JP3437714B2 - Magnetite particles and method for producing the same - Google Patents

Magnetite particles and method for producing the same

Info

Publication number
JP3437714B2
JP3437714B2 JP12825196A JP12825196A JP3437714B2 JP 3437714 B2 JP3437714 B2 JP 3437714B2 JP 12825196 A JP12825196 A JP 12825196A JP 12825196 A JP12825196 A JP 12825196A JP 3437714 B2 JP3437714 B2 JP 3437714B2
Authority
JP
Japan
Prior art keywords
magnetite particles
silicon
magnetite
silicon component
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12825196A
Other languages
Japanese (ja)
Other versions
JPH09309730A (en
Inventor
武志 宮園
広幸 渡辺
正親 橋内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP12825196A priority Critical patent/JP3437714B2/en
Priority to US08/857,638 priority patent/US5759435A/en
Priority to ES97108225T priority patent/ES2203735T3/en
Priority to DE69723916T priority patent/DE69723916T2/en
Priority to EP97108225A priority patent/EP0808801B1/en
Publication of JPH09309730A publication Critical patent/JPH09309730A/en
Application granted granted Critical
Publication of JP3437714B2 publication Critical patent/JP3437714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマグネタイト粒子お
よびその製造方法に関し、詳しくは粒子内部と表面の双
方にケイ素成分を有し、とりわけ表面に露出したケイ素
成分存在量(ケイ素に換算した量)を制御し、得られた
粒子に熱処理することにより電気抵抗、残留磁化および
流動性の諸特性をバランス良く向上させ、かつ、耐環境
性に優れた特に静電複写磁性トナー用材料粉、塗料用黒
色顔料粉の用途に主に用いられるマグネタイト粒子およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to magnetite particles and a method for producing the same, and more specifically, it has a silicon component both inside and on the surface of the particle, and particularly, the amount of silicon component present on the surface (amount converted to silicon) is By controlling and heat-treating the obtained particles, various properties such as electric resistance, remanent magnetization and fluidity can be improved in a well-balanced manner, and especially environmental copying resistance material powder for electrostatic copying magnetic toner, black for paint The present invention relates to magnetite particles mainly used for pigment powder and a method for producing the same.

【0002】[0002]

【従来の技術】最近、乾式電子複写機、プリンタ等の磁
性トナー用材料として、水溶液反応によるマグネタイト
粒子が広く利用されている。上記磁性トナーとしては各
種の一般的現像特性が要求されるが、近年、電子写真技
術の発達により、特にデジタル技術を用いた複写機、プ
リンター等が急速に発達し、要求特性がより高度になっ
てきた。
2. Description of the Related Art Recently, magnetite particles produced by an aqueous solution reaction have been widely used as a material for magnetic toners of dry type electronic copying machines, printers and the like. Although various general development characteristics are required for the magnetic toner, in recent years, due to the development of electrophotographic technology, particularly, copying machines and printers using digital technology have rapidly developed, and the required characteristics have become higher. Came.

【0003】すなわち、従来の文字以外にもグラフィッ
クや写真等の出力も要求されており、特にプリンターの
中にはインチ当り400ドット以上の能力のものも現わ
れ、感光体上の潜像はより精密になってきている。その
ため、現像での細線再現性の高さが強く要求されてい
る。
That is, in addition to conventional characters, it is required to output graphics, photographs, etc. In particular, some printers have an ability of 400 dots or more per inch, and the latent image on the photoconductor is more precise. Is becoming. Therefore, high reproducibility of fine lines in development is strongly required.

【0004】これらの要求を満足させる為には、残留磁
化のバランスが良く、抵抗もできれば高いマグネタイト
を提供する必要がある。
In order to satisfy these requirements, it is necessary to provide magnetite having a good balance of residual magnetization and high resistance.

【0005】また、例えば特開平4−100474号公
報にて磁性トナーについて開示されている内容に、磁性
酸化鉄粒子は耐環境性の面でいまだ改良すべき点を有し
ていると記載があるように、トナー製造において種々の
特性を満足した上に、さらに耐環境性(耐湿性)に優れ
た磁性粉が望まれている。
Further, for example, Japanese Patent Application Laid-Open No. 4-100474 discloses that magnetic iron oxide particles still have points to be improved in terms of environmental resistance. As described above, there is a demand for magnetic powders which satisfy various characteristics in the production of toner and are further excellent in environment resistance (moisture resistance).

【0006】[0006]

【発明が解決しようとする課題】これらの要求に対応出
来るマグネタイト粒子として、例えば特開昭61−15
5223号公報、特開昭62−278131号公報等に
は、ケイ素成分を粒子粉末内部のみに含有したマグネタ
イト粒子がそれぞれ開示されている。これらの粒子では
細線再現性が改善された画質が得られるものの未だ不充
分である。
As magnetite particles that can meet these requirements, for example, JP-A-61-15 is available.
5223, JP-A-62-278131 and the like disclose magnetite particles containing a silicon component only inside the particle powder. Although these particles can provide image quality with improved fine line reproducibility, they are still insufficient.

【0007】さらに、これらの提案によるマグネタイト
粒子は、流動性が悪くしかも、輸送時の振動等により、
粉体の充填密度が上がりすぎ、トナー化時の作業性を著
しく低下させるという問題がある。
Further, the magnetite particles according to these proposals have poor fluidity, and due to vibration during transportation and the like,
There is a problem that the packing density of the powder is excessively increased, and the workability at the time of forming a toner is significantly reduced.

【0008】また、特開昭54−139544号公報に
は、マグネタイト粒子表面にケイ素成分を被着させて電
気抵抗を向上させることが提案されている。ところが、
これにより作業性は改善されるものの、残留磁化のバラ
ンスが悪く、流動性を与えるには不十分であり、また、
表面にケイ素成分がある為、特に吸湿性は高くなってし
まう、という問題がある。
Further, Japanese Patent Application Laid-Open No. 54-139544 proposes to deposit a silicon component on the surface of magnetite particles to improve electric resistance. However,
Although workability is improved by this, the balance of remanent magnetization is poor and it is insufficient to give fluidity.
Since there is a silicon component on the surface, there is a problem that hygroscopicity becomes particularly high.

【0009】また、特開平5−213620号公報に
は、ケイ素成分を内部と表面部に分け残留磁化のバラン
ス良く流動性も良好であり抵抗の高いマグネタイト粒子
が開示されている。ところが、この粒子により細線再現
性が改善された画質が得られるものの、表面のケイ素成
分により吸湿する、という問題がある。
Further, JP-A-5-213620 discloses magnetite particles in which a silicon component is divided into an inner portion and a surface portion, the residual magnetization is well balanced, the fluidity is good, and the resistance is high. However, although these particles provide an image quality with improved fine line reproducibility, there is a problem in that the surface silicon component absorbs moisture.

【0010】また、特開平4−170325号公報に
は、Si及びAlを含有する粒子を酸化雰囲気で加熱酸
化し、その後還元雰囲気で加熱還元することにより、高
保持力と大きな残留磁化を有するマグネタイト粒子が提
案されている。しかしながら、これは、高保持力及び高
残留磁化を得る為、一度酸化させ、その後還元すること
を行う為で、本目的の磁性粒子と異なり、製造方法も異
なる。
Further, in Japanese Patent Laid-Open No. 4-170325, particles containing Si and Al are heated and oxidized in an oxidizing atmosphere, and then heat-reduced in a reducing atmosphere, whereby magnetite having high coercive force and large residual magnetization is obtained. Particles have been proposed. However, this is because the particles are first oxidized and then reduced in order to obtain a high coercive force and a high remanent magnetization, which is different from the magnetic particles of the present purpose and a manufacturing method.

【0011】本発明は、これら従来技術の課題を解決す
べくなされたもので、残留磁化が低く、かつ電気抵抗を
現状より低くすることなく、しかも作業性、流動性、耐
環境性に優れたマグネタイト粒子およびその製造方法を
提供することを課題としている。
The present invention has been made to solve the problems of the prior arts, and has a low remanent magnetization, an electric resistance not lower than that of the current state, and excellent workability, fluidity and environment resistance. An object of the present invention is to provide magnetite particles and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意検討した結果、マグネタイト粒子
の内部にケイ素成分を含有するのみならず、粒子の表面
にケイ素成分、とりわけ微細なケイ素成分を露出させる
ことによって、マグネタイト粒子を得、その粒子を不活
性ガス中で熱処理することにより、上記課題が解決し得
ることを知見して本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made earnest studies to solve the above problems, and as a result, not only the magnetite particles contain a silicon component, but also the surface of the particle contains a silicon component, particularly a fine particle. The present invention has been completed by finding out that the above problems can be solved by exposing magnetite particles to obtain magnetite particles and heat-treating the particles in an inert gas.

【0013】上記知見に基づく本発明に係るマグネタイ
ト粒子は、内部にケイ素成分を含有しかつ表面にケイ素
成分が、ケイ素に換算して0.05〜2.0重量%の割
合で露出し、高温高湿下において、マグネタイト含有ケ
イ素成分のケイ素に換算した存在量(重量%)をAとし
たとき、マグネタイト含有水分率(重量%)が、下記
(1)式に示され、耐湿性が向上し、且つ抵抗が1×1
3 Ω・cm以上であることを特徴とするものである。 含有水分率(重量%)≦0.5+A/2 (1)
The magnetite particles according to the present invention based on the above findings contain a silicon component inside and the silicon component is exposed on the surface in a proportion of 0.05 to 2.0% by weight in terms of silicon, and is high temperature. Under high humidity, assuming that the amount of silicon (% by weight) of the magnetite-containing silicon component converted to silicon is A, the magnetite-containing water content (% by weight) is shown by the following formula (1), and the moisture resistance is improved. And the resistance is 1 × 1
It is characterized in that it is 0 3 Ω · cm or more. Moisture content (% by weight) ≦ 0.5 + A / 2 (1)

【0014】また、上記マグネタイト粒子において、B
ET法によるマグネタイト粒子の比表面積(m2/g)が、
下記(2)式で示され、マグネタイト粒子に対する前記
表面に露出したケイ素成分のケイ素に換算した存在量
(重量%)をBとしたときに、C/B≧15の関係を満
足することを特徴とするものである。 BET(m2/g)=6/(粒径(μm)×5.2)+C (2)
In the magnetite particles, B
The specific surface area (m 2 / g) of magnetite particles by the ET method is
It is represented by the following formula (2), and when B is the abundance (% by weight) of the silicon component exposed on the surface converted to silicon with respect to the magnetite particles, the relationship of C / B ≧ 15 is satisfied. It is what BET (m 2 / g) = 6 / (particle size (μm) × 5.2) + C (2)

【0015】また一方のマグネタイト粒子の製造方法
は、主成分が第一鉄塩である溶液中にケイ素成分を添加
し、さらに鉄に対して1.0〜1.1当量のアルカリと
混合した後、pHを7〜10に維持して酸化反応を行
い、反応の途中で当初のアルカリに対して0.9〜1.
2当量となる不足の鉄を追加した後、引き続きpH6〜
10に維持して酸化反応を行い、この酸化反応によって
得られたマグネタイト粒子を、不活性ガス中で200℃
〜700℃の温度範囲で加熱処理することを特徴とする
ものである。
On the other hand, the method for producing magnetite particles is as follows. A silicon component is added to a solution containing a ferrous salt as a main component, and the mixture is further mixed with 1.0 to 1.1 equivalent of alkali with respect to iron. , The pH is maintained at 7 to 10 to carry out the oxidation reaction, and 0.9 to 1.
After adding 2 equivalents of deficient iron, continue to pH 6-
The oxidation reaction is carried out while maintaining at 10, and the magnetite particles obtained by this oxidation reaction are heated to 200 ° C. in an inert gas.
The heat treatment is performed in a temperature range of up to 700 ° C.

【0016】尚、ここで、本発明において含有水分率と
は、マグネタイト中のカールフィッシャー法200℃に
おける水分量の含有率のことである。また、高温高湿と
は、35℃,85%,4Hrの条件にてテストしたことを
いう。
The water content in the present invention is the water content of the magnetite at the Karl Fischer method of 200 ° C. The high temperature and high humidity means that the test was conducted under the conditions of 35 ° C., 85%, and 4 hours.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0018】本発明は、粒子内部と表面の双方にケイ素
成分を有し、とりわけ表面に露出したケイ素成分存在量
(ケイ素に換算した量)を制御し、得られた粒子を熱処
理することによりマグネタイト粒子を得るものであり、
得られたマグネタイト粒子は、電気抵抗,残留磁化およ
び流動性の諸特性がバランス良く向上され、かつ、耐環
境性に優れたものとなり、特に静電複写磁性トナー用材
料粉、塗料用黒色顔料粉の用途に主に用いられて好適な
ものである。
In the present invention, the magnetite has a silicon component both inside and on the surface thereof, and in particular, the amount of the silicon component exposed on the surface (amount converted to silicon) is controlled, and the obtained particles are heat treated to obtain magnetite. To get particles,
The obtained magnetite particles have various properties such as electric resistance, remanent magnetization and fluidity improved in a well-balanced manner, and have excellent environmental resistance. Especially, the material powder for electrostatic copying magnetic toner, the black pigment powder for paints. It is mainly used for and is suitable for.

【0019】すなわち、本発明のマグネタイト粒子は、
内部にケイ素成分を含有し、かつ表面にケイ素成分、と
りわけ微細なケイ素成分が露出しており、それを不活性
ガス中で熱処理していることを特徴とする。
That is, the magnetite particles of the present invention are
It is characterized in that it contains a silicon component inside, and a silicon component, especially a fine silicon component, is exposed on the surface and is heat-treated in an inert gas.

【0020】このように、本発明のマグネタイト粒子
は、熱処理前のマグネタイト粒子の内部と表面の双方に
ケイ素成分が存在することが必要である。よって、マグ
ネタイト粒子の内部にケイ素成分が存在しても、表面に
ケイ素成分が露出していない場合には、流動性に劣るこ
ととなる。また、マグネタイト粒子の表面にのみケイ素
成分が露出している場合には、残留磁化が劣るものとな
り、また流動性も充分な物とはいえない。尚、本発明に
おいて、ケイ素成分とは、ケイ素または酸化ケイ素を主
成分とする化合物である。
As described above, the magnetite particles of the present invention need to have a silicon component both inside and on the surface of the magnetite particles before heat treatment. Therefore, even if the silicon component is present inside the magnetite particles, if the silicon component is not exposed on the surface, the fluidity is poor. Further, when the silicon component is exposed only on the surface of the magnetite particles, the remanence becomes poor and the fluidity is not sufficient. In the present invention, the silicon component is a compound containing silicon or silicon oxide as a main component.

【0021】本発明において、マグネタイト粒子に対す
る前記表面に露出したケイ素成分(以下、「表面露出ケ
イ素成分」と略する。)の存在量は、ケイ素に換算して
0.05〜2.0重量%が好ましい(以下、ケイ素成分
の存在量は、すべてケイ素に換算した量である)。これ
は、表面露出ケイ素成分の存在量が0.05重量%未満
では流動性に対する改善効果が小さい傾向にあり、ま
た、一方、表面露出ケイ素成分の存在量が2.0重量%
を超えると、良好な特性は得られるものの、水洗時に濾
布への目詰まりを生じる可能性がある等、作業性に難が
あり、好ましくないからである。
In the present invention, the amount of silicon component exposed on the surface (hereinafter, abbreviated as "surface-exposed silicon component") with respect to the magnetite particles is 0.05 to 2.0% by weight in terms of silicon. Is preferable (hereinafter, the amount of silicon component present is the amount converted to silicon). This is because when the amount of the surface-exposed silicon component is less than 0.05% by weight, the effect of improving the fluidity tends to be small, while the amount of the surface-exposed silicon component is 2.0% by weight.
If it exceeds, good characteristics can be obtained, but the workability is difficult, such that the filter cloth may be clogged during washing with water, which is not preferable.

【0022】すなわち、マグネタイト粒子には合成時に
副生するナトリウム、カリウム等のアルカリ塩除去のた
め水洗工程を必須とするが、このときに表面露出ケイ素
成分の存在量が多量であると濾布への目詰まりを生じ、
このことが作業性を低下させる原因となる。また、表面
露出ケイ素成分の存在量が過剰の場合には、それだけケ
イ素の消費量が増加し、経済性にも劣ることとなる。
That is, the magnetite particles are required to be washed with water in order to remove alkali salts such as sodium and potassium produced as by-products during the synthesis. However, if a large amount of surface-exposed silicon component is present on the filter cloth at this time, Clogging of
This causes a decrease in workability. Further, when the surface-exposed silicon component is present in an excessive amount, the amount of silicon consumed increases correspondingly, resulting in poor economic efficiency.

【0023】ここでいう表面露出ケイ素成分の存在量
は、下記の分析方法によって得られた値である。すなわ
ち、試料0.900gを秤量し、1NのNaOH溶液2
5ミリリットルを加える。液を攪拌しながら45℃に加
温し、粒子表面のケイ素を溶解する。
The abundance of the surface-exposed silicon component referred to herein is a value obtained by the following analytical method. That is, 0.900 g of a sample is weighed, and 1N NaOH solution 2
Add 5 ml. The liquid is heated to 45 ° C. with stirring to dissolve the silicon on the particle surface.

【0024】未溶解物を濾過した後、溶出液を純水で1
25ミリリットルに定量し、溶出液に含まれるケイ素を
プラズマ発光分析(ICP)で定量する。 表面露出ケイ素成分(重量%)={[溶出液に含まれる
ケイ素(g/l)×125÷1000]/0.900
(g)}×100 尚、総SI量は、試料を塩−フッ酸溶液に溶解し、プラ
ズマ発光分析(ICP)で定量する。
After filtering the undissolved material, the eluate was purified with pure water.
It is quantified to 25 ml, and silicon contained in the eluate is quantified by plasma emission spectrometry (ICP). Surface-exposed silicon component (% by weight) = {[silicon contained in eluate (g / l) × 125 ÷ 1000] /0.900
(G)} × 100 The total SI amount is determined by plasma emission analysis (ICP) after dissolving the sample in a salt-hydrofluoric acid solution.

【0025】本発明のマグネタイト粒子は、上述のよう
にマグネタイト粒子の内部と表面の双方にケイ素成分が
存在することが必要である。このように本発明はマグネ
タイト粒子の表面に露出するケイ素成分と内部に存在す
るケイ素成分を区分する上記分析方法を、本願出願人は
先に技術的に確立しており(特開平5−213620
号)、この分析方法にて見出したことによって得られた
マグネタイト粒子を、不活性ガス中において熱処理する
ことによって本発明を完成するに至ったものである。
As described above, the magnetite particles of the present invention need to have a silicon component both inside and on the surface of the magnetite particles. As described above, the present applicant has technically established the above-mentioned analysis method for distinguishing the silicon component exposed on the surface of the magnetite particles from the silicon component present inside thereof (JP-A-5-213620).
No.), the magnetite particles obtained by this analysis method were heat-treated in an inert gas to complete the present invention.

【0026】さらに、本発明においては、マグネタイト
粒子に対するケイ素成分の総量の含有量(A:ケイ素換
算量)と表面露出ケイ素の存在量(B)との割合(B/
A)は、0.03〜0.7、好ましくは0.1〜0.6
の範囲にあることが、特性の点から望ましい。この選択
は、所望の粒子径、残留磁化を見ながら流動性のバラン
スをくずさないように選択することが必要である。
Further, in the present invention, the ratio (B /) of the total content of silicon components (A: silicon equivalent) to the magnetite particles and the amount of surface-exposed silicon (B).
A) is 0.03 to 0.7, preferably 0.1 to 0.6
From the viewpoint of characteristics, it is desirable that the range be within the range. This selection needs to be made so as not to disturb the balance of fluidity while observing the desired particle size and residual magnetization.

【0027】また、本発明のマグネタイト粒子は、抵抗
≧1.0×103 (Ω・cm)でBET法によるマグネタ
イト粒子の比表面積が下記の(2)式で示され、マグネ
タイト粒子に対する表面に露出したケイ素成分のケイ素
に換算した存在量(重量%)をBとした時に、C/B≧
15の関係を満足することが必要である。 BET(m2/g)=6/(粒径(mm)×5.2)+C (2)
Further, the magnetite particles of the present invention have a resistance ≧ 1.0 × 10 3 (Ω · cm) and the specific surface area of the magnetite particles by the BET method is shown by the following formula (2). When the amount (% by weight) of the exposed silicon component converted to silicon is B, C / B ≧
It is necessary to satisfy 15 relationships. BET (m 2 / g) = 6 / (particle size (mm) × 5.2) + C (2)

【0028】抵抗についてマグネタイト粒子は、通常1
×103 (Ω・cm)前後あるが、磁性トナーにおいて
は、それよりも高い物は好まれるが、低い場合、磁性ト
ナーが必要とする帯電量を保持することが困難な方向に
ある。
Regarding resistance, magnetite particles are usually 1
Although it is around 10 3 (Ω · cm), a higher magnetic toner is preferable, but when it is lower, it is difficult to maintain the charge amount required by the magnetic toner.

【0029】また、BET値については、マグネタイト
粒子がC/B<15の関係にあると、抵抗が高くならず
耐環境性の為の熱処理時の抵抗低下傾向に耐えられず
1.0×103 (Ω・cm)以下になり、好ましくなく、
また、流動性も低下する。
Regarding the BET value, when the magnetite particles have a relationship of C / B <15, the resistance is not high and the resistance decreasing tendency at the time of heat treatment for environmental resistance cannot be endured 1.0 × 10. 3 (Ω · cm) or less, which is not preferable,
In addition, the liquidity also decreases.

【0030】従来、優れた分散性を有する粒子粉末は、
一般に粒径に対して小さな比表面積を有し、吸油量が低
いことが必要とされてきたが、本発明に係るマグネタイ
ト粒子は、粒子表面の凹凸係数が大きいため、粒径に対
して大きな比表面積を有し、且つ吸油量が高いものであ
る。本発明のマグネタイト粒子にあっては粉体表面にケ
イ素を有しているために樹脂と濡れ易く、それが分散性
の向上に寄与しているものと思われる。
Conventionally, particle powders having excellent dispersibility are
Generally, it has been necessary to have a small specific surface area with respect to the particle size and a low oil absorption amount. However, since the magnetite particles according to the present invention have a large unevenness coefficient of the particle surface, they have a large ratio to the particle size. It has a surface area and a high oil absorption. Since the magnetite particles of the present invention have silicon on the surface of the powder, they are easily wet with the resin, which seems to contribute to the improvement of the dispersibility.

【0031】また、本発明のマグネタイトは、不活性ガ
ス中で熱処理することを特徴とする。従来、優れた分散
性、流動性を有する為に、内,表面部にケイ素成分を持
つマグネタイト粒子が存在したが、ケイ素成分の吸湿性
の為、空気中の水分を吸湿して含有水分率が高くなって
しまうという欠点があった。不活性ガス中で熱処理を行
うことにより、理由はわからないが、吸湿特性が減少し
上記欠点を解消するとともに、分散性も向上する。この
理由の一因としては、内部及び表面露出のケイ素成分の
持つ−OH基が熱処理により脱せられたことに起因する
のではないかと、思われる。
The magnetite of the present invention is characterized by being heat-treated in an inert gas. In the past, magnetite particles having a silicon component were present on the inside and the surface part in order to have excellent dispersibility and fluidity, but due to the hygroscopicity of the silicon component, it absorbs moisture in the air and contains It had the drawback of becoming expensive. By conducting the heat treatment in an inert gas, the hygroscopic property is reduced, the above-mentioned drawbacks are solved, and the dispersibility is improved, for unknown reasons. It is considered that one of the reasons for this is that the —OH groups of the silicon components exposed inside and on the surface are removed by the heat treatment.

【0032】上記により、高温高湿下における、マグネ
タイト粒子の含有水分率(重量%)が、半減以下にな
り、マグネタイト含有ケイ素成分のケイ素に換算した存
在量(重量%)をAとしたとき、マグネタイト含有水分
率(重量%;200℃カールフィッシャー法)が、下記
(1)式に示される耐湿性の向上を知見するに至った。
なお、0.5重量%は、ケイ素含有なしでも出る値であ
る。 含有水分率(重量%)≦0.5+A/2 (1)
According to the above, the water content (% by weight) of the magnetite particles under high temperature and high humidity is reduced to less than half, and when the abundance (% by weight) converted to silicon of the magnetite-containing silicon component is A, The magnetite-containing water content (% by weight; 200 ° C. Karl Fischer method) has led to the finding that the moisture resistance is improved as shown in the following formula (1).
In addition, 0.5% by weight is a value obtained even without containing silicon. Moisture content (% by weight) ≦ 0.5 + A / 2 (1)

【0033】また、不活性ガスを使用するのは酸化性ガ
ス中では、特開平4−170325号公報にも記載があ
るように酸化し、それに伴ない飽和磁化が低下してしま
う。不活性ガスは、N2 ,Ar等の不活性ガスなら何等
限定されるものではなく、いずれを使用してもよい。
Further, the use of an inert gas causes oxidation in an oxidizing gas as described in Japanese Patent Application Laid-Open No. 4-170325, resulting in a decrease in saturation magnetization. The inert gas is not limited as long as it is an inert gas such as N 2 or Ar, and any gas may be used.

【0034】また、加熱処理温度については200℃〜
700℃が好ましい。これは、200℃以下では、含有
水分率改善効果が薄く、また、700℃以上では工業的
に好ましくないからである。
The heat treatment temperature is from 200 ° C to
700 ° C is preferred. This is because the effect of improving the moisture content is low at 200 ° C or lower, and industrially unfavorable at 700 ° C or higher.

【0035】以上により磁性粉の含有水分率は低下し、
高温高湿の環境においても明らかに、含有水分率は低下
した。これにより、すぐれた流動性、抵抗を1.0×1
3Ω・cm以上持つ残留磁化のバランス良く、耐環境
性の良いマグネタイトを発明するに至った。また、不活
性ガス中で熱処理を行うことにより、飽和磁化の向上と
負の帯電量値が高くなった。
Due to the above, the moisture content of the magnetic powder decreases,
Even in the high temperature and high humidity environment, the moisture content decreased obviously. This gives excellent fluidity and resistance of 1.0 x 1
The inventors have invented a magnetite having a good balance of remanent magnetization of 0 3 Ω · cm or more and good environmental resistance. Further, the heat treatment in an inert gas improved the saturation magnetization and increased the negative charge amount value.

【0036】次に、本発明の好ましい製造方法を説明す
る。
Next, a preferred manufacturing method of the present invention will be described.

【0037】先ず、主成分が第1鉄塩である溶液中にケ
イ素成分を添加する。ここに用いられる第1鉄塩として
は硫酸第1鉄が好ましく、またケイ素成分としてはケイ
酸化合物から調整されたケイ素コロイドを含む溶液が好
ましい。
First, a silicon component is added to a solution whose main component is a ferrous salt. The ferrous salt used here is preferably ferrous sulfate, and the silicon component is preferably a solution containing a silicon colloid prepared from a silicic acid compound.

【0038】次に、第1鉄イオンに対して1.0〜1.
1当量のアルカリと混合して水酸化第1鉄を生成させ
る。
Next, 1.0 to 1.
Mix with 1 equivalent of alkali to produce ferrous hydroxide.

【0039】この水酸化第1鉄に、酸素含有ガス、望ま
しくは空気を吹き込み、60〜100℃、好ましくは8
0〜90℃で酸化反応を行い、種晶を生成させる。この
酸化反応量の制御は反応中に未反応の水酸化第1鉄の分
析と通気、酸素含有ガス量を調整して行う。この酸化反
応においては、pHを7〜10に維持することが肝要で
ある。
An oxygen-containing gas, preferably air, was blown into the ferrous hydroxide to obtain 60 to 100 ° C., preferably 8
Oxidation reaction is performed at 0 to 90 ° C. to generate seed crystals. The control of the oxidation reaction amount is performed by analyzing the unreacted ferrous hydroxide during the reaction, aeration, and adjusting the oxygen-containing gas amount. In this oxidation reaction, it is important to maintain the pH at 7-10.

【0040】この酸化反応の途中で、種晶生成量が全酸
化量の1〜30%、好ましくは2〜10%となったとき
に、当初のアルカリに対して0.9〜1.2当量、好ま
しくは1.05〜1.15当量となる不足の鉄を追加す
る。ここで用いられる鉄としては、硫酸第1鉄等の第1
鉄塩溶液が望ましい。
During this oxidation reaction, when the amount of seed crystals produced is 1 to 30%, preferably 2 to 10% of the total amount of oxidation, 0.9 to 1.2 equivalents relative to the initial alkali. Insufficient iron, preferably 1.05 to 1.15 equivalents, is added. Examples of iron used here include ferrous sulfate such as ferrous sulfate.
Iron salt solutions are preferred.

【0041】さらに、上記と同様の条件でpH6〜1
0、好ましくは6〜9に維持しながら酸化反応を継続
し、粒子を生成させ、さらに常法により洗浄、濾過、乾
燥、粉砕し、マグネタイト粒子を得る。
Further, under the same conditions as above, a pH of 6 to 1 is obtained.
The oxidation reaction is continued while maintaining 0, preferably 6 to 9, particles are produced, and the particles are further washed, filtered, dried and pulverized by a conventional method to obtain magnetite particles.

【0042】本発明では、上述のように、酸化反応中の
pHを6〜10に調整することが好ましい。その理由
は、酸化反応時のpHを中性域より高くするとケイ素は
マグネタイト粒子の内部に取り込まれ、逆に低くした時
は内部に取り込まれにくく表面が析出することができる
からである。
In the present invention, the pH during the oxidation reaction is preferably adjusted to 6 to 10 as described above. The reason is that when the pH during the oxidation reaction is higher than the neutral range, silicon is taken into the magnetite particles, and conversely when the pH is lowered, it is hard to be taken inside and the surface can be deposited.

【0043】本発明者等が酸化反応途中の粒子形状につ
いて観察した結果では、最初の反応で生成する種晶は不
定形だが後半の中性域、弱アルカリ域(pH6〜9)下
では、マグネタイト粒子がケイ素成分を含んだ微粒子で
覆われ、粒子表面の凹凸の非常に大きい粒子に成長す
る。よって、粒子表面にケイ素成分を含んだ微粒子が存
在しているため、吸油量、BET比表面積共に高いもの
が得られる。
The present inventors observed the particle shape during the oxidation reaction, and found that the seed crystals formed in the first reaction were amorphous, but in the latter half neutral range, weak alkaline range (pH 6-9), magnetite was formed. The particles are covered with fine particles containing a silicon component and grow into particles with very large irregularities on the surface of the particles. Therefore, since fine particles containing a silicon component are present on the surface of the particles, it is possible to obtain particles having a high oil absorption and a high BET specific surface area.

【0044】つまり、本来の球状なら、下記式(3)に
よってBET(m2/g)値が求められるはずであるが、
本発明のマグネタイト粒子の熱処理前の粒子は、下記式
(3)にC(C/B≧15、B:表面露出ケイ素成分の
ケイ素換算した存在量(重量%))を加えたBET値を
有するからである。 BET(m2/g)=6/(粒径(μm)×5.2) (3)
That is, in the case of the original spherical shape, the BET (m 2 / g) value should be obtained by the following equation (3),
The particles of the magnetite particles of the present invention before heat treatment have a BET value obtained by adding C (C / B ≧ 15, B: abundance (wt%) in terms of silicon of surface-exposed silicon component) to the following formula (3). Because. BET (m 2 / g) = 6 / (particle size (μm) × 5.2) (3)

【0045】また、本発明においては、生成、水洗工程
後のマグネタイト粒子を、乾燥時もしくは乾燥後、造粒
処理を行うことにより、より流動性および作業性に優れ
たマグネタイト粒子を得ることができる。
In the present invention, the magnetite particles that have been produced and washed with water are granulated during or after drying to obtain magnetite particles that are more excellent in fluidity and workability. .

【0046】次に得られたマグネタイト粒子を筒状炉に
入れ、N2 ガスを流した。流量は筒状炉内が正圧つま
り、外部より空気の流入を防ぐだけの量以上あれば良
い。次に所望の温度(200℃〜700℃)に昇温させ
た後、一定時間保持した。保持時間が装置の大きさ、能
力、添加量によって異なるが、添加したマグネタイト粒
子全体に所望の温度に達成するだけの時間以上あれば十
分である。その後冷却し、造粒処理を行うことにより、
上記の特性を有するマグネタイト粒子を得る。
Next, the obtained magnetite particles were put into a cylindrical furnace, and N 2 gas was flown. The flow rate may be a positive pressure in the cylindrical furnace, that is, an amount that is more than the amount that prevents the inflow of air from outside. Next, the temperature was raised to a desired temperature (200 ° C. to 700 ° C.) and then maintained for a certain period of time. The holding time varies depending on the size of the apparatus, the capacity, and the amount added, but it is sufficient if the holding time is at least the time required to reach the desired temperature for all the added magnetite particles. After that, by cooling and granulating,
The magnetite particles having the above characteristics are obtained.

【0047】[実施例]以下、本発明の効果を示す、好
適な実施例について比較例を参照して説明する。
[Examples] Preferred examples showing the effects of the present invention will be described below with reference to comparative examples.

【0048】実施例1 Fe2+2.4モル/リットルを含む硫酸第1鉄水溶液5
7リットルに、SiO 2 品位28%のケイ酸ソーダ10
05gを取り、pH調整後添加した。
[0048]Example 1 Fe2+Ferrous sulfate aqueous solution 5 containing 2.4 mol / liter 5
To 7 liters, SiO 228% grade sodium silicate 10
05 g was taken and added after adjusting the pH.

【0049】4.3NのNaOH水溶液65リットル
と、上記ケイ酸成分を含有する硫酸第1鉄水溶液を混合
し、温度80℃に維持しながら40リットル/分の量の
空気を吹き込み、30分間で種晶を生成させた。
65 liters of 4.3 N NaOH aqueous solution and ferrous sulfate aqueous solution containing the above silicic acid component are mixed, and 40 liters / minute of air is blown while maintaining the temperature at 80 ° C., and 30 minutes is passed. Seed crystals were formed.

【0050】次いで、上記種晶粒子を含む水酸化鉄スラ
リーに種晶生成時と同組成の硫酸第1鉄水溶液6.5リ
ットルを加え、温度80℃に維持しながら40リットル
/分の量の空気を吹き込み、酸化反応を進行させた。途
中pH低下が検知された時点から12.5NのNaOH
水溶液を加え、pH8〜10に維持しながら6時間で反
応を終了させた。生成粒子は常法により洗浄、濾過、乾
燥、粉砕した。
Next, 6.5 liters of an aqueous ferrous sulfate solution having the same composition as that at the time of seed crystal formation was added to the iron hydroxide slurry containing the seed crystal particles, and the amount of 40 liter / min was maintained while maintaining the temperature at 80 ° C. Air was blown in to promote the oxidation reaction. 12.5N NaOH from the time when pH drop was detected on the way
The reaction was terminated in 6 hours while adding an aqueous solution and maintaining the pH at 8 to 10. The produced particles were washed, filtered, dried and pulverized by a conventional method.

【0051】このようにして得られたマグネタイト粒子
の表面露出ケイ素成分の存在量(ケイ素換算)、粒径、
電気抵抗、残留磁化、帯電量、流動性、吸油量等を測定
し、その結果を「表1」に示す。
The amount of surface-exposed silicon component of the magnetite particles thus obtained (in terms of silicon), particle size,
The electrical resistance, residual magnetization, charge amount, fluidity, oil absorption amount, etc. were measured, and the results are shown in "Table 1".

【0052】なお、表面露出ケイ素成分の存在量の測定
は前述の分析方法によって行い、また、粒径、電気抵抗
等は下記の方法によって行った。
The amount of silicon component exposed on the surface was measured by the above-mentioned analysis method, and the particle size, electric resistance and the like were measured by the following methods.

【0053】[測定方法] (1)粒径 透過電子顕微鏡写真(倍率30000倍)より写真上の
粒子径を計測し、その平均をもって粒径とした。
[Measurement Method] (1) Particle Size The particle size on the photograph was measured from a transmission electron micrograph (magnification: 30,000 times), and the average was taken as the particle size.

【0054】(2)電気抵抗 試料10gをホルダーに入れ600kg/cm2 の圧力を加
えて25mmφの錠剤型に成型後、電極を取り付け、15
0kg/cm2 の加圧状態で測定する。測定に使用した試料
の厚さおよび断面積と抵抗値から算出して、マグネタイ
ト粒子の電気抵抗値を求めた。
(2) 10 g of the electric resistance sample was put in a holder and a pressure of 600 kg / cm 2 was applied to form a tablet shape of 25 mmφ.
It is measured under a pressure of 0 kg / cm 2 . The electric resistance value of the magnetite particles was obtained by calculating from the thickness and cross-sectional area of the sample used for the measurement and the resistance value.

【0055】(3)残留磁化(σr ) 東英工業製、振動試料型磁力計VSM−P7型を用いて
印加磁場10KOeで測定した。そして、σr が5〜7
Am 2 /kgの範囲を“中”とし、この範囲を越えるも
のを“高”、この範囲未満のものを“低”と表示した。
(3) Remanent magnetization (σr) The residual magnetic field was measured using a vibrating sample magnetometer VSM-P7 type manufactured by Toei Industry Co., Ltd. with an applied magnetic field of 10 KOe. And σr is 5-7
The range of Am 2 / kg was designated as “medium”, those exceeding this range were designated as “high”, and those below this range were designated as “low”.

【0056】(4)流動性 ホソカワミクロン製、パウダーテスターを用いて安息角
および凝集度を測定し、安息角は40度以下を「小」、
41度以上を「大」と表示した。そして、安息角、凝集
度が小さいほど流動性の優れた粉体と判定した。
(4) Flowability The angle of repose and the degree of aggregation were measured using a powder tester made by Hosokawa Micron, and the angle of repose was 40 degrees or less as "small",
41 degrees or more was displayed as "large". Then, the smaller the angle of repose and the degree of aggregation were, the more excellent the fluidity was determined to be.

【0057】(5)帯電量 鉄粉キャリアを用いて、ブローオフ方式により求めた。(5) Charge amount It was determined by a blow-off method using an iron powder carrier.

【0058】(6)吸油量 JIS K 5101によって測定した。(6) Oil absorption It was measured according to JIS K 5101.

【0059】実施例2〜6 ケイ酸ソーダの添加量、酸化成長反応時のpH、粒径を
変化させた以外は、実施例1と同様にしてマグネタイト
粒子を得た。
Examples 2 to 6 Magnetite particles were obtained in the same manner as in Example 1 except that the amount of sodium silicate added, the pH during the oxidative growth reaction, and the particle size were changed.

【0060】これらのマグネタイト粒子の性状、特性を
実施例1と同様に測定し、結果を「表1」に示す。
The properties and characteristics of these magnetite particles were measured in the same manner as in Example 1, and the results are shown in "Table 1".

【0061】実施例7 アルカリに炭酸ナトリウムを用いて粒子形状を擬六面体
とした以外は実施例2と同様にしてマグネタイト粒子を
得た。
Example 7 Magnetite particles were obtained in the same manner as in Example 2, except that sodium carbonate was used as an alkali to form a pseudohexahedral particle shape.

【0062】このマグネタイト粒子の性状,特性を、
「実施例1」と同様に測定し、結果を「表1」に示す。
The properties and characteristics of the magnetite particles are
The measurement was performed in the same manner as in "Example 1", and the results are shown in "Table 1".

【0063】実施例8 酸化成長反応時のpHを10〜12とした以外は、「実
施例1」と同様に操作してマグネタイト粒子を得た。こ
のマグネタイト粒子の表面には、ケイ素成分が存在して
いなかった。
Example 8 Magnetite particles were obtained in the same manner as in "Example 1" except that the pH during the oxidative growth reaction was changed to 10-12. No silicon component was present on the surface of the magnetite particles.

【0064】この内部のみにケイ素成分を含有するマグ
ネタイト粒子500gを、100g/リットルのスラリ
ーとし、温度50℃に維持しながら攪拌を続けた。次い
でSiO2 品位28%のケイ酸ソーダ2.7gを添加し
30分間攪拌後、1NのH2SO4 を徐々に加え、1時
間でpH7に調整し表面にケイ素成分を被覆した。生成
粒子は常法により洗浄、濾過、乾燥、粉砕した。
500 g of magnetite particles containing a silicon component only in the inside was made into a slurry of 100 g / liter, and stirring was continued while maintaining the temperature at 50 ° C. Next, 2.7 g of sodium silicate having a SiO 2 quality of 28% was added, and after stirring for 30 minutes, 1 N H 2 SO 4 was gradually added to adjust the pH to 7 in 1 hour to coat the surface with a silicon component. The produced particles were washed, filtered, dried and pulverized by a conventional method.

【0065】このようにして得られたマグネタイト粒子
の性状,特性を、「実施例1」と同様に測定し、結果を
「表1」に示す。
The properties and characteristics of the magnetite particles thus obtained were measured in the same manner as in "Example 1", and the results are shown in "Table 1".

【0066】実施例9 ケイ酸ソーダの添加量を変えた以外は、「実施例8」と
同様にしてマグネタイト粒子を得た。
Example 9 Magnetite particles were obtained in the same manner as in "Example 8" except that the addition amount of sodium silicate was changed.

【0067】これらのマグネタイト粒子の性状,特性
を、「実施例1」と同様に測定し、結果を「表1」に示
す。
The properties and characteristics of these magnetite particles were measured in the same manner as in "Example 1", and the results are shown in "Table 1".

【0068】比較例1 ケイ酸ソーダを全く添加しない以外は、「実施例2」と
同様にしてマグネタイト粒子を得た。
Comparative Example 1 Magnetite particles were obtained in the same manner as in "Example 2" except that sodium silicate was not added at all.

【0069】このマグネタイト粒子の性状,特性を、
「実施例1」と同様に測定し、結果を「表1」に示す。
The properties and characteristics of the magnetite particles are
The measurement was performed in the same manner as in "Example 1", and the results are shown in "Table 1".

【0070】比較例2 酸化成長反応時のpHを10〜12とした以外は、「実
施例1」と同様にしてマグネタイト粒子を得た。このマ
グネタイト粒子の表面には、ケイ素成分が存在していな
かった。
Comparative Example 2 Magnetite particles were obtained in the same manner as in "Example 1" except that the pH during the oxidative growth reaction was changed to 10-12. No silicon component was present on the surface of the magnetite particles.

【0071】このマグネタイト粒子の性状,特性を、
「実施例1」と同様に測定し、結果を「表1」に示す。
The properties and characteristics of the magnetite particles are
The measurement was performed in the same manner as in "Example 1", and the results are shown in "Table 1".

【0072】比較例3 比較例1で得られたマグネタイト粒子の表面に、「実施
例9」の被覆方法に準じてケイ素成分を被覆した。
Comparative Example 3 The surface of the magnetite particles obtained in Comparative Example 1 was coated with a silicon component according to the coating method of "Example 9".

【0073】このマグネタイト粒子の性状,特性を、
「実施例1」と同様に測定し、結果を「表1」に示す。
The properties and characteristics of the magnetite particles are
The measurement was performed in the same manner as in "Example 1", and the results are shown in "Table 1".

【0074】比較例4 特開昭54−139544号公報に記載の方法に準じ
て、表面にケイ素成分を被覆したマグネタイト粒子を得
た。
Comparative Example 4 Magnetite particles having a surface coated with a silicon component were obtained according to the method described in JP-A-54-139544.

【0075】このマグネタイト粒子の性状,特性を、
「実施例1」と同様に測定し、結果を「表1」示す。
The properties and characteristics of the magnetite particles are
The measurement is performed in the same manner as in "Example 1", and the results are shown in "Table 1".

【0076】比較例5 特開昭61−155223号公報に記載の方法に準じ
て、粒子粉末内部にのみケイ素成分を含有したマグネタ
イト粒子を得た。
Comparative Example 5 According to the method described in JP-A-61-155223, magnetite particles containing a silicon component only inside the particle powder were obtained.

【0077】このマグネタイト粒子の性状,特性を、
「実施例1」と同様に測定し、結果を下記「表1」に示
す。
The properties and characteristics of the magnetite particles are
The measurement was performed in the same manner as in "Example 1", and the results are shown in "Table 1" below.

【0078】[0078]

【表1】 [Table 1]

【0079】「表1」の結果に示されるように、本発明
の製造方法によって得られた「実施例1〜7」のマグネ
タイト粒子は、残留磁化および流動性のいずれの特性も
良好である。
As shown in the results of "Table 1", the magnetite particles of "Examples 1 to 7" obtained by the production method of the present invention have good properties of remanence and fluidity.

【0080】「実施例8,9」はケイ素を含有するマグ
ネタイト粒子の表面に、浸漬法によってケイ素成分を被
覆したものであるが、「実施例1〜7」に比較して電気
抵抗のアップ、流動性は劣るものの許容範囲にあった。
In "Examples 8 and 9", the surface of magnetite particles containing silicon was coated with a silicon component by the dipping method. The electric resistance was increased as compared with "Examples 1 to 7". Although the fluidity was poor, it was within the acceptable range.

【0081】これに対して、「比較例1」はケイ素成分
を全く含有しない為、粒子径の割に残留磁化高く、流動
性に劣った。「比較例2」は、内部にのみケイ素成分を
含有しているので粒子径の割りに残留磁化は低いが、流
動性は悪かった。「比較例3,4」は表面にのみケイ素
が存在しているので、粒子径の割に残留磁化は高いもの
であった。「比較例5」は、流動性に劣った。またいず
れの比較例も抵抗のアップには効果が薄かった。
On the other hand, "Comparative Example 1" contained no silicon component at all, and therefore had a high residual magnetization relative to the particle diameter and was inferior in fluidity. In "Comparative Example 2", since the silicon component was contained only in the inside, the residual magnetization was low relative to the particle diameter, but the fluidity was poor. In "Comparative Examples 3 and 4", since silicon was present only on the surface, the residual magnetization was high relative to the particle diameter. "Comparative example 5" was inferior in fluidity. In addition, all the comparative examples were less effective in increasing the resistance.

【0082】以上説明した様にケイ素成分が内部と表面
の両方に存在することにより流動性、作業性が良好で、
粒子径の割りに残留磁化が低く、抵抗のアップされたマ
グネタイト粒子を製造することができた。
As described above, since the silicon component is present both inside and on the surface, the fluidity and workability are good,
It was possible to manufacture magnetite particles having a low remanence and an increased resistance for the particle size.

【0083】次に、分散性を調べるために、反射率を測
定した。
Next, the reflectance was measured in order to examine the dispersibility.

【0084】(7)分散性 マグネタイト1gとアマニ油0.7gをフーバー式マー
ラーで練った後、これにクリアラッカー4.5gを加
え、更によく練合した。これをガラス板上に4milの
アプリケーターを用いて塗布し、乾燥後、ムラカミ式GL
OSS METER(GM-3M)にて60°の反射率を測定した。
(7) Dispersible magnetite (1 g) and linseed oil (0.7 g) were kneaded with a Hoover-type Mahler, and then 4.5 g of clear lacquer was added to the mixture, which was further kneaded. This is applied on a glass plate with a 4 mil applicator, dried and then used
The reflectance at 60 ° was measured with OSS METER (GM-3M).

【0085】本発明は不活性ガス中で、熱処理すること
を特長とするので、以下、不活性ガス処理による実施例
について説明する。
Since the present invention is characterized in that the heat treatment is carried out in an inert gas, an embodiment using the inert gas treatment will be described below.

【0086】実施例10 実施例2で得られたマグネタイト粒子をφ200mm×長
さ790mmの筒状炉内に2kg入れ、窒素ガスを20リッ
トル/分で流しながら500℃まで昇温し30分保持し
て室温まで冷却し解砕した。
Example 10 2 kg of the magnetite particles obtained in Example 2 were placed in a cylindrical furnace having a diameter of 200 mm and a length of 790 mm, and the temperature was raised to 500 ° C. and kept for 30 minutes while flowing nitrogen gas at 20 liters / minute. It was cooled to room temperature and crushed.

【0087】実施例11,12 実施例5,6を使用した以外は、実施例10と同様に処
理した。
Examples 11 and 12 The same processes as in Example 10 were carried out except that Examples 5 and 6 were used.

【0088】実施例13 実施例2を使用し、熱処理温度を300℃にした以外は
実施例10と同様に処理した。
Example 13 The procedure of Example 10 was repeated except that Example 2 was used and the heat treatment temperature was 300 ° C.

【0089】比較例6,7 比較例3,4を使用した以外は、実施例10と同様に処
理した。
Comparative Examples 6 and 7 The same processes as in Example 10 were carried out except that Comparative Examples 3 and 4 were used.

【0090】実施例10〜13,比較例6,7の熱処理
後の抵抗値、飽和磁化、帯電量及び反射率を下記「表
2」に示す。なお、同表において飽和磁化の単位として
用いた「emu/g」は、計量法で規定する単位によれ
ば「Am 2 /kg」と表示され、1emu/gは1Am 2
/kgに換算される。
The resistance value, saturation magnetization, charge amount and reflectance after heat treatment of Examples 10 to 13 and Comparative Examples 6 and 7 are shown in "Table 2" below. As a unit of saturation magnetization in the table
The "emu / g" used depends on the unit specified by the Measurement Law.
For example, "Am 2 / kg" is displayed, and 1 emu / g is 1 Am 2
/ Kg is converted.

【0091】[0091]

【表2】 [Table 2]

【0092】「表2」の結果より、熱処理することによ
って、元に比べ抵抗は下がるが、「実施例10〜13」
では1×103 以上あり、「比較例6,7」ではそれ以
下になった。また、飽和磁化と負の帯電量は、元に比べ
アップした。また、熱処理による流動性への影響はなか
った。さらに、分散性は熱処理により向上した。
From the results of "Table 2", the heat treatment lowers the resistance as compared with the original value, but "Examples 10 to 13"
Was 1 × 10 3 or more, and it was less than that in “Comparative Examples 6 and 7”. Moreover, the saturation magnetization and the amount of negative charge were increased compared to the original. Further, the heat treatment did not affect the fluidity. Furthermore, dispersibility was improved by heat treatment.

【0093】次に、耐湿性を下記に示す方法で調べた。 含有水分率(重量%);カールフィッシャ法 Mitsubishi Chemical lnd ltd 製 WATER VAPORIZER VA
-05 にて各温度のマグネタイト粒子中の水分を蒸発さ
せ、MITSUBISHI KASEI Corpration 製MOISTUR METER CA
-03 にて検出し、マグネタイト中の含有水分率を測定し
た。
Next, the moisture resistance was examined by the method shown below. Moisture content (% by weight); Karl Fischer method Mitsubishi Chemical lnd ltd WATER VAPORIZER VA
Moisture in magnetite particles at each temperature is evaporated at -05 and MOISTUR METER CA manufactured by MITSUBISHI KASEI Corpration
-03 to detect the water content in magnetite.

【0094】・環境条件 恒温恒湿機は、TABAI ESPEC CORP製「LHL-111 」(商品
名)を使用し、35℃,85%,4Hrとした。繰り返し
テストの為乾燥機TABAI ESPEC CORP製「PS-222」(商品
名)を150℃にして下記の条件にて行い、測定の所
で、サンプリングして上記方法にてマグネタイト粒子中
の含有水分率(重量%)を測定した。結果は下記「表
3」に示す。測定方法は下記のようにして行った。 サンプル→乾燥(150℃)→高温高湿→測定(15
0℃/200℃)→乾燥(150℃)→高温高湿→測定
(150℃/200℃)
-Environmental conditions As the thermo-hygrostat, "LHL-111" (trade name) manufactured by TABAI ESPEC CORP was used, and the temperature was 35 ° C, 85%, and 4 hours. For repeated test, the dryer "PS-222" (trade name) manufactured by TABAI ESPEC CORP was heated to 150 ° C under the following conditions. At the measurement, sampling was performed and the water content in the magnetite particles was measured by the above method. (Wt%) was measured. The results are shown in "Table 3" below. The measuring method was as follows. Sample → Dry (150 ℃) → High temperature and high humidity → Measurement (15
0 ℃ / 200 ℃) → Drying (150 ℃) → High temperature and high humidity → Measurement (150 ℃ / 200 ℃)

【0095】[0095]

【表3】 [Table 3]

【0096】「表3」の結果より、不活性ガス中でマグ
ネタイト粒子を熱処理することにより、高温高湿下の環
境においてもマグネタイトの含有水分率を大きく下げる
ことができた。
From the results of "Table 3", it was possible to greatly reduce the moisture content of magnetite even in an environment of high temperature and high humidity by heat treating magnetite particles in an inert gas.

【0097】[0097]

【発明の効果】以上説明したように、本発明のマグネタ
イト粒子は、残留磁化が低く、また流動性が良好であ
り、抵抗を一定以上保ちながら、耐環境性に優れている
ことから、静電複写磁性トナー用として好適である。
As described above, the magnetite particles of the present invention have low remanence, good fluidity, and excellent resistance to environment while maintaining resistance above a certain level. It is suitable for copying magnetic toner.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−267646(JP,A) 特開 昭62−278131(JP,A) 特開 平5−213620(JP,A) 特開 平7−138023(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 49/00 - 49/08 G03G 9/00 - 9/10,9/16 H01F 1/00 - 1/375 ─────────────────────────────────────────────────── --- Continuation of front page (56) Reference JP-A-7-267646 (JP, A) JP-A-62-278131 (JP, A) JP-A-5-213620 (JP, A) JP-A-7- 138023 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C01G 49/00-49/08 G03G 9/00-9 / 10,9 / 16 H01F 1/00-1/375

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部にケイ素成分を含有しかつ表面にケ
イ素成分が、ケイ素に換算して0.05〜2.0重量%
の割合で露出し、高温高湿下において、マグネタイト含
有ケイ素成分のケイ素に換算した存在量(重量%)をA
としたとき、マグネタイト含有水分率(重量%)が、下
記(1)式に示され、耐湿性が向上し、且つ抵抗が1×
103 Ω・cm以上であることを特徴とするマグネタイト
粒子。 含有水分率(重量%)≦0.5+A/2 (1)
1. A silicon component is contained inside and the silicon component on the surface is 0.05 to 2.0% by weight in terms of silicon.
Of the magnetite-containing silicon component in the high-temperature and high-humidity condition in terms of silicon content (% by weight).
The moisture content (% by weight) of magnetite is expressed by the following equation (1), the moisture resistance is improved, and the resistance is 1 ×
Magnetite particles having a resistance of 10 3 Ω · cm or more. Moisture content (% by weight) ≦ 0.5 + A / 2 (1)
【請求項2】 BET法によるマグネタイト粒子の比表
面積(m2/g)が、下記(2)式で示され、マグネタイト
粒子に対する前記表面に露出したケイ素成分のケイ素に
換算した存在量(重量%)をBとしたときに、C/B≧
15の関係を満足することを特徴とする請求項1に記載
のマグネタイト粒子。 BET値(m2/g)=6/(粒径(μm)×5.2)+C (2)
2. The specific surface area (m 2 / g) of the magnetite particles by the BET method is represented by the following formula (2), and the abundance (wt%) of the silicon component exposed on the surface with respect to the magnetite particles is calculated as silicon. ) Is B, C / B ≧
The magnetite particles according to claim 1, wherein the relationship of 15 is satisfied. BET value (m 2 / g) = 6 / (particle size (μm) × 5.2) + C (2)
【請求項3】 主成分が第一鉄塩である溶液中にケイ素
成分を添加し、さらに鉄に対して1.0〜1.1当量の
アルカリと混合した後、pHを7〜10に維持して酸化
反応を行い、反応の途中で当初のアルカリに対して0.
9〜1.2当量となる不足の鉄を追加した後、引き続き
pH6〜10に維持して酸化反応を行い、この酸化反応
によって得られたマグネタイト粒子を、不活性ガス中で
200℃〜700℃の温度範囲で加熱処理することを特
徴とするマグネタイト粒子の製造方法。
3. The pH is maintained at 7 to 10 after a silicon component is added to a solution containing a ferrous salt as a main component and further mixed with 1.0 to 1.1 equivalents of alkali with respect to iron. Then, the oxidation reaction is carried out, and in the middle of the reaction, it becomes 0.
After adding insufficient iron of 9 to 1.2 equivalents, the pH is kept at 6 to 10 to carry out an oxidation reaction, and the magnetite particles obtained by this oxidation reaction are heated to 200 ° C to 700 ° C in an inert gas. A method for producing magnetite particles, which comprises performing heat treatment in the temperature range of 1.
JP12825196A 1996-05-23 1996-05-23 Magnetite particles and method for producing the same Expired - Lifetime JP3437714B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12825196A JP3437714B2 (en) 1996-05-23 1996-05-23 Magnetite particles and method for producing the same
US08/857,638 US5759435A (en) 1996-05-23 1997-05-16 Magnetite particles and process for production thereof
ES97108225T ES2203735T3 (en) 1996-05-23 1997-05-21 PARTICLES OF MAGNETITE AND PROCEDURE FOR ITS PRODUCTION.
DE69723916T DE69723916T2 (en) 1996-05-23 1997-05-21 Magnetite particles and process for their manufacture
EP97108225A EP0808801B1 (en) 1996-05-23 1997-05-21 Magnetite particles and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12825196A JP3437714B2 (en) 1996-05-23 1996-05-23 Magnetite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09309730A JPH09309730A (en) 1997-12-02
JP3437714B2 true JP3437714B2 (en) 2003-08-18

Family

ID=14980240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12825196A Expired - Lifetime JP3437714B2 (en) 1996-05-23 1996-05-23 Magnetite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3437714B2 (en)

Also Published As

Publication number Publication date
JPH09309730A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP4749733B2 (en) Hydrophobic magnetic iron oxide particles
JPH10101339A (en) Magnetite particulate powder, its production and application
EP0532315B2 (en) Process for producing magnetite particles
JPH0825747B2 (en) Magnetite particles and method for producing the same
JP4409335B2 (en) Magnetite particles and method for producing the same
US5759435A (en) Magnetite particles and process for production thereof
JP3224774B2 (en) Magnetite particles and method for producing the same
JPH11189420A (en) Magnetite particles and their production
JP3473003B2 (en) Black magnetic iron oxide particle powder
JP3437714B2 (en) Magnetite particles and method for producing the same
JP3433879B2 (en) Magnetite particles and method for producing the same
JP3544317B2 (en) Magnetite particles and method for producing the same
JP4656266B2 (en) Black magnetic iron oxide particle powder for magnetic toner and method for producing the same
JP3440586B2 (en) Granular magnetite particle powder and method for producing the same
JP4121273B2 (en) Iron oxide particles
JP3544316B2 (en) Magnetite particles and method for producing the same
EP1076267A1 (en) Black magnetic toner and black magnetic composite particles therefor
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JP2004161551A (en) Iron oxide particle and its production method
JPH10279313A (en) Magnetite particle and its production
JP3648126B2 (en) Iron oxide particles
JP4473683B2 (en) Magnetite particles, manufacturing method thereof, electrophotographic toner using the same, and image forming method
JP3499150B2 (en) Magnetite particles
JP4328928B2 (en) Black composite magnetic particle powder for black magnetic toner and black magnetic toner using the black composite magnetic particle powder
JP2997167B2 (en) Magnetite particles and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term