JP4121273B2 - Iron oxide particles - Google Patents

Iron oxide particles Download PDF

Info

Publication number
JP4121273B2
JP4121273B2 JP2001395514A JP2001395514A JP4121273B2 JP 4121273 B2 JP4121273 B2 JP 4121273B2 JP 2001395514 A JP2001395514 A JP 2001395514A JP 2001395514 A JP2001395514 A JP 2001395514A JP 4121273 B2 JP4121273 B2 JP 4121273B2
Authority
JP
Japan
Prior art keywords
silicon
particles
iron oxide
zinc
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001395514A
Other languages
Japanese (ja)
Other versions
JP2003192351A (en
Inventor
幸一 勝山
智之 星野
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001395514A priority Critical patent/JP4121273B2/en
Publication of JP2003192351A publication Critical patent/JP2003192351A/en
Application granted granted Critical
Publication of JP4121273B2 publication Critical patent/JP4121273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、静電複写磁性トナー用材料粉、特にポリエステル系樹脂等により構成される正帯電性磁性トナー用材料粉として好適な酸化鉄粒子に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
酸化鉄粒子は、乾式電子複写機、プリンタ等の磁性トナー用材料粉とし広く利用されており、マグネタイト(Fe3 4 )粒子等がその代表的なものである。
【0003】
昨今、上記用途分野での酸化鉄粒子に対する要求特性はより高度なものになってきており、従来の文字以外にもグラフィックや写真等の出力も要求されており、複写機、プリンターの中には1インチ当たり1200ドット以上の能力のものも現れ、感光体上の潜像はより緻密になってきている。
【0004】
かかる緻密な潜像を形成するためには、磁性トナー中に含まれている酸化鉄粒子の凝集が少ない方が好ましい。
【0005】
一方、磁性トナーの諸機能を調整するために、酸化鉄粒子中や表面上に各種成分を含有させる技術が活用されており、このような各種成分の内、代表的な無機成分としては、ケイ素、アルミニウム、亜鉛、マンガ、銅等が挙げられる。その添加目的は多岐に亘り、例えば、酸化鉄粒子の流動性、耐熱性、耐環境性、磁気特性、黒色度等の向上等、その目的に応じて添加成分は、適宜選択される。
【0006】
一般的に、磁性トナーにはポリスチレン、ポリアミド等各種結着樹脂が用いられているが、昨今、ポリエステル樹脂を主成分とするトナーが、現像時の低温定着性に有利であることから、広く利用されている。このポリエステル樹脂は、負帯電性が強いため、主に負帯電性トナー用に用いられることが多く、正帯電性トナー用途には不向きとされてきた。
【0007】
しかし、上記した樹脂の長所を活かしたポリエステル系正帯電性トナーの開発が取り進められつつある。その一例として、特開平9−138524号公報には、ニトリル基等の正荷電性の極性基を有するポリエステル系樹脂を配合したトナーが開示されている。ニトリル基のような極性基は、多くは塩基性であるため、このような極性基を含む樹脂に対しては、用いられる酸化鉄粒子の粒子表面は酸性である方が相溶性の点で好ましい。しかし、粒子表面が極端に酸性側に振れた酸化鉄粒子は負帯電性が強く、正帯電性トナーの製造上、問題がある。
【0008】
例えば、ケイ素成分や亜鉛成分は、それぞれ複合酸化鉄として、酸化鉄粒子中や表面上に含有させることにより、上記要求課題としての酸化鉄粒子の低凝集化、磁気特性のバランス向上等を実現することができる。
【0009】
しかし、酸化鉄粒子表面上に存在する被覆ないしは付着成分に、ケイ素成分を単独の化合物ないしは鉄との複合酸化物として用いた場合には、粒子表面が酸性側に振れ、負帯電性が強くなってしまう。また、亜鉛成分を単独の化合物ないしは鉄との複合酸化物として用いた場合には、粒子表面が塩基性側に振れ、樹脂との相溶性が不具合となる。
【0010】
従って、上記低凝集化、磁気特性のバランス向上等は、上記各成分による被覆に応じて実現できるものもあるが、加えて磁性トナー製造の際の帯電性のバランス及び樹脂との相溶性をも調整し得る酸化鉄粒子とは言い難かった。
【0011】
従って、本発明の目的は、低凝集と磁気特性のバランスが取れており、かつ磁性トナー製造時、帯電性のバランス及び樹脂との相溶性をも調整し得る酸化鉄粒子を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は、上述のような従来技術が抱える課題を解決するためには、酸化鉄粒子中の添加成分、特に粒子表面の構成成分に着目し、特定の条件を満たす酸化鉄粒子が好ましいことを知見した。
【0013】
本発明は、上記知見に基づいてなされたもので、粒子内部にケイ素を含有し、かつ粒子表面がケイ素及び亜鉛を含有する複合酸化鉄にて被覆されており、粒子表面から鉄元素溶解率5質量%中に含まれる亜鉛:ケイ素の質量比が1:2〜5であり、SEM観察による個数平均粒子径が0.1〜0.3μm、レーザ回折散乱式粒度分布測定による個数平均粒子径D50が200〜1000nm、かつ形状が八面体であることを特徴とする酸化鉄粒子を提供するものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明でいう酸化鉄粒子は、好ましくはマグネタイト粒子、もしくはマグネタイト(Fe3 4 )が主成分であれば、マグヘマイト(γ−Fe2 3 )やその中間組成のベルトライド化合物(FeOx・Fe2 3 、0<x<1)、及びこれらの単独又は複合化合物に、Fe以外のAl、Mn、Ni、Cu、Mg、Ti、Co、Zr、W、Mo、P等を1種以上含むスピネルフェライト粒子等を必要な特性に応じて含有しているものも包含される。以下の説明では、酸化鉄粒子としてその代表的なものであるマグネタイト粒子について説明する。また、酸化鉄粒子又はマグネタイト粒子という時には、その内容によって個々の粒子又はその集合のいずれも意味する。
【0015】
本発明のマグネタイト粒子は、粒子内部にケイ素を含有し、かつ粒子表面がケイ素及び亜鉛を含有する複合酸化鉄にて被覆されており、粒子表面から鉄元素溶解率5質量%中に含まれる亜鉛:ケイ素の質量比が1:2〜5であり、SEM観察による個数平均粒子径が0.1〜0.3μm、レーザ回折散乱式粒度分布測定による個数平均粒子径D50が200〜1000nmであることを特徴とする。
【0016】
ケイ素を含有しているマグネタイト粒子は、流動性に優れており、粒子同士の凝集を抑制することができ、この効果は、粒子表面上に被覆ないしは付着していれば、その効果を発現するが、粒子内部にケイ素を含有していると、残留磁化の低下もあいまって、更に効果は向上する。この含有ケイ素成分は、単独の化合物で粒子中に含有されていても良いが、酸化物として、特に鉄との複合酸化物の状態で含有されていると、磁気特性のバランスを損なうことがないので好ましい。その含有量は、マグネタイト粒子全体に対し、ケイ素に換算して0.5〜3質量%であることが好ましい。その含有量が0.5質量%未満では、上記凝集抑制効果が少なく、3質量%を超える場合は、飽和磁化が低下する等、磁気特性のバランスが悪くなるおそれがある。
【0017】
また、本発明のマグネタイト粒子は、粒子表面が、ケイ素及び亜鉛を含有する複合酸化鉄にて被覆されていることが重要である。
【0018】
従来のマグネタイト粒子においては、粒子表面が、鉄成分を含まないケイ素化合物単独、鉄成分を含まない亜鉛化合物単独、ケイ素及び鉄の複合化合物、亜鉛及び鉄の複合化合物のいずれかで構成されていた。
【0019】
粒子表面が、鉄成分を含まないケイ素化合物単独、ないしは鉄成分を含まない亜鉛化合物単独で構成されている場合には、このような単独化合物自体が非磁性なので、磁気特性のバランスを損ない、鉄成分を含まない故に黒色度が損なわれてしまうのみならず、磁性トナー製造の際の帯電性のバランス及び樹脂との相溶性調整も困難である。また、粒子表面が、ケイ素及び鉄の複合酸化物で構成されている場合には、マグネタイト粒子表面は酸性度が高いため、負帯電性が強く、正帯電性トナー製造上不具合である。また、粒子表面が、亜鉛及び鉄の複合酸化物で構成されている場合には、マグネタイト粒子表面の塩基性度が高く、樹脂との相溶性の点で好ましくない。
【0020】
以上の問題点を解決するためには、マグネタイト粒子表面が、ケイ素及び亜鉛を含有する複合酸化鉄にて被覆されていれば良く、複合酸化鉄中に、ケイ素及び亜鉛が共存することで、低凝集と磁気特性のバランス等の改善もさることながら、粒子表面のケイ素成分が樹脂中の塩基性極性基との相溶性を向上させ、かつ粒子表面の亜鉛成分が粒子を正帯電性側に調整するので、両特性をバランス良く制御することができる。
【0021】
具体的には、本発明のマグネタイト粒子においては、粒子表面から鉄元素溶解率5質量%中に含まれる亜鉛:ケイ素の質量比が1:2〜5であることが重要である。この質量比において、ケイ素の質量比が2未満の場合には、粒子表面近傍のケイ素が少ないため、マグネタイト粒子表面が塩基性側にシフトし、樹脂との相溶性上、不具合である。また、ケイ素の比が5を超える場合には、粒子表面近傍のケイ素が多いため、マグネタイト粒子表面の酸性度がより高くなるので、負帯電性が強くなり、正帯電性トナー製造上、不具合である。
【0022】
なお、マグネタイト粒子表面から鉄元素溶解率5質量%中に含まれるFeが占める割合が70〜90質量%であると、磁性体としての特徴を損なうことなく、被覆中のケイ素及び亜鉛成分含有による効果を発揮でき好ましい。また、マグネタイト粒子表面から鉄元素溶解率5質量%中に含まれるケイ素量と5質量%を超える粒子内部のケイ素量の比は0.1〜1程度が低凝集と磁気特性のバランス等の改善上からは好ましい。
【0023】
本発明のマグネタイト粒子は、SEM観察による個数平均粒子径が0.1〜0.3μm、かつレーザ回折散乱式粒度分布測定による個数平均粒子径D50が200〜1000nmであることが重要である。SEM観察による個数平均粒子径については、上記特定範囲内であれば、従来の技術に述べた如き、緻密な潜像形成が可能な磁性トナー用材料粉に好適である。また、D50値は、凝集粒子の大きさを捉えており、数値が大きいほど凝集が大きく、粒子の凝集性等に影響を与えるものである。この数値が200nm未満の粒子については、マグネタイトのような磁気凝集が大きい粒子においては、製造困難であり、1000nmを超える場合には、粒子の凝集が強すぎて、静電複写磁性トナー用材料等の用途に不適である。
【0024】
また、本発明のマグネタイト粒子は、黒色度が高く、複合酸化鉄被覆中のケイ素及び亜鉛成分による色相の劣化をできるだけ抑制するために、形状が八面体であることが重要である。
【0025】
本発明のマグネタイト粒子は、等電点が5〜6.5であることが好ましい。この等電点は、マグネタイト粒子表面の酸塩基度を示しており、等電点が5未満の場合には、酸塩基度上は問題が少ないものの、粒子の負帯電性が強すぎ正帯電性トナー製造上不向きであり、6.5を超える場合には、塩基性極性基を有すポリエステル樹脂との相溶性に問題がある。
【0026】
また、本発明のマグネタイト粒子は、BET法による比表面積が8〜15m2 /gであることが好ましい。この範囲の比表面積を有するマグネタイト粒子は、静電複写磁性トナー用材料粉、塗料用黒色顔料粉等の用途に好適である。本来、粒径の小さなマグネタイト粒子は凝集性や磁気特性のバランスの点で劣るが、本発明をもってすれば、そのようなマグネタイト粒子でも改善が可能なので、昨今の磁性トナーや塗料の微粒化を鑑みれば、8〜15m2 /gが好ましい。
【0027】
次に、本発明のマグネタイト粒子の製造方法について述べる。
本発明のマグネタイト粒子は、水溶性ケイ酸塩を含む第一鉄塩水溶液とアルカリ水溶液とを混合して得られたスラリーのpHを7以上に維持しながら酸素含有ガスを通気して第1段の酸化反応を行い、酸化反応終了後、得られたマグネタイト粒子を含むスラリーに、水溶性ケイ酸塩と水溶性亜鉛塩を含む第一鉄塩水溶液を添加し、pH6〜9に調整して第2段の酸化反応を行うことにより製造することができる。
【0028】
本発明のマグネタイト粒子は、低残留磁化による磁気凝集抑制のために、粒子内部にケイ素成分を含んでいる必要がある。ここで重要なのは、第1段反応のpHを7以上に維持しながら酸素含有ガスを通気して第1段の酸化反応を行うことである。この第1段反応のpHが7未満の場合には、反応時の第一鉄塩中のケイ素成分は、粒子内部に取り込まれず、粒子表面近傍ないしは粒子表面に偏析することとなり好ましくない。
【0029】
この第1段反応で、粒子内部にケイ素を含有させた後に、一旦反応を停止させ、得られたマグネタイト粒子を含むスラリーに水溶性ケイ酸塩と水溶性亜鉛塩を含む第一鉄塩水溶液を添加し、pH6〜9に調整して第2段の酸化反応を行うことが必要である。ここで重要なのは、第2段反応の際に、マグネタイト粒子を含むスラリーに、水溶性ケイ酸塩と水溶性亜鉛塩を含む第一鉄塩水溶液を添加することである。水溶性ケイ酸塩と水溶性亜鉛塩のいずれか、もしくは双方とも添加しない場合には、粒子表面にケイ素及び亜鉛を含有する複合酸化鉄で被覆することができず、本発明のマグネタイト粒子を生成させることができない。
【0030】
また、第2段反応の際のpHを6〜9とすることも重要である。このpHが6未満の場合には、ケイ素成分が粒子表面に露出して被覆外側の亜鉛成分が低下してしまうのみならず、粒子表面上からケイ素成分が遊離してしまうおそれがあり、pHが9を超える場合には、粒子表面の被覆外側のケイ素成分が低下してしまう。
【0031】
反応を終えたマグネタイト粒子を含むスラリーを常法の濾過、洗浄後、乾燥を行い、マグネタイト粒子を得る。かかる製造方法で得られた本発明のマグネタイト粒子は、粒子内部にケイ素を含有し、かつ粒子表面がケイ素及び亜鉛を含有する複合酸化鉄にて被覆されているので、低凝集と磁気特性のバランスがとれており、かつ磁性トナー製造時、帯電性のバランス及び樹脂との相溶性の調整が容易である。
【0032】
【実施例】
以下、実施例等により本発明を具体的に説明する。
【0033】
〔実施例1〕
Fe2+を2.0mol/l含有する水溶液50リットルに水溶性ケイ酸塩としてSi4+を0.192mol/l含有する水溶液を20リットル添加し、NaOHを5.0mol/l含有する水溶液42リットルと撹拌混合した。得られたスラリー中の残留NaOHは2.5g/lであった。このスラリーの温度を85℃に維持しながら空気を65リットル/min通気することで酸化を行い、マグネタイトコア粒子を含むスラリーを得た。
【0034】
得られたスラリーに、Fe2+を1.30mol/l、Zn2+を0.05mol/l、かつSi4+を0.26mol/l含有する硫酸第一鉄水溶液、硫酸亜鉛水溶液、及びケイ酸ナトリウム水溶液の混合水溶液4.50リットルを添加し、混合スラリーのpHを8.5、温度85℃に維持しながら再び空気を通気して酸化を行い、表面を亜鉛及びケイ素を含む複合酸化鉄にて被覆した。得られたマグネタイト粒子を含むスラリーを常法の濾過、乾燥、粉砕を行い、マグネタイト粒子を得た。
【0035】
こうして得られたケイ素及び亜鉛を含有する複合酸化鉄の被覆層を有するマグネタイト粒子について、下記に示す方法で各種性状及び特性の評価をそれぞれ行った。その結果を表2に示す。
【0036】
〔測定方法〕
(1)レーザ回折/散乱式粒度分布測定による個数平均粒子径D50
試料5gを純水100mlに入れ、ペイントシェーカーにて5分間混合して水分散スラリーを作成し、レーザー回折/散乱式粒度分布測定装置LA−920(HORIBA社製)にてD50を測定した。
(2)比表面積(m2 /g)
島津−マイクロメリティックス社製2200型BET計にて測定した。
(3)SEM観察による個数平均粒子径
走査型電子顕微鏡(倍率:30000倍)で観察し、100個の粒子のフェレ径を測定して求めた。
(4)総ケイ素含有量
試料を塩酸−フッ酸混合液に溶解し、ICPにて測定した。
(5)鉄元素溶解率5質量%中に含まれる鉄、ケイ素及び亜鉛の総量に対する各成分が占める割合、亜鉛:ケイ素の質量比、及び鉄元素溶解率5質量%中に含まれるケイ素量と鉄元素溶解率が5質量%を超える粒子内部に含まれるケイ素量の比
3.8リットルの脱イオン水に試料25gを加え、50℃に保ちながら、撹拌速度200rpmで撹拌する。このスラリー中に特級塩酸試薬424mlを溶解した塩酸水溶液1250mlを加え、溶解を開始する。溶解開始からすべて溶解して透明になるまで、10分毎に20mlサンプリングし、0.1μmメンブランフィルターで濾過し、濾液を採取する。採取した濾液をICPによって鉄、ケイ素、亜鉛の各元素の定量を行う。
▲1▼鉄元素溶解率(質量%)
=〔採取サンプル中の鉄濃度(mg/l)/完全に溶解した時の鉄濃度(mg/l)〕×100
▲2▼鉄元素溶解率5質量%中に含まれる鉄、ケイ素及び亜鉛の総量に対する鉄が占める割合(質量%)
=〔採取サンプル中の鉄濃度(mg/l)/採取サンプル中の鉄、ケイ素及び亜鉛の総濃度(mg/l)〕×100
▲3▼鉄元素溶解率5質量%中に含まれる鉄、ケイ素及び亜鉛の総量に対するケイ素が占める割合(質量%)
=〔採取サンプル中のケイ素濃度(mg/l)/採取サンプル中の鉄、ケイ素及び亜鉛の総濃度(mg/l)〕×100
▲4▼鉄元素溶解率5質量%中に含まれる鉄、ケイ素及び亜鉛の総量に対する亜鉛が占める割合(質量%)
=〔採取サンプル中の亜鉛濃度(mg/l)/採取サンプル中の鉄、ケイ素及び亜鉛の総濃度(mg/l)〕×100
▲5▼鉄元素溶解率5質量%中に含まれる亜鉛:ケイ素の質量比
=採取サンプル中の亜鉛濃度(mg/l)/採取サンプル中のケイ素濃度(mg/l)
▲6▼鉄元素溶解率5質量%中に含まれるケイ素量と5%を超える粒子内部のケイ素量の比
=鉄元素溶解率5質量%時点のケイ素濃度(mg/l)/〔完全に溶解した時のケイ素濃度(mg/l)−鉄元素溶解率5質量%時点のケイ素濃度(mg/l)〕
(6)等電点
試料を0.01N−KNO3 水溶液へ入れて試料濃度が5質量%になるように調整した。超音波方式ゼータ電位測定装置DT−1200(Dispersion Technology社製)を使用して、1N−HNO3 又は1N−KOHで滴定し、ゼータ電位を測定した。ゼータ電位が0mVのpHを等電点とした。
(7)磁気特性
東英工業社製振動試料型磁力計VSM−P7を使用し、外部磁場796kA/mにて測定した。
(8)帯電量
試料を鉄粉キャリア(パウダーテック(株)製、TEFV 200/300)を用いて、ブローオフ型帯電量測定装置(東芝ケミカル(株)製、TB−200型)にて測定した。
【0037】
〔実施例2〜6及び比較例1〜7〕
表1に示されるように、各種製造条件を変更した以外は、実施例1と同様にマグネタイト粒子を製造した。また、実施例1と同様に各種性状及び特性を評価した。その結果を表2に示す。
【0038】
【表1】

Figure 0004121273
【0039】
【表2】
Figure 0004121273
【0040】
表2に示されるように、実施例1〜6のマグネタイト粒子は、残留磁化が低く、凝集粒子径が小さく、その他磁気特性のバランスもとれている。また、帯電量が極端な負帯電を示すことなく、かつ等電点も弱酸性側にあり、樹脂との相溶性に優れた正帯電磁性トナー製造に好適な磁性粉であることが判る。
【0041】
これに対し、比較例1のマグネタイト粒子は、粒子表面の亜鉛のみを含む複合酸化鉄被覆の上に、さらにケイ素のみを含む複合酸化鉄を被覆したものであり、また、比較例2のマグネタイト粒子は、粒子表面の複合酸化鉄被覆中にケイ素のみ含まれている。このことにより、比較例1及び2のマグネタイト粒子は、等電点が5未満と粒子表面の酸性度が高く、負帯電量は高めで、正帯電磁性トナー用途に不向きであった。
【0042】
比較例3のマグネタイト粒子は、粒子表面の複合酸化鉄被覆中にケイ素が含まれず、亜鉛のみ含まれていることにより、凝集粒子径が著しく大きい上、粒子表面の塩基性度が高く、樹脂との相溶性の点で問題があるものだった。
【0043】
比較例4のマグネタイト粒子は、粒子内部にケイ素が含まれていないことにより、凝集粒子径が大きいものであった。
【0044】
比較例5のマグネタイト粒子は、粒子表面に複合酸化鉄被覆がないことにより、ケイ素や亜鉛による効果が希薄となり、凝集粒子径が大きい上、等電点も中性近傍となり、樹脂との相溶性の点で問題があるものだった。
【0045】
比較例6のマグネタイト粒子は、粒子表面の複合酸化鉄被覆中のケイ素比率が低いことにより、凝集粒子径が大きいものであった。
【0046】
比較例7のマグネタイト粒子は、粒子表面の複合酸化鉄被覆中の亜鉛比率が低いことにより、等電点が5未満と粒子表面の酸性度が高く、負帯電量は高めで、正帯電磁性トナー用途には不向きだった。
【0047】
【発明の効果】
以上説明したように、本発明の酸化鉄粒子は、低凝集と磁気特性のバランスがとれており、かつ磁性トナー製造時、帯電性のバランス及び樹脂との相溶性をも調整し得ることから、静電複写磁性トナー用材料粉、特にポリエステル系樹脂等により構成される正帯電性磁性トナー用材料粉として好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to iron oxide particles suitable as a material powder for an electrostatic copying magnetic toner, particularly a positively chargeable magnetic toner material powder composed of a polyester resin or the like.
[0002]
[Prior art and problems to be solved by the invention]
Iron oxide particles are widely used as material powders for magnetic toners for dry electronic copying machines, printers, etc., and magnetite (Fe 3 O 4 ) particles are typical examples.
[0003]
In recent years, the required characteristics of iron oxide particles in the above application fields have become more advanced, and in addition to conventional characters, output of graphics and photographs is also required. Those having a capacity of 1200 dots or more per inch also appear, and the latent image on the photoconductor is becoming denser.
[0004]
In order to form such a dense latent image, it is preferable that the iron oxide particles contained in the magnetic toner are less aggregated.
[0005]
On the other hand, in order to adjust various functions of the magnetic toner, a technique of incorporating various components in the iron oxide particles or on the surface is utilized. Among these various components, as a typical inorganic component, silicon is used. , Aluminum, zinc, manga, copper and the like. The purpose of addition varies widely, and for example, the additive components are appropriately selected according to the purpose, such as improvement of fluidity, heat resistance, environmental resistance, magnetic properties, blackness and the like of the iron oxide particles.
[0006]
Generally, various binder resins such as polystyrene and polyamide are used for magnetic toners. Recently, a toner mainly composed of a polyester resin is advantageous for low-temperature fixability during development, so that it is widely used. Has been. Since this polyester resin has strong negative chargeability, it is often used mainly for negatively chargeable toners and has not been suitable for use as positively chargeable toners.
[0007]
However, development of a polyester-based positively chargeable toner that takes advantage of the advantages of the above-described resin is being pursued. As an example, JP-A-9-138524 discloses a toner containing a polyester resin having a positively charged polar group such as a nitrile group. Since polar groups such as nitrile groups are mostly basic, the surface of the iron oxide particles used is preferably acidic in terms of compatibility with resins containing such polar groups. . However, the iron oxide particles whose particle surface is extremely acidic are highly negatively charged, which is problematic in the production of positively charged toners.
[0008]
For example, the silicon component and the zinc component are each contained in the iron oxide particles or on the surface as composite iron oxides, thereby realizing the low aggregation of the iron oxide particles and the improvement of the balance of magnetic properties as the above-mentioned required tasks. be able to.
[0009]
However, when a silicon component is used as a single compound or a complex oxide with iron as a coating or adhesion component present on the surface of the iron oxide particle, the particle surface moves to the acidic side and the negative chargeability becomes strong. End up. In addition, when the zinc component is used as a single compound or a complex oxide with iron, the particle surface is shaken toward the basic side, and the compatibility with the resin becomes a problem.
[0010]
Therefore, the above-mentioned low aggregation, improvement in the balance of magnetic properties, etc. can be realized depending on the coating with each of the above components, but in addition, the balance of chargeability in the production of the magnetic toner and the compatibility with the resin are also achieved. It was hard to say that the iron oxide particles can be adjusted.
[0011]
Accordingly, an object of the present invention is to provide iron oxide particles that have a balance between low agglomeration and magnetic properties, and that can adjust the balance of chargeability and compatibility with resin during magnetic toner production. .
[0012]
[Means for Solving the Problems]
In order to solve the problems of the prior art as described above, the present inventors pay attention to additive components in the iron oxide particles, particularly constituent components on the surface of the particles, and iron oxide particles satisfying specific conditions are preferable. I found out.
[0013]
The present invention has been made on the basis of the above-described knowledge. The particle contains silicon and the particle surface is coated with composite iron oxide containing silicon and zinc. The mass ratio of zinc: silicon contained in the mass% is 1: 2 to 5, the number average particle size by SEM observation is 0.1 to 0.3 μm, and the number average particle size D by laser diffraction scattering type particle size distribution measurement. The present invention provides iron oxide particles, wherein 50 is 200 to 1000 nm and the shape is octahedral.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The iron oxide particles referred to in the present invention are preferably magnetite particles, or if magnetite (Fe 3 O 4 ) is the main component, maghemite (γ-Fe 2 O 3 ) or an intermediate composition beltride compound (FeOx · Fe 2 O 3 , 0 <x <1), and these single or composite compounds contain at least one kind of Al, Mn, Ni, Cu, Mg, Ti, Co, Zr, W, Mo, P, etc. other than Fe Those containing spinel ferrite particles or the like depending on the required properties are also included. In the following description, magnetite particles that are typical examples of iron oxide particles will be described. The term “iron oxide particles” or “magnetite particles” means either individual particles or aggregates depending on the content.
[0015]
The magnetite particles of the present invention contain zinc inside the particles and the surface of the particles is coated with composite iron oxide containing silicon and zinc, and zinc contained in the iron element dissolution rate of 5% by mass from the particle surface. : The mass ratio of silicon is 1: 2 to 5, the number average particle diameter by SEM observation is 0.1 to 0.3 μm, and the number average particle diameter D 50 by laser diffraction scattering type particle size distribution measurement is 200 to 1000 nm. It is characterized by that.
[0016]
Magnetite particles containing silicon are excellent in fluidity and can suppress aggregation between particles, and this effect is manifested if it is coated or adhered to the particle surface. If silicon is contained inside the particles, the effect is further improved due to a decrease in residual magnetization. This silicon component may be contained in the particles as a single compound, but if it is contained as an oxide, particularly in the state of a complex oxide with iron, the balance of magnetic properties will not be impaired. Therefore, it is preferable. The content is preferably 0.5 to 3% by mass in terms of silicon with respect to the entire magnetite particles. If the content is less than 0.5% by mass, the above-described aggregation suppressing effect is small, and if it exceeds 3% by mass, the balance of magnetic properties may be deteriorated, for example, saturation magnetization is lowered.
[0017]
Further, it is important that the magnetite particles of the present invention have a particle surface coated with composite iron oxide containing silicon and zinc.
[0018]
In conventional magnetite particles, the particle surface was composed of any one of a silicon compound containing no iron component, a zinc compound containing no iron component, a silicon-iron composite compound, and a zinc-iron composite compound. .
[0019]
When the particle surface is composed solely of a silicon compound that does not contain an iron component, or a zinc compound that does not contain an iron component, such a single compound itself is non-magnetic, which impairs the balance of magnetic properties, iron Since it does not contain any components, not only the blackness is impaired, but also the balance of chargeability and the compatibility with the resin are difficult to adjust in the production of the magnetic toner. Further, when the particle surface is composed of a composite oxide of silicon and iron, the magnetite particle surface has a high acidity and therefore has a strong negative chargeability, which is a problem in producing a positively chargeable toner. Moreover, when the particle | grain surface is comprised with the complex oxide of zinc and iron, the basicity of the magnetite particle | grain surface is high and it is unpreferable at the point of compatibility with resin.
[0020]
In order to solve the above problems, the surface of the magnetite particles only needs to be coated with composite iron oxide containing silicon and zinc, and the presence of silicon and zinc in the composite iron oxide reduces the problem. Besides improving the balance between aggregation and magnetic properties, the silicon component on the particle surface improves compatibility with basic polar groups in the resin, and the zinc component on the particle surface adjusts the particle to the positive charge side. Therefore, both characteristics can be controlled with good balance.
[0021]
Specifically, in the magnetite particles of the present invention, it is important that the mass ratio of zinc: silicon contained in the iron element dissolution rate of 5% by mass from the particle surface is 1: 2-5. In this mass ratio, when the mass ratio of silicon is less than 2, since the silicon in the vicinity of the particle surface is small, the magnetite particle surface is shifted to the basic side, which is a problem in terms of compatibility with the resin. Also, when the silicon ratio exceeds 5, since there is a lot of silicon near the particle surface, the acidity of the magnetite particle surface becomes higher, so the negative chargeability becomes stronger, and there is a problem in producing positively charged toner. is there.
[0022]
When the ratio of Fe contained in the iron element dissolution rate of 5% by mass from the surface of the magnetite particles is 70 to 90% by mass, the silicon and zinc components in the coating are contained without impairing the characteristics as a magnetic material. It is preferable because the effect can be exhibited. In addition, the ratio of the amount of silicon contained in 5% by mass of iron element from the surface of the magnetite particles to the amount of silicon in the particles exceeding 5% by mass is about 0.1 to 1 to improve the balance between low aggregation and magnetic properties, etc. It is preferable from above.
[0023]
It is important that the magnetite particles of the present invention have a number average particle size of 0.1 to 0.3 μm by SEM observation and a number average particle size D 50 of 200 to 1000 nm by laser diffraction / scattering particle size distribution measurement. If the number average particle size by SEM observation is within the above specific range, it is suitable for the magnetic toner material powder capable of forming a dense latent image as described in the prior art. The D 50 value captures the size of the aggregated particles. The larger the value, the greater the aggregation, which affects the cohesiveness of the particles. With respect to particles having a numerical value of less than 200 nm, it is difficult to produce particles having a large magnetic aggregation such as magnetite. When the particle has a numerical value exceeding 1000 nm, the aggregation of the particles is too strong. It is unsuitable for use.
[0024]
The magnetite particles of the present invention have high blackness, and it is important that the shape is octahedral in order to suppress as much as possible the deterioration of hue due to the silicon and zinc components in the composite iron oxide coating.
[0025]
The magnetite particles of the present invention preferably have an isoelectric point of 5 to 6.5. This isoelectric point indicates the acid basicity of the surface of the magnetite particles. When the isoelectric point is less than 5, although there are few problems in terms of acid basicity, the negative chargeability of the particles is too strong and positive chargeability. It is unsuitable for toner production, and when it exceeds 6.5, there is a problem in compatibility with a polyester resin having a basic polar group.
[0026]
The magnetite particles of the present invention preferably have a specific surface area of 8 to 15 m 2 / g by the BET method. Magnetite particles having a specific surface area in this range are suitable for applications such as material powders for electrostatic copying magnetic toners and black pigment powders for paints. Originally, magnetite particles with a small particle size are inferior in terms of the balance between cohesiveness and magnetic properties, but with the present invention, even such magnetite particles can be improved, so in view of the recent atomization of magnetic toners and paints. For example, 8 to 15 m 2 / g is preferable.
[0027]
Next, the manufacturing method of the magnetite particle | grains of this invention is described.
The magnetite particles of the present invention are a first stage in which an oxygen-containing gas is aerated by maintaining the pH of a slurry obtained by mixing an aqueous ferrous salt solution containing a water-soluble silicate and an aqueous alkaline solution at 7 or more. After completion of the oxidation reaction, an aqueous ferrous salt solution containing a water-soluble silicate and a water-soluble zinc salt is added to the slurry containing the magnetite particles, and the pH is adjusted to 6-9. It can be produced by carrying out a two-stage oxidation reaction.
[0028]
The magnetite particles of the present invention must contain a silicon component inside the particles in order to suppress magnetic aggregation due to low residual magnetization. What is important here is that the first stage oxidation reaction is carried out by aeration of an oxygen-containing gas while maintaining the pH of the first stage reaction at 7 or higher. When the pH of the first stage reaction is less than 7, the silicon component in the ferrous salt at the time of reaction is not taken into the particles and segregates in the vicinity of the particle surface or on the particle surface.
[0029]
In this first stage reaction, after silicon is contained inside the particles, the reaction is once stopped, and a ferrous salt aqueous solution containing a water-soluble silicate and a water-soluble zinc salt is added to the slurry containing the obtained magnetite particles. It is necessary to add, adjust to pH 6-9, and to perform a 2nd-stage oxidation reaction. What is important here is that a ferrous salt aqueous solution containing a water-soluble silicate and a water-soluble zinc salt is added to the slurry containing the magnetite particles during the second stage reaction. When either or both of water-soluble silicate and water-soluble zinc salt are not added, the particle surface cannot be coated with composite iron oxide containing silicon and zinc, and the magnetite particles of the present invention are generated. I can't let you.
[0030]
It is also important to adjust the pH during the second stage reaction to 6-9. When this pH is less than 6, not only the silicon component is exposed on the particle surface and the zinc component outside the coating is lowered, but the silicon component may be liberated from the particle surface. If it exceeds 9, the silicon component outside the coating on the particle surface will decrease.
[0031]
The slurry containing the magnetite particles after the reaction is filtered and washed in a conventional manner, and then dried to obtain magnetite particles. Since the magnetite particles of the present invention obtained by such a production method contain silicon inside the particles and the particle surface is coated with composite iron oxide containing silicon and zinc, the balance between low aggregation and magnetic properties In addition, it is easy to adjust the balance of chargeability and the compatibility with the resin during the production of the magnetic toner.
[0032]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples and the like.
[0033]
[Example 1]
20 liters of an aqueous solution containing 0.192 mol / l of Si 4+ as a water-soluble silicate was added to 50 liters of an aqueous solution containing 2.0 mol / l of Fe 2+, and an aqueous solution 42 containing 5.0 mol / l of NaOH. Stir mixed with liter. Residual NaOH in the obtained slurry was 2.5 g / l. While maintaining the temperature of the slurry at 85 ° C., the air was passed through 65 liters / min to oxidize to obtain a slurry containing magnetite core particles.
[0034]
In the obtained slurry, a ferrous sulfate aqueous solution, a zinc sulfate aqueous solution, and a silica containing Fe 2+ 1.30 mol / l, Zn 2+ 0.05 mol / l, and Si 4+ 0.26 mol / l, Add 4.50 liters of a mixed aqueous solution of sodium acid aqueous solution, perform oxidation by aeration of air again while maintaining the pH of the mixed slurry at 8.5 and a temperature of 85 ° C., and composite iron oxide containing zinc and silicon on the surface And coated. The obtained slurry containing magnetite particles was filtered, dried and pulverized in a conventional manner to obtain magnetite particles.
[0035]
Various properties and characteristics of the magnetite particles having a composite iron oxide coating layer containing silicon and zinc thus obtained were evaluated by the methods described below. The results are shown in Table 2.
[0036]
〔Measuring method〕
(1) Number average particle diameter D 50 by laser diffraction / scattering particle size distribution measurement
5 g of a sample was put into 100 ml of pure water, mixed for 5 minutes with a paint shaker to prepare an aqueous dispersion slurry, and D 50 was measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by HORIBA).
(2) Specific surface area (m 2 / g)
This was measured with a Shimadzu-Micromeritics 2200 type BET meter.
(3) It observed with the number average particle diameter scanning electron microscope (magnification: 30000 times) by SEM observation, and measured and calculated | required the ferret diameter of 100 particle | grains.
(4) The total silicon content sample was dissolved in a hydrochloric acid-hydrofluoric acid mixed solution and measured by ICP.
(5) The ratio of each component to the total amount of iron, silicon and zinc contained in the iron element dissolution rate of 5% by mass, the mass ratio of zinc: silicon, and the amount of silicon contained in the iron element dissolution rate of 5% by mass 25 g of a sample is added to deionized water having a silicon content ratio of 3.8 liters inside the particles having an iron element solubility exceeding 5% by mass, and the mixture is stirred at a stirring speed of 200 rpm while maintaining at 50 ° C. 1250 ml of hydrochloric acid aqueous solution in which 424 ml of special grade hydrochloric acid reagent is dissolved is added to the slurry, and dissolution is started. 20 ml is sampled every 10 minutes from the start of dissolution until all are dissolved and transparent, and filtered through a 0.1 μm membrane filter, and the filtrate is collected. The collected filtrate is quantified for each element of iron, silicon, and zinc by ICP.
(1) Iron element dissolution rate (mass%)
= [Iron concentration in the collected sample (mg / l) / Iron concentration when completely dissolved (mg / l)] × 100
(2) Ratio of iron to the total amount of iron, silicon and zinc contained in 5% by mass of iron element (mass%)
= [Iron concentration in the collected sample (mg / l) / Total concentration of iron, silicon and zinc in the collected sample (mg / l)] × 100
(3) Ratio of silicon to the total amount of iron, silicon and zinc contained in 5% by mass of iron element (mass%)
= [Silicon concentration in the collected sample (mg / l) / Total concentration of iron, silicon and zinc in the collected sample (mg / l)] × 100
(4) Ratio of zinc to the total amount of iron, silicon and zinc contained in 5 mass% of iron element dissolution rate (mass%)
= [Zinc concentration in the collected sample (mg / l) / Total concentration of iron, silicon and zinc in the collected sample (mg / l)] × 100
(5) Mass ratio of zinc: silicon contained in 5% by mass of iron element dissolution rate = zinc concentration in sampled sample (mg / l) / silicon concentration in sampled sample (mg / l)
(6) Ratio of silicon contained in 5% by mass of iron element and silicon inside particle exceeding 5% = silicon concentration at 5% by mass of iron element (mg / l) / [completely dissolved Silicon concentration (mg / l) -silicon concentration at the time of 5 mass% of iron element dissolution rate (mg / l)]
(6) The isoelectric point sample was put into a 0.01N-KNO 3 aqueous solution and adjusted so that the sample concentration was 5% by mass. Using an ultrasonic zeta potential measuring device DT-1200 (manufactured by Dispersion Technology), titration was performed with 1N-HNO 3 or 1N-KOH, and the zeta potential was measured. The pH at a zeta potential of 0 mV was taken as the isoelectric point.
(7) Magnetic properties Using a vibrating sample magnetometer VSM-P7 manufactured by Toei Kogyo Co., Ltd., an external magnetic field of 796 kA / m was measured.
(8) The charge amount sample was measured with an iron powder carrier (Powder Tech Co., Ltd., TEFV 200/300) with a blow-off type charge amount measuring device (Toshiba Chemical Co., Ltd., TB-200 type). .
[0037]
[Examples 2 to 6 and Comparative Examples 1 to 7]
As shown in Table 1, magnetite particles were produced in the same manner as in Example 1 except that various production conditions were changed. In addition, various properties and characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0038]
[Table 1]
Figure 0004121273
[0039]
[Table 2]
Figure 0004121273
[0040]
As shown in Table 2, the magnetite particles of Examples 1 to 6 have a low residual magnetization, a small aggregate particle diameter, and other magnetic properties. Further, it can be seen that the magnetic powder does not exhibit an extremely negative charge and has an isoelectric point on the weakly acidic side, and is a magnetic powder suitable for producing a positively charged magnetic toner excellent in compatibility with a resin.
[0041]
On the other hand, the magnetite particles of Comparative Example 1 are obtained by coating the composite iron oxide coating containing only zinc on the particle surface with the composite iron oxide containing only silicon, and the magnetite particles of Comparative Example 2 Contains only silicon in the composite iron oxide coating on the particle surface. Accordingly, the magnetite particles of Comparative Examples 1 and 2 have an isoelectric point of less than 5, the acidity of the particle surface is high, the negative charge amount is high, and they are not suitable for use as a positively charged magnetic toner.
[0042]
The magnetite particles of Comparative Example 3 contain no silicon but only zinc in the composite iron oxide coating on the particle surface, so that the agglomerated particle diameter is remarkably large and the basicity of the particle surface is high. There was a problem in terms of compatibility.
[0043]
The magnetite particles of Comparative Example 4 had a large agglomerated particle size because no silicon was contained inside the particles.
[0044]
The magnetite particles of Comparative Example 5 have no composite iron oxide coating on the particle surface, so the effect of silicon and zinc is dilute, the aggregated particle diameter is large, the isoelectric point is also near neutral, and compatibility with the resin There was a problem in terms of.
[0045]
The magnetite particles of Comparative Example 6 had a large aggregate particle diameter due to the low silicon ratio in the composite iron oxide coating on the particle surface.
[0046]
The magnetite particle of Comparative Example 7 has a low zinc ratio in the composite iron oxide coating on the particle surface, so that the isoelectric point is less than 5, the acidity of the particle surface is high, the negative charge amount is high, and the positively charged magnetic toner It was unsuitable for use.
[0047]
【The invention's effect】
As described above, the iron oxide particles of the present invention have a balance between low agglomeration and magnetic properties, and at the time of magnetic toner production, the balance of chargeability and compatibility with the resin can be adjusted. It is suitable as a material powder for electrostatic copying magnetic toner, particularly a positively chargeable magnetic toner material powder composed of a polyester resin or the like.

Claims (3)

粒子内部にケイ素を含有し、かつ粒子表面がケイ素及び亜鉛を含有する複合酸化鉄にて被覆されており、粒子表面から鉄元素溶解率5質量%中に含まれる亜鉛:ケイ素の質量比が1:2〜5であり、SEM観察による個数平均粒子径が0.1〜0.3μm、レーザ回折散乱式粒度分布測定による個数平均粒子径D50が200〜1000nm、かつ形状が八面体であることを特徴とする酸化鉄粒子。The particle | grain surface contains silicon | silicone, and the particle | grain surface is coat | covered with the composite iron oxide containing a silicon | silicone and zinc, The mass ratio of zinc: silicon contained in 5 mass% of iron element dissolution rates from a particle | grain surface is 1. : 2 to 5, the number average particle diameter by SEM observation is 0.1 to 0.3 μm, the number average particle diameter D 50 by laser diffraction scattering type particle size distribution measurement is 200 to 1000 nm, and the shape is octahedral. Iron oxide particles characterized by 等電点が5〜6.5である請求項1に記載の酸化鉄粒子。The iron oxide particles according to claim 1, having an isoelectric point of 5 to 6.5. BET法による比表面積が8〜15m2 /gである請求項1又は2に記載の酸化鉄粒子。The iron oxide particles according to claim 1 or 2, wherein the specific surface area according to the BET method is 8 to 15 m 2 / g.
JP2001395514A 2001-12-27 2001-12-27 Iron oxide particles Expired - Fee Related JP4121273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001395514A JP4121273B2 (en) 2001-12-27 2001-12-27 Iron oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001395514A JP4121273B2 (en) 2001-12-27 2001-12-27 Iron oxide particles

Publications (2)

Publication Number Publication Date
JP2003192351A JP2003192351A (en) 2003-07-09
JP4121273B2 true JP4121273B2 (en) 2008-07-23

Family

ID=27601867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001395514A Expired - Fee Related JP4121273B2 (en) 2001-12-27 2001-12-27 Iron oxide particles

Country Status (1)

Country Link
JP (1) JP4121273B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603943B2 (en) * 2004-10-08 2010-12-22 キヤノン株式会社 Magnetic toner
US20060141379A1 (en) * 2004-11-30 2006-06-29 Kouzou Teramoto Magnetic toner and image forming method using the same
JP4630843B2 (en) * 2005-05-19 2011-02-09 キヤノン株式会社 Magnetic toner
JP4590319B2 (en) * 2005-07-11 2010-12-01 キヤノン株式会社 Two-component developer
JP5760599B2 (en) 2011-03-31 2015-08-12 戸田工業株式会社 Magnetic iron oxide particle powder

Also Published As

Publication number Publication date
JP2003192351A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US5874019A (en) Magnetic particles for magnetic toner and process for producing the same
US5652060A (en) Spherical magnetic particles for magnetic toner and process for producing the same
JP4121273B2 (en) Iron oxide particles
JPH05213620A (en) Magnetite particles and its production
JP2000319021A (en) Iron oxide particles and their production
JPH0834617A (en) Black magnetic iron oxide particle-shaped powder
JP3857040B2 (en) Iron oxide particles and method for producing the same
JP4259830B2 (en) Magnetite particles
JP3473003B2 (en) Black magnetic iron oxide particle powder
JP3440586B2 (en) Granular magnetite particle powder and method for producing the same
JP3828727B2 (en) Iron oxide particles
JP4656266B2 (en) Black magnetic iron oxide particle powder for magnetic toner and method for producing the same
JPH10171157A (en) Powdery magnetic iron oxide particles for magnetic toner and magnetic toner using same
JP2001106529A (en) Iron oxide particle and its producing method
JP2004161551A (en) Iron oxide particle and its production method
JP3648126B2 (en) Iron oxide particles
JP4183497B2 (en) Black complex oxide particles and method for producing the same
JP2997167B2 (en) Magnetite particles and method for producing the same
JPH07240306A (en) Magnetic particles for magnetic toner and their manufacture
JP2001312096A (en) Magnetic particle powder for magnetic toner
JP3595197B2 (en) Iron oxide particles and method for producing the same
JP4753029B2 (en) Iron-based black particle powder for toner
JP3958901B2 (en) Method for producing iron oxide particles
JP4237968B2 (en) Magnetite particles and method for producing the same
JP2002356329A (en) Granulated magnetite particles and their producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4121273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees