JPH0522652B2 - - Google Patents

Info

Publication number
JPH0522652B2
JPH0522652B2 JP60071764A JP7176485A JPH0522652B2 JP H0522652 B2 JPH0522652 B2 JP H0522652B2 JP 60071764 A JP60071764 A JP 60071764A JP 7176485 A JP7176485 A JP 7176485A JP H0522652 B2 JPH0522652 B2 JP H0522652B2
Authority
JP
Japan
Prior art keywords
particles
aqueous solution
spherical
magnetite
ferrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60071764A
Other languages
Japanese (ja)
Other versions
JPS61232223A (en
Inventor
Keizo Mori
Masaru Kawabata
Masao Kunishige
Nanao Horiishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP60071764A priority Critical patent/JPS61232223A/en
Publication of JPS61232223A publication Critical patent/JPS61232223A/en
Publication of JPH0522652B2 publication Critical patent/JPH0522652B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は、かさ密床0.40〜1.10cm3であ぀
お、SiをFeに察し0.1〜5.0原子含有しおおり、
䞔぀、枩床安定性に優れ、しかも、分散性に優れ
おいる球型を呈したマグヘマむト粒子からなる球
型を呈したマグヘマむト粒子粉末及びその補造法
に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention has a bulk density of 0.40 to 1.10 g/cm 3 and contains 0.1 to 5.0 at% of Si relative to Fe,
The present invention also relates to a spherical maghemite particle powder made of spherical maghemite particles that have excellent temperature stability and excellent dispersibility, and a method for producing the same.

その䞻な甚途は、塗料甚茶耐色顔料粉末、静電
耇写甚の磁性トナヌ甚材料粉末である。
Its main uses are brown pigment powder for paints and material powder for magnetic toners for electrostatic copying.

〔埓来技術〕[Prior art]

埓来、マグヘマむト粒子は、茶耐色顔料ずしお
広く䞀般に䜿甚されおおり、省゚ネルギヌ時代に
おける䜜業胜率の向䞊䞊びに塗膜物性の改良ずい
う芳点から、塗料の補造に際しお、マグヘマむト
粒子粉末のビヒクル䞭ぞの分散性の改良が、
益々、芁望されおいる。
Conventionally, maghemite particles have been widely used as a brown pigment, and from the viewpoint of improving work efficiency and improving the physical properties of paint films in the energy-saving era, improvements in the dispersibility of maghemite particles in vehicles are used in the production of paints. but,
It is increasingly requested.

塗料の補造に際しお、顔料粉末のビヒクル䞭ぞ
の分散性が良奜であるか吊かは、塗料の補造工皋
における䜜業胜率を巊右するずずもに、塗膜の諞
物性を決定する極めお重芁な因子ずなる。
In the production of paints, whether or not the dispersibility of the pigment powder in the vehicle is good is an extremely important factor that not only affects the efficiency of the paint manufacturing process but also determines the various physical properties of the paint film.

このこずは、䟋えば、色材協䌚誌49巻第号
1976幎の第頁の次のような蚘茉からも明ら
かである。
This is clear, for example, from the following statement on page 8 of the Coloring Materials Association Journal, Vol. 49, No. 1 (1976).

「 塗膜の具備すべき諞特性は䞀口にい぀お、
同䞀顔料であれば塗膜䞭における顔料の分散性に
より、その倧郚分が決定されるずい぀おも過蚀で
はないように思われる。塗膜䞭の顔料の分散性が
良奜であれば、色調は鮮明ずなり、着色力、いん
ぺい力等顔料本来の基本的性質も向䞊するこずは
理論の教えるずころである。たた塗膜の光沢、鮮
映性、機械的性質、塗膜の耐透気性などが良奜ず
なり、これは塗膜の耐久性を向䞊させる結果ずな
る。このように塗膜䞭の顔料の分散性は塗膜の諞
物性を決定するきわめお倧事な芁因であるこずが
理解できる。」 䞀方、近幎における静電耇写機の普及はめざた
しく、それに䌎い、珟像剀である磁気トナヌの研
究開発が盛んであり、その特性向䞊が芁求されお
いる。
“...The various characteristics that a paint film should have are summarized as follows:
It seems no exaggeration to say that, for the same pigment, the dispersibility of the pigment in the coating film largely determines the dispersibility of the pigment. Theory teaches that if the dispersibility of the pigment in the coating film is good, the color tone will be clear and the fundamental properties inherent to the pigment, such as coloring power and impregnation power, will also improve. Furthermore, the gloss, sharpness, mechanical properties, and air permeability of the coating film are improved, which results in improved durability of the coating film. It can thus be understood that the dispersibility of pigments in a coating film is an extremely important factor in determining the various physical properties of the coating film. On the other hand, the spread of electrostatic copying machines has been remarkable in recent years, and along with this, research and development of magnetic toner, which is a developer, is active, and improvements in its properties are required.

䟋えば、特開昭54−122129号公報に次のように
蚘茉されおいる。「 磁気トナヌはトナヌ結着剀
䞭に磁性埮粒子が盞圓量混入されるが、磁性埮粒
子は䞀般にトナヌ結着暹脂䞭ぞの分散性が悪く、
補造䞊バラツキのない均䞀なトナヌを埗るこずが
困難であり、曎に、絶瞁性トナヌではトナヌの電
気抵抗の䜎䞋の原因ずもなる。」曎に、特公昭53
−21656号公報には「 酞化鉄を珟像剀粒子党䜓
に均䞀に分垃させるこずにより静電朜像の顕像化
に必芁な適床な垯磁性を埗」るこずが可胜である
ず蚘茉されおいる。
For example, JP-A-54-122129 describes the following. “...Magnetic toner has a considerable amount of magnetic fine particles mixed in the toner binder, but magnetic fine particles generally have poor dispersibility in the toner binder resin.
In manufacturing, it is difficult to obtain a uniform toner without variations, and furthermore, insulating toners cause a decrease in the electrical resistance of the toner. ”Furthermore, the special public
Publication No. 21656 states that it is possible to "obtain appropriate magnetism necessary for visualization of electrostatic latent images by uniformly distributing iron oxide throughout the developer particles." There is.

磁性トナヌは、マグヘマむト粒子等の磁性粒子
粉末ず暹脂ずを加熱溶融混緎し、冷华固化させた
埌、粉砕し、曎に、加熱された熱気流䞭に噎霧状
にしお通過させお球状化凊理を行うこずにより補
造されおいる。たた、珟像に際しおは、磁性トナ
ヌを定着する為に熱定着や圧力定着が行われる。
Magnetic toner is produced by heating, melting, and kneading magnetic particles such as maghemite particles and resin, cooling and solidifying them, pulverizing them, and then passing them through a heated hot air stream in the form of a spray to form a spheroid. It is manufactured by Further, during development, heat fixing or pressure fixing is performed to fix the magnetic toner.

埓぀お、磁性トナヌ甚材料粉末であるマグヘマ
むト粒子粉末は、䞊述した通り、磁性トナヌの補
造時及び珟像時に高枩にさらされ、茶耐色のマグ
ヘマむト粒子粉末は、550℃皋床の高枩になるず
ヘマタむトずなり赀耐色に倉色するず同時に磁性
を倱い、䟋えば飜和磁化が䜎䞋しお5emu皋
床ずな぀おしたうので、枩床安定性の優れたマグ
ヘマむト粒子が芁求されおいる。
Therefore, as mentioned above, maghemite particles, which are the material powder for magnetic toner, are exposed to high temperatures during the production and development of magnetic toners, and when the brown maghemite particles reach a high temperature of about 550°C, they turn into hematite and turn reddish brown. Maghemite particles with excellent temperature stability are required because they lose their magnetism at the same time as they change color, and their saturation magnetization, for example, decreases to about 5 emu/g.

埓来、マグヘマむト粒子粉末の補造法ずしお
は、第䞀鉄塩氎溶液ずアルカリずを反応させお埗
られた氎酞化第䞀鉄を含む反応氎溶液に酞玠含有
ガスを通気するこずにより、氎溶液䞭から出発原
料粒子ずしおのマグネタむト粒子を生成させ、次
いで、該マグネタむト粒子粉末を空気䞭で加熱す
る方法が知られおいる。
Conventionally, as a manufacturing method for maghemite particle powder, a starting material is extracted from an aqueous solution by passing an oxygen-containing gas through a reaction aqueous solution containing ferrous hydroxide obtained by reacting an aqueous ferrous salt solution with an alkali. A method is known in which magnetite particles are produced as particles and then the magnetite particle powder is heated in air.

䞊蚘マグヘマむト粒子粉末の補造にあたり、氎
溶液䞭から生成するマグネタむト粒子の粒子圢状
は、反応氎溶液䞭のPHにより皮々異なるこずが知
られおいる。
It is known that the particle shape of magnetite particles produced from an aqueous solution in the production of the above-mentioned maghemite particle powder varies depending on the pH of the reaction aqueous solution.

即ち、この事実は、粉䜓粉末治金協䌚昭和46幎
床秋季倧䌚講挔抂芁集第112頁第14〜19行の「硫
酞第䞀鉄氎溶液1390.7に空気を吹き蟌
み、撹拌しながら氎酞化ナトリりム氎溶液40〜
440.3を加え、50℃に昇枩しお時間保
぀お埮粒子を埗た。粒子の倖圢を倉えるためPHを
倉化させた。PHは氎酞化ナトリりムの量のコント
ロヌルし、酞性偎NaOH40〜410.3で
凝六面䜓粒子を、アルカリ性偎43以䞊0.3
で八面䜓粒子を、䞭性附近NaOH42
0.3では倚面䜓化した球状に近い粒子を埗
た。」なる蚘茉及び特公昭44−668号公報の特蚱請
求の範囲の「 FeOH2コロむドを含むPH10以
䞊の氎溶液を45℃以䞊70℃以䞋の枩床に保持し、
撹拌により液䞭に存圚する沈柱粒子が充分に運動
しおいる状態で酞化反応を行うこずにより、 粒
状たたは立方状六面䜓を呈した 黒色匷磁性
粒子マグネタむト粒子より成る沈柱を補造
 」なる蚘茉から明らかである。
In other words, this fact is based on the Powder Metallurgy Association 1971 Autumn Conference Lecture Summary Collection, page 112, lines 14-19: Sodium aqueous solution (40~
44g/0.3) was added, the temperature was raised to 50°C, and the temperature was maintained for 5 hours to obtain fine particles. The pH was changed to change the external shape of the particles. PH is controlled by the amount of sodium hydroxide, and condensed hexahedral particles are produced on the acidic side (NaOH40-41g/0.3), and on the alkaline side (more than 43g/0.3).
) to the octahedral particles near neutrality (NaOH42g/
0.3), polyhedral, nearly spherical particles were obtained. ” and the claims of Japanese Patent Publication No. 44-668, “
an aqueous solution containing Fe(OH) 2 colloid with a pH of 10 or higher is maintained at a temperature of 45°C or higher and 70°C or lower,
By carrying out an oxidation reaction while the precipitate particles present in the liquid are in sufficient motion due to stirring, a precipitate consisting of black ferromagnetic particles (magnetite particles) with a granular or cubic (hexahedral) shape is produced. It is clear from the statement "...".

〔発明が解決しようずする問題点〕[Problem that the invention seeks to solve]

分散性及び枩床安定性に優れたマグヘマむト粒
子は珟圚最も芁求されおいるずころであるが、マ
グヘマむト粒子を補造する前述の公知方法により
埗られる粒子粉末は、未だ分散性及び枩床安定性
の優れたものであるずは蚀い難い。
Maghemite particles with excellent dispersibility and temperature stability are currently in the greatest demand, but the powder particles obtained by the above-mentioned known methods for producing maghemite particles are still lacking in excellent dispersibility and temperature stability. It's hard to say that there is.

本発明者は、優れた分散性を有するマグヘマむ
ト粒子を埗ようずすれば、カサ密床が倧きい球型
を呈した粒子であ぀お、粒床が均斉であるこずが
必芁であり、そのようなマグヘマむト粒子を埗よ
うずすれば、出発原料粒子であるマグネタむト粒
子がカサ密床が倧きい球型を呈した粒子であ぀
お、粒床が均斉であるこずが必芁であるず考え
た。
The present inventor has discovered that in order to obtain maghemite particles with excellent dispersibility, it is necessary that the particles exhibit a spherical shape with a large bulk density and have a uniform particle size. In order to obtain this, we thought that it is necessary that the magnetite particles, which are the starting material particles, have a spherical shape with a large bulk density, and that the particle size is uniform.

曎に、本発明者は、マグヘマむト粒子の球型性
を向䞊させればさせる皋粒子ず粒子の接觊点が小
さくなる為、粒子盞互間の凝集等がなく、カサ密
床が倧きくなり、その結果、分散性が優れたもの
ずなるず考え、出発原料粒子であるマグネタむト
粒子の球型性を向䞊させるこずが必芁であるず考
えた。
Furthermore, the present inventor has found that as the sphericity of maghemite particles is improved, the contact points between particles become smaller, so there is no aggregation between particles, and the bulk density increases, resulting in better dispersion. We thought that it would be necessary to improve the sphericity of the magnetite particles, which are the starting material particles.

䞀方、前述した通り、球型を呈したマグネタむ
ト粒子は、䞭性付近の氎溶液䞭で生成されるこず
が知られおいるが、この堎合には、第䞀鉄塩氎溶
液䞭のFe2+の党量をマグネタむト粒子に倉換す
るこずは困難で未反応のFe2+が残存する為、収
率が䜎く、その䞊未反応のFe2+は排氎公害の原
因ずなるのでその察策が必芁であ぀た。
On the other hand, as mentioned above, it is known that magnetite particles exhibiting a spherical shape are generated in aqueous solutions near neutrality, but in this case, the total amount of Fe 2+ in the ferrous salt aqueous solution It is difficult to convert Fe 2+ into magnetite particles, and unreacted Fe 2+ remains, resulting in a low yield. Furthermore, unreacted Fe 2+ causes wastewater pollution, so countermeasures were needed.

第䞀鉄塩氎溶液䞭のFe2+の党量からマグネタ
むト粒子を生成し収率を高めようずすれば、第䞀
鉄塩氎溶液ず該第䞀鉄塩氎溶液に察し圓量以䞊
のアルカリずを反応させる必芁があり、この堎合
にはPH11皋床以䞊のアルカリ反応氎溶液ずなり、
生成マグネタむト粒子は六面䜓たたは八面䜓粒子
ずなる為、カサ密床が小さいのであ぀た。
In order to generate magnetite particles from the total amount of Fe 2+ in a ferrous salt aqueous solution and increase the yield, it is necessary to react the ferrous salt aqueous solution with an alkali equivalent of 1 equivalent or more to the ferrous salt aqueous solution. In this case, it becomes an alkaline reaction aqueous solution with a pH of about 11 or higher,
Since the produced magnetite particles were hexahedral or octahedral particles, their bulk density was small.

埓来、第䞀鉄塩氎溶液のFe2+の党量から球型
を呈したマグネタむト粒子を補造する方法ずしお
䟋えば、特開昭49−35900号公報に蚘茉の方法が
ある。
Conventionally, as a method for producing spherical magnetite particles from the total amount of Fe 2+ in an aqueous ferrous salt solution, there is, for example, a method described in JP-A-49-35900.

即ち、特開昭49−35900号公報に蚘茉の方法は、
第䞀鉄塩氎溶液又は、第䞀鉄塩ず䟡金属
Co+2等の氎溶性塩ずの混合氎溶液に、該氎溶
液䞭に含たれる酞根に察し圓量以䞋のアルカリ金
属の炭酞塩を加え、沞隰枩床以䞋の枩床で酞化反
応を行い、匷磁性粒子母䜓を生成させる第䞀工皋
ず、溶液䞭に残存する未反応の金属むオンの党お
が䞊蚘匷磁性埮粒子母䜓䞊に析出するに充分な量
のアルカリ金属の氎酞化物を加えるこずにより匷
磁性埮粒子MO Fe2O3 Fe+2又はCo+2を
生成する第二工皋からなるものである。
That is, the method described in Japanese Patent Application Laid-open No. 49-35900 is as follows:
To a ferrous salt aqueous solution or a mixed aqueous solution of a ferrous salt and a water-soluble salt of a divalent metal (such as Co +2 ), add an alkali metal carbonate in an amount equal to or less than the acid radical contained in the aqueous solution. , a first step of performing an oxidation reaction at a temperature below the boiling temperature to generate a ferromagnetic particle matrix, and a sufficient amount so that all of the unreacted metal ions remaining in the solution are precipitated on the ferromagnetic fine particle matrix. The second step consists of producing ferromagnetic fine particles (MO Fe 2 O 3 M: Fe +2 or Co +2 ) by adding an alkali metal hydroxide.

しかしながら、䞊蚘方法により埗られた球型を
呈したマグネタむト粒子は、埌述する比范䟋に
瀺す通り、埗られるマグネタむト粒子の球型性は
䞍十分であり、埓぀お、生成粒子は、粒子盞互間
でからみ合぀おおり、カサ密床も小さく粒床も䞍
均斉なものである。これは、特開昭49−35900号
公報に蚘茉の方法により埗られるマグネタむト粒
子は、第䞀工皋においお硫酞第䞀鉄ずアルカリ金
属の炭酞塩ずから埗られる炭酞鉄の加氎分解反応
により生成されるものであるから、マグネタむト
栞粒子が急速に析出生成される為、圢状の十分な
制埡ができなか぀たものず考えられる。
However, as shown in Comparative Example 3 described later, the spherical magnetite particles obtained by the above method have insufficient sphericity, and therefore, the generated particles have an insufficient sphericity. They are intertwined with each other, have a small bulk density, and have asymmetric particle sizes. This is because the magnetite particles obtained by the method described in JP-A-49-35900 are produced by a hydrolysis reaction of iron carbonate obtained from ferrous sulfate and an alkali metal carbonate in the first step. It is thought that because the magnetite core particles were rapidly precipitated and formed, the shape could not be controlled sufficiently.

䞊述した通り、−球型性の向䞊した球型を
呈したマグネタむト粒子粉末を高い収率で補造す
る方法の確立が匷く芁望されおいる。
As mentioned above, there is a strong desire to establish a method for producing spherical magnetite particles with improved [-] sphericity at a high yield.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者は、−球型性の向䞊した球型を呈
したマグヘマむト粒子粉末を高い収率で補造する
方法に぀いお皮々怜蚎を重ねた結果、本発明に到
達したのである。
The present inventor has arrived at the present invention as a result of various studies on a method for producing maghemite particles exhibiting a spherical shape with improved [-] sphericity in a high yield.

即ち、本発明は、カサ密床が0.40〜1.10cm3
であ぀お、SiをFeに察し0.1〜5.0原子含有しお
おり、䞔぀、枩床安定性に優れおいるこずを特城
ずする球型を呈したマグヘマむト粒子からなる球
型を呈したマグヘマむト粒子粉末及び第䞀鉄塩氎
溶液ず該第䞀鉄塩氎溶液䞭のFe2+に察し0.80〜
0.99圓量の氎酞化アルカリずを反応させお埗られ
た氎酞化第䞀鉄コロむドを含む第䞀鉄塩反応氎溶
液に加熱しながら酞玠含有ガスを通気しお䞊蚘氎
酞化第䞀鉄コロむドを酞化するにあたり、前蚘氎
酞化アルカリ又は、前蚘氎酞化第䞀鉄コロむドを
含む第䞀鉄塩反応氎溶液のいずれかにあらかじめ
氎可溶性ケむ酞塩をFeに察しSi換算で0.1〜5.0原
子添加し、しかる埌、70〜100℃の枩床範囲で
加熱しながら酞玠含有ガスを通気し、次いで、該
加熱酞化条件ず同䞀条件䞋で、反応母液䞭に残存
するFe2+に察し1.00圓量以䞊の氎酞化アルカリを
添加しお球型を呈したマグネタむト粒子を生成さ
せた埌、該マグネタむト粒子を空気䞭300〜400℃
で加熱酞化するこずにより球型を呈したマグヘマ
むト粒子を埗るこずからなる球型を呈したマグヘ
マむト粒子粉末の補造法である。
That is, the present invention has a bulk density of 0.40 to 1.10 g/cm 3
A spherical maghemite particle powder comprising spherical maghemite particles containing 0.1 to 5.0 at% of Si relative to Fe and having excellent temperature stability. and 0.80 to Fe 2+ in the ferrous salt aqueous solution and the ferrous salt aqueous solution
In oxidizing the ferrous hydroxide colloid by passing an oxygen-containing gas through the ferrous salt reaction aqueous solution containing the ferrous hydroxide colloid obtained by reacting it with 0.99 equivalents of alkali hydroxide while heating it. , to either the alkali hydroxide or the ferrous salt reaction aqueous solution containing the ferrous hydroxide colloid, 0.1 to 5.0 atomic % of water-soluble silicate is added in terms of Si based on Fe, and then, Oxygen-containing gas is passed through while heating in the temperature range of 70 to 100°C, and then, under the same heating oxidation conditions, 1.00 equivalent or more of alkali hydroxide is added to Fe 2+ remaining in the reaction mother liquor. After producing spherical magnetite particles, the magnetite particles are heated in air at 300 to 400°C.
This is a method for producing maghemite particles having a spherical shape, which comprises obtaining maghemite particles having a spherical shape by heating and oxidizing the powder.

〔䜜甚〕[Effect]

先ず、本発明においお最も重芁な点は、出発原
料粒子であるマグネタむト粒子の生成にあた぀お
氎可溶性ケむ酞塩を添加しおおくこずにより生成
マグネタむト粒子の球型性が向䞊しおおり、䞔぀
粒床が均斉であるこずに起因しお、粒子盞互間の
凝集等がなく、カサ密床が倧きく、その結果、分
散性が優れたマグネタむト粒子粉末を高い収率で
埗るこずができる点にある。
First, the most important point in the present invention is that the sphericity of the generated magnetite particles is improved by adding water-soluble silicate during the production of magnetite particles, which are starting material particles, and Due to the uniform particle size, there is no agglomeration between particles, and the bulk density is large. As a result, magnetite particles with excellent dispersibility can be obtained in high yield.

本発明におけるマグネタむト粒子の球型性を向
䞊させる氎可溶性ケむ酞塩の䜜甚は未だ明らかで
はないが、本発明者は、氎可溶性ケむ酞塩の添加
によ぀お生成マグネタむト栞の成長が緻密䞔぀均
䞀に行われた結果、マグネタむト栞が等方的に成
長し、次いで該球型性の向䞊した球型を呈したマ
グネタむト粒子衚面にマグネタむトが゚ピタキシ
ダル成長したためであるず考えおいる。
Although the effect of water-soluble silicate on improving the sphericity of magnetite particles in the present invention is not yet clear, the present inventor has found that the addition of water-soluble silicate allows the growth of magnetite nuclei to become dense and uniform. We believe that this is because magnetite nuclei grew isotropically as a result of this process, and then magnetite grew epitaxially on the surface of the magnetite particles, which had a spherical shape with improved sphericity.

たた、本発明における他の重芁な点は、枩床安
定性に優れた球型を呈したマグヘマむト粒子粉末
を埗るこずができる点にある。
Another important point of the present invention is that maghemite particles having a spherical shape with excellent temperature stability can be obtained.

本発明による堎合には、䜕故枩床安定性が優れ
たマグヘマむト粒子が埗られるかに぀いおは、未
だ明らかではないが、球型性の向䞊したマグヘマ
むト粒子を加熱酞化しお埗られるマグヘマむト粒
子の球型性が向䞊したこずに起因しお粒子の衚面
掻性が小さくな぀たこず及びマグヘマむト粒子䞭
に含有されるSiの䜜甚によるものず考えおいる。
In the case of the present invention, it is not yet clear why maghemite particles with excellent temperature stability can be obtained, but the sphericity of maghemite particles obtained by heating and oxidizing maghemite particles with improved sphericity This is thought to be due to the decrease in the surface activity of the particles due to an improvement in the surface activity, and the action of Si contained in the maghemite particles.

埓来マグネタむト粒子の生成にあたり、氎可溶
性ケむ酞塩を添加するものずしお、䟋えば、特公
昭55−28203号公報及び特開昭58−2226号公報に
蚘茉の方法がある。
Conventional methods for adding water-soluble silicate to produce magnetite particles include, for example, methods described in Japanese Patent Publication No. 55-28203 and Japanese Patent Application Laid-Open No. 58-2226.

しかしながら、䞊蚘のいずれの方法も球型を呈
したマグネタむト粒子粉末に関すものではなく、
たた、添加した氎可溶性ケむ酞塩は、生成マグネ
タむト粒子粉末を加熱焙焌しおマグネタむト焌結
䜓ずするか、又は、赀色酞化鉄ずする際の焙焌時
における粒子成長を抑制するずいう䜜甚効果を有
するものであり、氎溶液䞭に生成する球型を呈し
たマグネタむト粒子の粒子圢状を制埡するずいう
本発明における氎可溶性ケむ酞塩の䜜甚効果ず党
く盞違するものである。
However, none of the above methods relates to magnetite particle powder exhibiting a spherical shape;
In addition, the added water-soluble silicate has the effect of suppressing particle growth during roasting when producing magnetite particles to produce magnetite sintered bodies or red iron oxide. This is completely different from the effect of the water-soluble silicate in the present invention, which is to control the particle shape of spherical magnetite particles generated in an aqueous solution.

次に、本発明実斜にあた぀おの諞条件に぀いお
述べる。
Next, various conditions for implementing the present invention will be described.

本発明における第䞀鉄塩氎溶液ずしおは、硫酞
第䞀鉄、塩化第䞀鉄等が甚いられる。
As the ferrous salt aqueous solution in the present invention, ferrous sulfate, ferrous chloride, etc. are used.

本発明における氎酞化アルカリは、氎酞化ナト
リりム、氎酞化カリりム等のアルカリ金属の氎酞
化物、氎酞化マグネシりム、氎酞化カルシりム等
のアルカリ土類金属の酞化物及び氎酞化物を䜿甚
するこずができる。
As the alkali hydroxide in the present invention, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal oxides and hydroxides such as magnesium hydroxide and calcium hydroxide can be used. .

本発明における氎酞化第䞀鉄コロむドを沈柱さ
せる為に䜿甚する氎酞化アルカリの量は、第䞀鉄
塩氎溶液䞭のFe2+に察し0.80〜0.99圓量である。
The amount of alkali hydroxide used to precipitate the ferrous hydroxide colloid in the present invention is 0.80 to 0.99 equivalent to Fe 2+ in the ferrous salt aqueous solution.

0.80圓量未満又は0.99圓量を越える堎合には、
球型を呈したマグネタむト粒子を生成するこずが
困難である。
If it is less than 0.80 equivalent or more than 0.99 equivalent,
It is difficult to produce spherical magnetite particles.

本発明における氎酞化第䞀鉄コロむドを含む第
䞀鉄塩反応氎溶液に酞玠含有ガスを通気する際の
反応枩床は70℃〜100℃である。
In the present invention, the reaction temperature when oxygen-containing gas is passed through the ferrous salt reaction aqueous solution containing ferrous hydroxide colloid is 70°C to 100°C.

70℃未満である堎合には、針状晶ゲヌタむト粒
子が混圚し、100℃を越える堎合でも球型を呈し
たマグネタむト粒子は生成するが工業的ではな
い。
When the temperature is below 70°C, acicular goethite particles are mixed, and even when the temperature exceeds 100°C, spherical magnetite particles are produced, but this is not suitable for industrial use.

酞化手段は酞玠含有ガス䟋えば空気を液䞭
に通気するこずにより行う。
The oxidation means is carried out by passing an oxygen-containing gas (for example, air) into the liquid.

本発明においお䜿甚される氎可溶性ケむ酞塩ず
しおはナトリりム、カリりムのケむ酞塩がある。
Water-soluble silicates used in the present invention include sodium and potassium silicates.

氎可溶性ケむ酞塩の添加量は、Feに察しおSi
換算で0.1〜5.0原子である。
The amount of water-soluble silicate added is
In terms of conversion, it is 0.1 to 5.0 atomic%.

0.1原子未満である堎合には、出発原料粒子
である球型性の優れた球型を呈したマグネタむト
粒子粉末を埗るこずが出来ない。
If it is less than 0.1 atomic %, it is impossible to obtain starting material particles, which are magnetite particles exhibiting a spherical shape with excellent sphericity.

5.0原子を越える堎合には、添加した氎可溶
性ケむ酞塩が単独で析出し、球型を呈したマグネ
タむト粒子䞭に混圚する。
When the amount exceeds 5.0 at%, the added water-soluble silicate precipitates alone and is mixed in the spherical magnetite particles.

本発明におけ氎可溶性ケむ酞塩は、生成する球
型を呈したマグネタむト粒子の圢状に関䞎するも
のであり、埓぀お、氎可溶性ケむ酞塩の添加時期
は、氎酞化第䞀鉄コロむドを含む第䞀鉄塩反応氎
溶液䞭に酞玠含有ガスを通気しおマグネタむト粒
子を生成する前であるこずが必芁であり、氎酞化
アルカリ又は、氎酞化第䞀鉄コロむドを含む第䞀
鉄塩反応氎溶液のいずれかに添加するこずができ
る。
In the present invention, the water-soluble silicate is involved in the shape of the generated spherical magnetite particles, and therefore, the timing of adding the water-soluble silicate is determined by the timing of addition of the ferrous hydroxide colloid. It is necessary that the oxygen-containing gas is passed through the ferrous salt reaction aqueous solution to generate magnetite particles, and either an alkali hydroxide or a ferrous salt reaction aqueous solution containing a ferrous hydroxide colloid is used. Can be added to crab.

第䞀鉄塩氎溶液䞭に氎可溶性ケむ酞塩を添加す
る堎合には、氎可溶性ケむ酞塩を添加するず同時
にSiO2ずしお析出する為、出発原料粒子である
球型性の向䞊した球型マグネタむト粒子を埗るこ
ずができない。
When water-soluble silicate is added to a ferrous salt aqueous solution, it is precipitated as SiO 2 at the same time as the water-soluble silicate is added, so the starting material particles, spherical magnetite particles with improved sphericity, are can't get it.

添加した氎可溶性ケむ酞塩は、ほが党量が生成
マグネタむト粒子粉末䞭に含有され、埌出実斜䟋
に瀺される通り、埗られたマグネタむト粒子粉末
は、添加量ずほが同量を含有しおいる。
Almost all of the added water-soluble silicate was contained in the produced magnetite particles, and as shown in the Examples below, the obtained magnetite particles contained almost the same amount as the added amount.

本発明における氎酞化第䞀鉄コロむドの酞化埌
の母液䞭に残存するFe2+に察しお添加する氎酞
化アルカリの量は、1.00圓量以䞊である。
In the present invention, the amount of alkali hydroxide added to Fe 2+ remaining in the mother liquor after oxidation of the ferrous hydroxide colloid is 1.00 equivalent or more.

1.00圓量未満ではFe2+が党量沈柱しない。1.00
圓量以䞊の工業性を勘案した量が奜たしい量であ
る。
If the amount is less than 1.00 equivalent, all Fe 2+ will not precipitate. 1.00
A preferable amount is an amount that takes industrial efficiency into consideration.

本発明における反応母液䞭に残存するFe2+に
察し氎酞化アルカリを添加する際の反応枩床及び
酞化手段は、前出氎酞化第䞀鉄コロむドを含む第
䞀鉄塩反応氎溶液に酞玠含有ガスを通気する際の
条件ず同䞀でよい。
In the present invention, the reaction temperature and oxidation means when adding alkali hydroxide to the Fe 2+ remaining in the reaction mother liquor are such that oxygen-containing gas is passed through the ferrous salt reaction aqueous solution containing the ferrous hydroxide colloid. The conditions may be the same as those used when

本発明の空気䞭における出発原料マグネタむト
粒子の加熱酞化枩床は300〜400℃である。
The heating oxidation temperature of the starting material magnetite particles in air in the present invention is 300 to 400°C.

300℃未満である堎合には、マグネタむトの酞
化反応が遅くマグネタむトの生成に長時間を芁す
る。
If the temperature is less than 300°C, the oxidation reaction of magnetite is slow and it takes a long time to generate magnetite.

400℃を越える堎合には、マグネタむトの酞化
反応が急激に生起する為、生成マグヘマむトから
ヘマタむトぞの倉態が促進される。
When the temperature exceeds 400°C, the oxidation reaction of magnetite occurs rapidly, and the transformation of the produced maghemite into hematite is promoted.

〔実斜䟋〕〔Example〕

次に、実斜䟋䞊びに比范䟋により本発明を説明
する。
Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以䞋の実斜䟋䞊びに比范䟋における平均粒
子埄はBET法により、カサ密床はJIS  5101
に蚘茉の方法により枬定し、粒子圢態は、電子顕
埮鏡により芳察した。
In addition, the average particle diameter in the following examples and comparative examples is determined by the BET method, and the bulk density is determined by JIS K 5101.
The particle morphology was observed using an electron microscope.

粒子䞭のSi量は、「螢光線分析装眮3063M型」
理孊電機工業補を䜿甚し、JIS  0119の
「けい光線分析通則」に埓぀お、けい光線分
析を行うこずにより枬定した。
The amount of Si in the particles was measured using a Fluorescent X-ray analyzer model 3063M.
(manufactured by Rigaku Denki Kogyo) in accordance with JIS K 0119 "General Rules for Fluorescent X-ray Analysis".

〈出発原料マグネタむト粒子の補造〉 実斜䟋〜、比范䟋〜 実斜䟋  Fe2+1.5molを含む硫酞第䞀鉄氎溶液20
を、あらかじめ、反応噚䞭に準備されたFeに察
しSi換算で0.3原子を含むようにケむ酞゜ヌダ
号SiO228.55wt18.9を添加しお埗ら
れた2.64−のNaOH氎溶液20に加えFe2+に
察し0.95圓量に該圓する。、PH6.9、枩床90℃に
おいおFeOH2を含む第䞀鉄塩氎溶液の生成を
行぀た。
<Production of starting material magnetite particles> Examples 1 to 3, Comparative Examples 1 to 3; Example 1 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
2.64-N obtained by adding 18.9 g of sodium silicate (No. 3) (28.55 wt% SiO 2 ) to the Fe prepared in the reactor in advance to contain 0.3 atomic % in terms of Si. In addition to NaOH aqueous solution 20 (corresponding to 0.95 equivalent to Fe 2+ ), a ferrous salt aqueous solution containing Fe(OH) 2 was generated at pH 6.9 and temperature 90°C.

䞊蚘FeOH2を含む第䞀鉄塩氎溶液に枩床90
℃においお毎分100の空気を240分間通気した。
The above ferrous salt aqueous solution containing Fe(OH) 2 was heated to a temperature of 90°C.
℃ for 240 minutes at 100 air per minute.

次いで、䞊蚘反応母液䞭に1.58−のNaOHæ°Ž
溶液を加え残存Fe2+に察し1.05圓量に該圓
する。、PH11.8、枩床90℃においお毎分20の空
気を60分間通気しおマグネタむト粒子を生成し
た。
Next, 1.58-N NaOH aqueous solution 2 was added to the above reaction mother liquor (corresponding to 1.05 equivalents to the residual Fe 2+ ), and air was bubbled through at a rate of 20/min for 60 minutes at pH 11.8 and temperature 90°C. produced magnetite particles.

生成粒子は、垞法により、氎掗、別、也燥、
粉砕した。
The generated particles are washed with water, separated, dried, and
Shattered.

埗られたマグネタむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000から明らかな通り、
粒子盞互間の凝集等がなく粒床が均斉であ぀お、
平均粒子埄が0.20Όの球型を呈した粒子であ぀
た。
As is clear from the electron micrograph (×20000) shown in Figure 1, the obtained magnetite particle powder has the following properties:
There is no aggregation between particles, and the particle size is uniform,
The particles were spherical with an average particle diameter of 0.20 ÎŒm.

たた、この球型を呈したマグネタむト粒子粒末
は、螢光線分析の結果、Feに察しSiを0.29原子
含有したものであ぀お、カサ密床0.57cm3、
であり、分散性の極めお良奜なものであ぀た。
In addition, as a result of fluorescent X-ray analysis, the spherical magnetite particles contained 0.29 atomic percent of Si relative to Fe, and had a bulk density of 0.57 g/cm 3 .
The dispersibility was extremely good.

実斜䟋  Fe2+1.5molを含む硫酞第䞀鉄氎溶液20
を、あらかじめ、反応噚䞭に準備されたFeに察
しSi換算で3.0原子を含むようにケむ酞゜ヌダ
号SiO2 28.55wt190を添加しお埗ら
れた2.64−のNaOH氎溶液20に加えFe2+に
察し0.95圓量に該圓する。、PH6.9、枩床90℃に
おいおFeOH2を含む第䞀鉄塩氎溶液の生成を
行぀た。
Example 2 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
of 2.64-N obtained by adding 190 g of sodium silicate (No. 3) (28.55 wt% SiO 2 ) to the Fe prepared in the reactor in advance to contain 3.0 atomic % in terms of Si. In addition to NaOH aqueous solution 20 (corresponding to 0.95 equivalent to Fe 2+ ), a ferrous salt aqueous solution containing Fe(OH) 2 was produced at pH 6.9 and temperature 90°C.

䞊蚘FeOH2を含む第䞀鉄塩氎溶液に枩床90
℃においお毎分100の空気を240分間通気した。
The above ferrous salt aqueous solution containing Fe(OH) 2 was heated to a temperature of 90°C.
℃ for 240 minutes at 100 air per minute.

次いで、䞊蚘反応母液䞭に1.58−のNaOHæ°Ž
溶液を加え残存Fe2+に察し1.05圓量に該圓
する。、PH11.4、枩床90℃においお毎分20の空
気を60分間通気しおマグネタむト粒子を生成し
た。
Next, 1.58-N NaOH aqueous solution 2 was added to the above reaction mother liquor (corresponding to 1.05 equivalents to the residual Fe 2+ ), and air was bubbled through at a rate of 20 per minute for 60 minutes at a pH of 11.4 and a temperature of 90°C. produced magnetite particles.

生成粒子は、垞法により、氎掗、別、也燥、
粉砕した。
The generated particles are washed with water, separated, dried, and
Shattered.

埗られたマグネタむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000から明らかな通り、
粒子盞互間の凝集等がなく粒床が均斉であ぀お、
平均粒子埄が0.15Όの球型を呈した粒子であ぀
た。
As is clear from the electron micrograph (×20000) shown in Figure 2, the obtained magnetite particle powder has the following properties:
There is no aggregation between particles, and the particle size is uniform,
The particles were spherical with an average particle diameter of 0.15 ÎŒm.

たた、この球型を呈したマグネタむト粒子粉末
は、螢光線分析の結果、Feに察しSiを2.96原子
含有したものであ぀お、カサ密床0.59cm3、
であり、分散性の極めお良奜なものであ぀た。
Furthermore, as a result of fluorescent X-ray analysis, this spherical magnetite particle powder contained 2.96 atomic percent of Si relative to Fe, and had a bulk density of 0.59 g/cm 3 .
The dispersibility was extremely good.

実斜䟋  Fe2+1.5molを含む硫酞第䞀鉄氎溶液20
を、あらかじめ、反応噚䞭に準備された2.64−
のNaOH氎溶液20に加えFe2+に察し0.95圓量
に該圓する。、PH6.9、枩床90℃においおFe
OH2を含む第䞀鉄塩氎溶液の生成を行぀た埌、
Feに察しSi換算で0.5原子を含むようにケむ酞
゜ヌダ号SiO2 28.55wt32.1を添加
し䞊蚘FeOH2を含む第䞀鉄塩氎溶液に枩床90
℃においお毎分100の空気を240分間通気した。
Example 3 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
2.64-N prepared in advance in the reactor
In addition to NaOH aqueous solution 20 (corresponds to 0.95 equivalent to Fe 2+ ), Fe
After producing an aqueous ferrous salt solution containing (OH) 2 ,
Add 32.1 g of sodium silicate (No. 3) (SiO 2 28.55 wt%) so that it contains 0.5 atomic % based on Si in terms of Fe, and heat it to the above ferrous salt aqueous solution containing Fe(OH) 2 at a temperature of 90 %.
℃ for 240 minutes at 100 air per minute.

次いで、䞊蚘反応母液䞭に1.58−のNaOHæ°Ž
溶液を加え残存Fe2+に察し1.05圓量に該圓
する。、PH12.0、枩床90℃においお毎分20の空
気を60分間通気しおマグネタむト粒子を生成し
た。
Next, 1.58-N NaOH aqueous solution 2 was added to the above reaction mother liquor (corresponding to 1.05 equivalents to the residual Fe 2+ ), and air was bubbled through at a rate of 20/min for 60 minutes at a pH of 12.0 and a temperature of 90°C. produced magnetite particles.

生成粒子は、垞法により、氎掗、別、也燥、
粉砕した。
The generated particles are washed with water, separated, dried, and
Shattered.

埗られたマグネタむト粒子粉末は、電子顕埮鏡
芳察の結果実斜䟋ず同様に、粒子盞互間の凝集
等がなく粒床が均斉であ぀お、平均粒子埄が
0.19Όの球型を呈した粒子であ぀た。
As a result of electron microscopy observation, the obtained magnetite particles had uniform particle size without agglomeration between particles, and had an average particle size.
The particles had a spherical shape of 0.19 ÎŒm.

たた、この球型を呈したマグネタむト粒子粉末
は、螢光線分析の結果、Feに察しSiを0.48原子
含有したものであ぀お、カサ密床0.55cm3、
であり、分散性の極めお良奜なものであ぀た。
Further, as a result of fluorescent X-ray analysis, this spherical magnetite particle powder contained 0.48 atomic % of Si relative to Fe, and had a bulk density of 0.55 g/cm 3 .
The dispersibility was extremely good.

比范䟋  Fe2+1.5molを含む硫酞第䞀鉄氎溶液20
を、あらかじめ、反応噚䞭に準備された3.45−
のNaOH氎溶液20に加えFe2+に察し1.15圓量
に該圓する。、PH12.8、枩床90℃においおFe
OH2を含む第䞀鉄塩氎溶液の生成を行぀た。
Comparative example 1 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
3.45-N prepared in advance in the reactor
In addition to NaOH aqueous solution 20 (corresponds to 1.15 equivalents to Fe 2+ ), Fe
An aqueous ferrous salt solution containing (OH) 2 was produced.

䞊蚘FeOH2を含む第䞀鉄塩氎溶液に枩床90
℃においお毎分100の空気を220分間通気しおマ
グネタむト粒子を生成した。
The above ferrous salt aqueous solution containing Fe(OH) 2 was heated to a temperature of 90°C.
Magnetite particles were generated by bubbling air at 100 °C per minute for 220 minutes.

埗られたマグネタむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000から明らかな通り、
六面䜓を呈した粒子であ぀た。
As is clear from the electron micrograph (×20000) shown in Figure 3, the obtained magnetite particle powder has the following properties:
The particles were hexahedral.

この六面䜓を呈したマグネタむト粒子粉末は、
平均粒子埄が0.17Όであり、カサ密床0.25
cm3であ぀た。
This hexahedral magnetite particle powder is
The average particle diameter is 0.17ÎŒm, and the bulk density is 0.25g/
It was warm at cm3 .

比范䟋  Fe2+1.5molを含む硫酞第䞀鉄氎溶液20
を、あらかじめ、反応噚䞭に準備された1.92−
のNaOH氎溶液20に加えFe2+に察し0.64圓量
に該圓する。、PH4.8、枩床90℃においおFe
OH2を含む第䞀鉄塩氎溶液の生成を行぀た。
Comparative Example 2 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
1.92-N prepared in advance in the reactor
In addition to NaOH aqueous solution 20 (corresponds to 0.64 equivalent to Fe 2+ ), Fe
An aqueous ferrous salt solution containing (OH) 2 was produced.

䞊蚘FeOH2を含む第䞀鉄塩氎溶液に枩床90
℃においお毎分100の空気を190分間通気しおマ
グネタむト粒子を生成した。
The above ferrous salt aqueous solution containing Fe(OH) 2 was heated to a temperature of 90°C.
Magnetite particles were generated by bubbling air at 100 °C per minute for 190 minutes.

埗られたマグネタむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000から明らかな通り、
䞍定圢粒子であ぀お粒床は䞍均斉であ぀た。
As is clear from the electron micrograph (×20000) shown in FIG. 4, the obtained magnetite particle powder has the following properties:
The particles were irregularly shaped and had asymmetric particle sizes.

この䞍定圢のマグネタむト粒子粉末は、平均粒
子埄が0.19Όであり、カサ密床0.34cm3であ
぀た。
This irregularly shaped magnetite particle powder had an average particle diameter of 0.19 ÎŒm and a bulk density of 0.34 g/cm 3 .

比范䟋  Fe2+1.5molを含む硫酞第䞀鉄氎溶液20
を、あらかじめ、反応噚䞭に準備された2.85−
のNa2CO3氎溶液20に加えFe2+に察し0.95圓
量に該圓する。、PH6.6、枩床90℃においお
FeCO3を含む第䞀鉄塩氎溶液の生成を行぀た。
Comparative Example 3 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
2.85-N prepared in advance in the reactor
In addition to Na 2 CO 3 aqueous solution 20 (corresponding to 0.95 equivalent to Fe 2+ ), at pH 6.6 and temperature 90 ° C.
A ferrous salt aqueous solution containing FeCO 3 was produced.

䞊蚘FeCO3を含む第䞀鉄塩氎溶液に枩床90℃に
おいお毎分100の空気を240分間通気しおマグネ
タむト粒子を含む第䞀鉄塩氎溶液を生成した。
A ferrous salt aqueous solution containing magnetite particles was produced by passing 100 air per minute through the ferrous salt aqueous solution containing FeCO 3 at a temperature of 90° C. for 240 minutes.

次いで、䞊蚘マグネタむト粒子を含む第䞀鉄塩
氎溶液に1.58−のNaOH氎溶液を加え
Fe2+に察し1.05圓量に該圓する。、PH11.6、枩
床90℃においお毎分20の空気を60分間通気しお
マグネタむト粒子を生成した。
Next, 1.58-N NaOH aqueous solution 2 was added to the ferrous salt aqueous solution containing the magnetite particles (corresponding to 1.05 equivalent to Fe 2+ ), and 20 air per minute was added at a pH of 11.6 and a temperature of 90°C. Aeration was performed for 60 minutes to generate magnetite particles.

生成粒子は、垞法により、氎掗、別、也燥、
粉砕した。
The generated particles are washed with water, separated, dried, and
Shattered.

埗られたマグネタむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000に瀺す通り、䞍定圢
で球型ずは蚀い難い粒子であ぀お粒床は䞍均斉で
あ぀た。
As shown in the electron micrograph (×20,000) shown in FIG. 5, the obtained magnetite particles had irregular shapes, could hardly be called spherical, and had asymmetric particle sizes.

このマグネタむト粒子粉末の粒子埄は0.12Ό
であり、カサ密床0.29cm3であ぀た。
The particle size of this magnetite particle powder is 0.12ÎŒm
The bulk density was 0.29 g/cm 3 .

〈球型を呈したマグヘマむト粒子粉末の補造〉 実斜䟋〜、比范䟋〜 実斜䟋  実斜䟋で埗られた球型を呈したマグネタむト
粒子100を電気炉を甚い、空気䞭、370℃で60分
間加熱酞化しおマグヘマむト粒子を埗た。
<Production of spherical maghemite particles> Examples 4 to 6, Comparative Examples 4 to 6; Example 4 100 g of spherical magnetite particles obtained in Example 1 were heated in air using an electric furnace. , oxidized by heating at 370°C for 60 minutes to obtain maghemite particles.

埗られたマグヘマむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000から明からな通り、
粒子盞互間の凝集等がなく粒床が均斉であ぀お、
平均粒子埄が0.21Όの球型を呈した粒子であ぀
た。
As is clear from the electron micrograph (×20000) shown in FIG. 6, the obtained maghemite particle powder has the following characteristics.
There is no aggregation between particles, and the particle size is uniform,
The particles were spherical with an average particle diameter of 0.21 ÎŒm.

たた、この球型を呈したマグヘマむト粒子粉末
は、螢光線分析の結果、Feに察しSiを0.30原子
含有したものであ぀お、カサ密床0.58cm3で
あり、分散性の極めお良奜なものであ぀た。
In addition, as a result of fluorescent X-ray analysis, this spherical maghemite particle powder contained 0.30 at. It was in good condition.

䞊蚘球型を呈したマグヘマむト粒子粉末30を
空気䞭400℃で30分間加熱しお埗られた粒子粉末
の飜和磁化σsは76emuであり、枩床安定性に
優れおいた。
The saturation magnetization σs of the particles obtained by heating 30 g of the above-mentioned spherical maghemite particles at 400° C. for 30 minutes in air was 76 emu/g, and had excellent temperature stability.

実斜䟋  実斜䟋で埗られた球型を呈したマグネタむト
粒子100を電気炉を甚い空気䞭、350℃で60分間
加熱酞化しおマグヘマむト粒子を埗た。
Example 5 100 g of the spherical magnetite particles obtained in Example 2 were heated and oxidized in air at 350° C. for 60 minutes using an electric furnace to obtain maghemite particles.

埗られたマグヘマむト粒子粉末は、図に瀺す
電子顕埮鏡写真×20000から明らかな通り、
粒子盞互間の凝集等がなく粒床が均斉であ぀お、
平均粒子埄が0.15Όの球型を呈した粒子であ぀
た。
As is clear from the electron micrograph (×20000) shown in FIG. 7, the obtained maghemite particle powder has the following characteristics:
There is no aggregation between particles, and the particle size is uniform,
The particles were spherical with an average particle diameter of 0.15 ÎŒm.

たた、この球型を呈したマグヘマむト粒子粉末
は、螢光線分析の結果、Feに察しSiを2.98原子
含有したものであ぀お、カサ密床0.59cm3で
あり、分散性の極めお良奜なものであ぀た。
In addition, as a result of fluorescent X-ray analysis, this spherical maghemite particle powder contained 2.98 atomic % of Si relative to Fe, and had a bulk density of 0.59 g/cm 3 , showing extremely high dispersibility. It was in good condition.

䞊蚘球型を呈したマグヘマむト粒子粉末30を
空気䞭400℃で30分間加熱しお埗られた粒子粉末
の飜和磁化σsは72emuであり、枩床安定性に
優れおいた。
The saturation magnetization σs of the particles obtained by heating 30 g of the above-mentioned spherical maghemite particles at 400° C. for 30 minutes in air was 72 emu/g, and had excellent temperature stability.

実斜䟋  実斜䟋で埗られた球型を呈したマグネタむト
粒子100を電気炉を甚い空気䞭、320℃で60分間
加熱酞化しおマグヘマむト粒子を埗た。
Example 6 100 g of the spherical magnetite particles obtained in Example 3 were heated and oxidized in air at 320° C. for 60 minutes using an electric furnace to obtain maghemite particles.

埗られたマグヘマむト粒子粉末は、電子顕埮鏡
芳察の結果、実斜䟋ず同様に粒子盞互間の凝集
等がなく粒床が均斉であ぀お、平均粒子埄が
0.20Όの球型を呈した粒子であ぀た。
As a result of electron microscopy observation, the obtained maghemite particles had a uniform particle size without any agglomeration between particles, as in Example 4, and had an average particle size.
The particles had a spherical shape of 0.20 ÎŒm.

たた、この球型を呈したマグヘマむト粒子粉末
は、螢光線分析の結果、Feに察しSiを0.50原子
含有したものであ぀お、カサ密床0.56cm3で
あり、分散性の極めお良奜なものであ぀た。
In addition, as a result of fluorescent X-ray analysis, this spherical maghemite particle powder contained 0.50 atom% of Si relative to Fe, and had a bulk density of 0.56 g/cm 3 , showing extremely high dispersibility. It was in good condition.

䞊蚘球型を呈したマグヘマむト粒子粉末30を
空気䞭400℃で30分間加熱しお埗られた粒子粉末
の飜和磁化σsは75emuであり、枩床安定性に
優れおいた。
The saturation magnetization σs of the particles obtained by heating 30 g of the above-mentioned spherical maghemite particles at 400° C. for 30 minutes in air was 75 emu/g, and had excellent temperature stability.

比范䟋  比范䟋で埗られたマグネタむト粒子100を
電気炉を甚い空気䞭、350℃で60分間加熱酞化し
おマグヘマむト粒子を埗た。
Comparative Example 4 100 g of the magnetite particles obtained in Comparative Example 1 were heated and oxidized in air at 350° C. for 60 minutes using an electric furnace to obtain maghemite particles.

埗られたマグヘマむト粒子粉末は、電子顕埮鏡
芳察の結果、粒子が互いに凝集した六面䜓粒子で
あ぀お、粒床が䞍均斉であり、平均粒子埄が
0.18Ό、カサ密床が0.25cm3の粒子であ぀た。
As a result of electron microscopic observation, the obtained maghemite particles were found to be hexahedral particles in which the particles aggregated with each other, the particle size was asymmetric, and the average particle size was
The particles were 0.18 ÎŒm and had a bulk density of 0.25 g/cm 3 .

䞊蚘六面䜓を呈したマグヘマむト粒子粉末30
を空気䞭400℃で30分間加熱しお埗られた粒子粉
末の飜和磁化σsは55emuであ぀た。
30g of maghemite particle powder exhibiting the above hexahedron shape
The saturation magnetization σs of the particles obtained by heating them in air at 400°C for 30 minutes was 55 emu/g.

比范䟋  比范䟋で埗られたマグネタむト粒子100を
電気炉を甚い空気䞭、350℃で60分間加熱酞化し
おマグヘマむト粒子を埗た。
Comparative Example 5 100 g of the magnetite particles obtained in Comparative Example 2 were oxidized by heating at 350° C. for 60 minutes in air using an electric furnace to obtain maghemite particles.

埗られたマグヘマむト粒子粉末は、電子顕埮鏡
芳察の結果、粒子が互いに凝集した䞍定圢粒子で
あ぀お、粒床が䞍均斉であり、平均粒子埄が
0.20Ό、カサ密床が0.35cm3の粒子であ぀た。
As a result of electron microscopic observation, the obtained maghemite particles were found to be amorphous particles in which the particles aggregated with each other, the particle size was asymmetric, and the average particle size was
The particles were 0.20 ÎŒm and had a bulk density of 0.35 g/cm 3 .

䞊蚘䞍定圢のマグヘマむト粒子粉末30を空気
äž­400℃で30分間加熱しお埗られた粒子粉末の飜
和磁化σsは50emuであ぀た。
The saturation magnetization σs of the particles obtained by heating 30 g of the irregularly shaped maghemite particles in air at 400° C. for 30 minutes was 50 emu/g.

比范䟋  比范䟋で埗られたマグネタむト粒子100を
電気炉を甚い空気䞭、350℃で30分間加熱酞化し
おマグヘマむト粒子を埗た。
Comparative Example 6 100 g of the magnetite particles obtained in Comparative Example 3 were oxidized by heating at 350° C. for 30 minutes in air using an electric furnace to obtain maghemite particles.

埗られたマグヘマむト粒子粉末は、電子顕埮鏡
芳察の結果、粒子が互いに凝集した䞍定圢粒子で
あ぀お、粒床が䞍均斉であり、平均粒子埄が
0.14Ό、カサ密床が0.30cm3の粒子であ぀た。
As a result of electron microscopic observation, the obtained maghemite particles were found to be amorphous particles in which the particles aggregated with each other, the particle size was asymmetric, and the average particle size was
The particles were 0.14 ÎŒm and had a bulk density of 0.30 g/cm 3 .

䞊蚘䞍定圢のマグヘマむト粒子粉末30を空気
äž­400℃で30分間加熱しお埗られた粒子粉末の飜
和磁化σsは52emuであ぀た。
The saturation magnetization σs of the particles obtained by heating 30 g of the irregularly shaped maghemite particles in air at 400° C. for 30 minutes was 52 emu/g.

〔効果〕〔effect〕

本発明に係る球型を呈したマグヘマむト粒子粉
末は、前出実斜䟋に瀺した通り、球型性が向䞊し
おいるこずに起因しお、粒子盞互間の凝集等がな
く、カサ密床が倧きく、その結果、分散性が優れ
たものであるから、珟圚、最も芁求されおいる塗
料甚茶耐色顔料粉末、静電耇写甚の磁性トナヌ甚
材料粉末ずしお奜適である。
As shown in the previous example, the spherical maghemite particles according to the present invention have improved sphericity, so there is no aggregation between particles, and the bulk density is large. As a result, it has excellent dispersibility, so it is suitable as a brown pigment powder for paints and a material powder for magnetic toners for electrostatic copying, which are currently most in demand.

たた、本発明によれば、第䞀鉄塩氎溶液䞭に未
反応のFe2+を残すこずなくFe2+の党量から出発
原料である球型性の向䞊したマグネタむト粒子粉
末が埗られるので高い収率で、䞔぀、排氎公害の
原因ずなるFe2+を排出するこずなく球型性の向
䞊したマグヘマむト粒子粉末を埗るこずができ
る。
Furthermore, according to the present invention, magnetite particles with improved sphericity as a starting material can be obtained from the entire amount of Fe 2+ without leaving any unreacted Fe 2+ in the ferrous salt aqueous solution, resulting in high yield. It is possible to obtain maghemite particle powder with improved sphericity at a low rate and without discharging Fe 2+ that causes wastewater pollution.

塗料の補造に際しお、本発明により埗られた球
型を呈したマグヘマむト粒子粉末を甚いた堎合に
は、ビヒクル䞭ぞの分散が良奜であるので、光
沢、鮮明性、耐久性の塗膜特性の改良が可胜ずな
り、又、䜜業胜率も向䞊する。
When the spherical maghemite particles obtained by the present invention are used in the production of paints, they are well dispersed in the vehicle, resulting in improvements in paint film properties such as gloss, clarity, and durability. This also improves work efficiency.

磁性トナヌの補造に際しお、本発明により埗ら
れた球型を呈したマグヘマむト粒子粉末を甚いた
堎合には、暹脂ぞの分散性が良奜であるので、適
床な垯磁性を有し、画像濃床の優れた画質を埗る
こずができ、たた、枩床安定性が優れおいる為、
磁気トナヌの補造時、珟像時に倉色及び磁気特性
の䜎䞋等を惹起するこずがない。
When the spherical maghemite particles obtained according to the present invention are used in the production of magnetic toner, it has good dispersibility in resin, so it has appropriate magnetism and excellent image density. It is possible to obtain high image quality and has excellent temperature stability.
Discoloration and deterioration of magnetic properties do not occur during the production and development of the magnetic toner.

【図面の簡単な説明】[Brief explanation of the drawing]

図乃至図は、いずれもマグネタむト粒子粉
末の粒子圢態構造を瀺す電子顕埮鏡写真×
20000であり、図及び図はそれぞれ実斜䟋
及び実斜䟋で埗られた球型を呈したマグネタ
むト粒子粉末、図は比范䟋で埗られた六面䜓
を呈したマグネタむト粒子粉末、図は比范䟋
で埗られた䞍定圢のマグネタむト粒子粉末、図
は比范䟋で埗られた球型性の䞍充分なマグネタ
むト粒子粉末である。 図及び図は、いずれも球型を呈したマグヘ
マむト粒子粉末の粒子圢態構造を瀺す電子顕
埮鏡写真×20000であり、図及び図は、
それぞれ実斜䟋及び実斜䟋で埗られたマグヘ
マむト粒子粉末である。
1 to 5 are electron micrographs (×
20000), and FIGS. 1 and 2 show the spherical magnetite particles obtained in Example 1 and Example 2, respectively, and FIG. 3 shows the hexahedral magnetite particles obtained in Comparative Example 1. Figure 4 shows comparative example 2.
Irregularly shaped magnetite particle powder obtained in Figure 5
is the magnetite particle powder obtained in Comparative Example 3 with insufficient sphericity. 6 and 7 are electron micrographs (×20000) showing the particle morphology (structure) of maghemite particle powder exhibiting a spherical shape.
These are maghemite particle powders obtained in Example 4 and Example 5, respectively.

Claims (1)

【特蚱請求の範囲】  カサ密床が0.40〜1.10cm3であ぀お、Siを
Feに察し、0.1〜5.0原子含有しおおり、䞔぀、
枩床安定性に優れおいるこずを特城ずする球型を
呈したマグヘマむト粒子からなる球型を呈したマ
グヘマむト粒子粉末。  第䞀鉄塩氎溶液ず該第䞀鉄塩氎溶液䞭の
Fe2+に察し0.80〜0.99圓量の氎酞化アルカリずを
反応させお埗られた氎酞化第䞀鉄コロむドを含む
第䞀鉄塩反応氎溶液に加熱しながら酞玠含有ガス
を通気しお䞊蚘氎酞化第䞀鉄コロむドを酞化する
にあたり、前蚘氎酞化アルカリ又は、前蚘氎酞化
第䞀鉄コロむドを含む第䞀鉄塩反応氎溶液のいず
れかにあらかじめ氎可溶性ケむ酞塩をFeに察し
Si換算で0.1〜5.0原子添加し、しかる埌、70〜
100℃の枩床範囲で加熱しながら酞玠含有ガスを
通気し、次いで、該加熱酞化条件ず同䞀条件䞋
で、反応母液䞭に残存するFe2+に察し1.00圓量以
䞊の氎酞化アルカリを添加しお球型を呈したマグ
ネタむト粒子を生成させた埌、該マグネタむト粒
子を空気䞭300〜400℃で加熱酞化するこずにより
球型を呈したマグヘマむト粒子を埗るこずを特城
ずする球型を呈したマグヘマむト粒子粉末の補造
法。
[Claims] 1. The bulk density is 0.40 to 1.10 g/cm 3 and Si is
Contains 0.1 to 5.0 at% of Fe, and
A spherical maghemite particle powder consisting of spherical maghemite particles characterized by excellent temperature stability. 2 Ferrous salt aqueous solution and the ferrous salt aqueous solution
A ferrous salt reaction aqueous solution containing a ferrous hydroxide colloid obtained by reacting 0.80 to 0.99 equivalents of alkali hydroxide with Fe 2+ is heated while passing an oxygen-containing gas through the ferrous hydroxide colloid. In oxidizing the ferrous colloid, a water-soluble silicate is added in advance to either the alkali hydroxide or the ferrous salt reaction aqueous solution containing the ferrous hydroxide colloid.
Add 0.1 to 5.0 atomic% in terms of Si, and then add 70 to 5.0 atomic%.
Oxygen-containing gas was passed through the reactor while heating in a temperature range of 100°C, and then, under the same conditions as the heating oxidation conditions, 1.00 equivalent or more of alkali hydroxide was added to Fe 2+ remaining in the reaction mother liquor. Magnetite particles having a spherical shape are obtained by generating spherical magnetite particles and then heating and oxidizing the magnetite particles in air at 300 to 400°C to obtain spherical maghemite particles. Powder manufacturing method.
JP60071764A 1985-04-03 1985-04-03 Spherical maghematite particle powder and production thereof Granted JPS61232223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071764A JPS61232223A (en) 1985-04-03 1985-04-03 Spherical maghematite particle powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071764A JPS61232223A (en) 1985-04-03 1985-04-03 Spherical maghematite particle powder and production thereof

Publications (2)

Publication Number Publication Date
JPS61232223A JPS61232223A (en) 1986-10-16
JPH0522652B2 true JPH0522652B2 (en) 1993-03-30

Family

ID=13469935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071764A Granted JPS61232223A (en) 1985-04-03 1985-04-03 Spherical maghematite particle powder and production thereof

Country Status (1)

Country Link
JP (1) JPS61232223A (en)

Also Published As

Publication number Publication date
JPS61232223A (en) 1986-10-16

Similar Documents

Publication Publication Date Title
US4992191A (en) Sphere-like magnetite particles and a process for producing the same
JP4749733B2 (en) Hydrophobic magnetic iron oxide particles
JPH0136864B2 (en)
JP2020180038A (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by the same
JP3470929B2 (en) Magnetite particles and method for producing the same
JPS6251208B2 (en)
JP2756845B2 (en) Hexahedral magnetite particle powder and its manufacturing method
US6140001A (en) Iron oxide microparticles and a process for producing them
JPH0522652B2 (en)
JPH0513894B2 (en)
JPH08325098A (en) Particulate magnetite and its production
JP2945460B2 (en) Manufacturing method of granular magnetite particle powder
JP2583087B2 (en) Production method of plate-like magnetite particles
JP2704521B2 (en) Plate-like magnetite particle powder and production method thereof
JP2737756B2 (en) Production method of spherical hematite particles
JPH0580413B2 (en)
JP3395811B2 (en) Manufacturing method of flat magnetite fine particle powder
JP2814019B2 (en) Needle-like magnetite particle powder for magnetic toner and method for producing the same
JP3314788B2 (en) Granular magnetite particle powder and method for producing the same
JPS63105901A (en) Magnetic particle powder essentially consisting of iron alloy exhibiting spherical shape and its production
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0580412B2 (en)
JP2704559B2 (en) Plate-like magnetite particle powder and production method thereof
JPH0624985B2 (en) Spherical maghemite particle powder and its manufacturing method
JPH0573698B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees