦ 2.0.
  8.  第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し0.90~1.00等量の水酸化アルカリ水溶液と、第一鉄塩溶液中のFeに対しSi換算で0.05~1.00原子%の水可溶性ケイ酸塩とを反応させて得られた水酸化第一鉄コロイドを含む反応溶液のpHを8~9に調整し、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が7~12%まで酸化反応を行い、核晶マグネタイト粒子を生成させる第一段反応、該第一段反応終了後の核晶マグネタイト粒子と水酸化第一鉄コロイドを含む第一鉄塩反応液に対し1.01~1.50当量となるように水酸化アルカリ水溶液を添加し、70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して鉄の酸化反応率が40~60%まで酸化反応を行う第二段反応、第二段反応終了後pHを5~9に一旦調整し、その後、反応溶液のpHを9.5以上に再調整した後、水可溶性ケイ酸塩を第一段反応で添加した水可溶性ケイ酸塩に対して20~200%(第一段反応と第三段反応で添加するケイ素元素が合計で1.9原子%以下)添加し70~100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行う(第三段反応)ことを特徴とする請求項1~7のいずれかに記載の黒色磁性酸化鉄粒子粉末の製造方法。 Ferrous salt aqueous solution, 0.90 to 1.00 equivalent of an alkali hydroxide aqueous solution with respect to the ferrous salt in the ferrous salt aqueous solution, and Fe in the ferrous salt solution in terms of Si The pH of the reaction solution containing ferrous hydroxide colloid obtained by reacting with 0.05 to 1.00 atomic% of water-soluble silicate was adjusted to 8 to 9, and the temperature range was 70 to 100 ° C. A first stage reaction in which an oxygen-containing gas is ventilated while heating to a temperature to cause an oxidation reaction rate of iron to 7 to 12% to produce nucleated magnetite particles, and the nucleated magnetite after completion of the first stage reaction An aqueous alkali hydroxide solution was added to the ferrous salt reaction liquid containing particles and ferrous hydroxide colloid so as to be 1.01 to 1.50 equivalents, and oxygen was added while heating to a temperature range of 70 to 100 ° C. Oxidation reaction is performed up to 40-60% of iron oxidation reaction rate by venting the contained gas After the completion of the second stage reaction, the pH is temporarily adjusted to 5-9 after the completion of the second stage reaction, and then the pH of the reaction solution is readjusted to 9.5 or higher, and then water-soluble silicate is added in the first stage reaction. 20 to 200% of the water-soluble silicate added (total of 1.9 atomic percent or less of silicon elements added in the first stage reaction and third stage reaction) is added and heated to a temperature range of 70 to 100 ° C. The method for producing black magnetic iron oxide particle powder according to any one of claims 1 to 7, wherein the oxidation reaction is carried out by aeration of an oxygen-containing gas (third stage reaction).
PCT/JP2014/068500 2013-07-12 2014-07-10 Black magnetic iron oxide particle powder and method for producing same WO2015005452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526413A JP6521254B2 (en) 2013-07-12 2014-07-10 Black magnetic iron oxide particle powder and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013146156 2013-07-12
JP2013-146156 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015005452A1 true WO2015005452A1 (en) 2015-01-15

Family

ID=52280129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068500 WO2015005452A1 (en) 2013-07-12 2014-07-10 Black magnetic iron oxide particle powder and method for producing same

Country Status (2)

Country Link
JP (1) JP6521254B2 (en)
WO (1) WO2015005452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200032871A (en) * 2018-09-19 2020-03-27 유태호 method for manufacturing black iron oxide pigment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327337A (en) * 1999-05-24 2000-11-28 Kawasaki Steel Corp Production of magnetite and apparatus for producing magnetite
JP2005289671A (en) * 2004-03-31 2005-10-20 Mitsui Mining & Smelting Co Ltd Magnetite particle and manufacturing method thereof
JP2008230960A (en) * 2007-02-23 2008-10-02 Toda Kogyo Corp Black magnetic iron oxide particle
WO2010010752A1 (en) * 2008-07-25 2010-01-28 キヤノン株式会社 Toner
JP2010030790A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Magnetite particle and method for producing the same
JP2011213548A (en) * 2010-03-31 2011-10-27 Toda Kogyo Corp Black magnetic iron oxide particle powder, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327337A (en) * 1999-05-24 2000-11-28 Kawasaki Steel Corp Production of magnetite and apparatus for producing magnetite
JP2005289671A (en) * 2004-03-31 2005-10-20 Mitsui Mining & Smelting Co Ltd Magnetite particle and manufacturing method thereof
JP2008230960A (en) * 2007-02-23 2008-10-02 Toda Kogyo Corp Black magnetic iron oxide particle
WO2010010752A1 (en) * 2008-07-25 2010-01-28 キヤノン株式会社 Toner
JP2010030790A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Magnetite particle and method for producing the same
JP2011213548A (en) * 2010-03-31 2011-10-27 Toda Kogyo Corp Black magnetic iron oxide particle powder, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200032871A (en) * 2018-09-19 2020-03-27 유태호 method for manufacturing black iron oxide pigment
KR102174020B1 (en) 2018-09-19 2020-11-04 유태호 method for manufacturing black iron oxide pigment

Also Published As

Publication number Publication date
JP6521254B2 (en) 2019-05-29
JPWO2015005452A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US7597958B2 (en) Black magnetic iron oxide particles having a specific dissolution of sulfur element
JP5136749B2 (en) Black magnetic iron oxide particle powder
WO2020241065A1 (en) Cobalt ferrite particle production method and cobalt ferrite particles produced thereby
JP4688708B2 (en) Black composite oxide particles, production method thereof, black paste and black matrix
JP6521254B2 (en) Black magnetic iron oxide particle powder and method for producing the same
JP4259830B2 (en) Magnetite particles
JP3828727B2 (en) Iron oxide particles
JP4336227B2 (en) Composite black oxide particles, method for producing the same, black paint and black matrix
JP3440586B2 (en) Granular magnetite particle powder and method for producing the same
JP4373662B2 (en) Iron oxide particles and method for producing the same
JP5113397B2 (en) Magnetite particle powder
JP5826453B2 (en) Black magnetic iron oxide particle powder
JP5180482B2 (en) Method for producing magnetic iron oxide particles
JP4183497B2 (en) Black complex oxide particles and method for producing the same
US20090270239A1 (en) Black Complex Oxide Particles, Process for Producing the Same, Black Pastes, and Black Matrixes
JP4815075B2 (en) Magnetite containing toner
JP4259831B2 (en) Method for producing magnetite particles
JP3440585B2 (en) Granular magnetite particle powder and method for producing the same
JP2005239511A (en) Composite black oxide particle, its manufacturing method, black paint, and black matrix
JP4753029B2 (en) Iron-based black particle powder for toner
JP5029981B2 (en) Black composite iron oxide particles, electrophotographic toner using the same, and image forming method
JP2000335922A (en) Iron oxide particle
JP5281294B2 (en) Magnetic iron oxide particles
JP2007126348A (en) Low magnetic black pigment particle, electrophotographic toner and image forming method
JP2006131498A (en) Magnetite particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822684

Country of ref document: EP

Kind code of ref document: A1