JPH0573698B2 - - Google Patents

Info

Publication number
JPH0573698B2
JPH0573698B2 JP61314168A JP31416886A JPH0573698B2 JP H0573698 B2 JPH0573698 B2 JP H0573698B2 JP 61314168 A JP61314168 A JP 61314168A JP 31416886 A JP31416886 A JP 31416886A JP H0573698 B2 JPH0573698 B2 JP H0573698B2
Authority
JP
Japan
Prior art keywords
particles
particle size
magnetic
isotropic shape
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61314168A
Other languages
Japanese (ja)
Other versions
JPS63162536A (en
Inventor
Tatsuya Nakamura
Harumi Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP61314168A priority Critical patent/JPS63162536A/en
Publication of JPS63162536A publication Critical patent/JPS63162536A/en
Publication of JPH0573698B2 publication Critical patent/JPH0573698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0831Chemical composition of the magnetic components
    • G03G9/0833Oxides

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、等方的形状を呈した磁性酸化鉄粒子
粉末の製造法、詳しくは、粒度が均斉であつて
個々の粒子が独立しており、しかも、高い保磁力
Hcと大きな飽和磁化σsを有する等方的形状を呈
した磁性酸化鉄粒子粉末の製造法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing magnetic iron oxide particles having an isotropic shape, and more specifically, a method for producing magnetic iron oxide particles having a uniform particle size and independent particles. Moreover, high coercive force
The present invention relates to a method for producing magnetic iron oxide particles having an isotropic shape with Hc and large saturation magnetization σs.

本発明によつて製造される等方的形状を呈した
磁性酸化鉄粒子粉末の主な用途は、塗料用顔料粉
末、磁気記録用磁性粒子粉末、静電複写用の磁性
トナー用材料粉末である。
The isotropically shaped magnetic iron oxide particles produced by the present invention are mainly used as pigment powder for paints, magnetic particles for magnetic recording, and material powder for magnetic toner for electrostatic copying. .

〔従来の技術〕[Conventional technology]

従来、マグネタイト粒子は黒色顔料として、マ
グネタイト粒子は茶褐色顔料として広く一般に使
用されており、省エネルギー時代における作業能
率の向上並びに塗膜物性の改良という観点から、
塗料の製造に際して、マグネタイト粒子、マグヘ
マイト粒子等等方的形状を呈した磁性酸化鉄粒子
粉末のビヒクル中への分散性の改良が、益々要求
されている。
Conventionally, magnetite particles have been widely used as black pigments and magnetite particles as brown pigments, and from the viewpoint of improving work efficiency and improving coating film properties in the energy-saving era,
In the production of paints, there is an increasing demand for improvement in the dispersibility of magnetic iron oxide particles exhibiting an isotropic shape, such as magnetite particles and maghemite particles, in a vehicle.

分散性の優れた等方的形状を呈した磁性酸化鉄
粒子粉末としては、粒度が均斉であつて個々の粒
子が独立していることが必要である。
For a magnetic iron oxide particle powder exhibiting an isotropic shape with excellent dispersibility, it is necessary that the particle size is uniform and that each particle is independent.

また、近年における静電複写機の普及はめざま
しく、それに伴い、現像剤である磁性トナーの研
究開発が盛んであり、その特性向上が要求されて
いる。
Furthermore, in recent years, electrostatic copying machines have become widespread, and with this, research and development of magnetic toner, which is a developer, is active, and improvements in its properties are required.

磁性トナーは、一般に、等方的形状を呈した磁
性酸化鉄粒子粉末を合成樹脂中に分散させること
により製造されるが、その特性向上の為には、材
料粉末である磁性酸化鉄粒子粉末が、粒度が均斉
であつて個々の粒子が独立していることによつて
分散性が優れており、しかも、高い保磁力Hcと
大きな飽和磁化σsを有していることが必要であ
る。
Magnetic toner is generally produced by dispersing isotropically shaped magnetic iron oxide particles in a synthetic resin. It is necessary that the particle size is uniform and the individual particles are independent, resulting in excellent dispersibility, and that it also has a high coercive force Hc and a large saturation magnetization σs.

この現象は、例えば、特公昭53−21656号公報
の「……酸化鉄を現像剤粒子全体に均一に分散さ
せることにより静電潜像の顕像化に必要な帯電性
を得……」なる記載及び特公昭57−60765号公報
の「……搬送性の向上の為には、磁性トナー粒子
の磁化の強さ、即ち、残留磁束Brが高いことが
必要であり、そのような特性を有する磁気トナー
粒子を得る為には該磁気トナーの原料である粒状
磁性粒子粉末ができるだけ大きな飽和磁化σsと高
い抗磁力Hcを有することが必要である。……」
なる記載の通りである。
This phenomenon is explained, for example, in Japanese Patent Publication No. Sho 53-21656, which states, ``...by uniformly dispersing iron oxide throughout the developer particles, the charging properties necessary for visualizing the electrostatic latent image are obtained...'' Description and Japanese Patent Publication No. 57-60765 ``...In order to improve transportability, it is necessary that the strength of magnetization of magnetic toner particles, that is, the residual magnetic flux Br, be high, and it is necessary to have such characteristics. In order to obtain magnetic toner particles, it is necessary that the granular magnetic particle powder, which is the raw material for the magnetic toner, has as large a saturation magnetization σs as possible and a high coercive force Hc.
It is as described.

次に、磁気的に等方性である磁気記録媒体、特
に、フロツピーデイスクはオフイスコンピユータ
ーやワードプロセツサー等の普及に伴い情報の入
出力用磁気記録媒体として広く用いられている。
Next, magnetically isotropic magnetic recording media, especially floppy disks, are widely used as magnetic recording media for inputting and outputting information with the spread of office computers, word processors, and the like.

近時、磁気記録再生機器の小型軽量化が進むに
つれて磁気記録媒体であるフロツピーデイスクに
対する高性能化の必要性が益々生じてきている。
即ち、高記録密度特性及び高出力特性が要求され
ている。
In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance in floppy disks, which are magnetic recording media.
That is, high recording density characteristics and high output characteristics are required.

磁気記録媒体の上記の要求を満足させる為に適
した磁性粒子粉末の特性は、粒度が均斉であつて
個々の粒子が独立していることによつて分散性が
優れており、しかも高い保磁力Hcと大きな飽和
磁化σsとを有していることである。この現象は、
例えば、株式会社総合技術センター発行「磁性材
料の開発と磁粉の高分散化技術」(1982年)の第
74頁の「……高密度記録のための要因を克服する
ために課せられる磁性塗膜層の設計上の大きな課
題は、(1)磁性粒子の均一分散……という点であ
る。」なる記載及び特公昭61−31057号公報の「…
…高記録密度特性、高出力特性……が要求されて
いる。フロツピーデイスクに対する上記の要求を
満足させる為に適した磁気記録用磁性粒子粉末の
特性は、高い保磁力Hcと大きな飽和磁化σs……
を有し、……」なる記載の通りである。
The properties of magnetic particles suitable for satisfying the above requirements for magnetic recording media include excellent dispersibility due to uniform particle size and independent particles, and high coercive force. Hc and large saturation magnetization σs. This phenomenon is
For example, ``Development of magnetic materials and high dispersion technology of magnetic particles'' (1982) published by Sogo Gijutsu Center Co., Ltd.
On page 74, there is a statement that says, "...The major challenges in designing magnetic coating layers to overcome the factors for high-density recording are (1) uniform dispersion of magnetic particles..." and “…” of Special Publication No. 61-31057.
...High recording density characteristics and high output characteristics are required. The characteristics of magnetic particles suitable for magnetic recording to satisfy the above requirements for floppy disks are high coercive force Hc and large saturation magnetization σs...
It is as stated in the following statement:

上述した通り、マグネタイト粒子、マグヘマイ
ト粒子等の等方的形状を呈した磁性酸化鉄粒子粉
末は、様々の分野で使用されているが、いずれの
分野においても共通して要求される磁性酸化鉄粒
子粉末の特性は、粒度が均斉であつて個々の粒子
が独立していることによつて分散性が優れてお
り、しかも高い保磁力Hcと大きな飽和磁化σsと
を有していることである。
As mentioned above, isotropically shaped magnetic iron oxide particles such as magnetite particles and maghemite particles are used in various fields, but magnetic iron oxide particles are commonly required in all fields. The characteristics of the powder are that the particle size is uniform and the individual particles are independent, resulting in excellent dispersibility, and furthermore, it has a high coercive force Hc and a large saturation magnetization σs.

従来、等方的形状を呈した磁性酸化鉄粒子粉末
の製造法としては、第一鉄塩水溶液とアルカリと
を反応させて得られた水酸化第一鉄を含む反応水
溶液に酸素含有ガスを通気することにより、水溶
液中からマグネタイト粒子を生成させ、次いで必
要により該マグネタイト粒子粉末を空気中で加熱
酸化してマグヘマイト粒子粉末とする方法が知ら
れている。
Conventionally, as a method for producing magnetic iron oxide particles exhibiting an isotropic shape, an oxygen-containing gas is passed through a reaction aqueous solution containing ferrous hydroxide obtained by reacting an aqueous ferrous salt solution with an alkali. A known method is to generate magnetite particles from an aqueous solution, and then, if necessary, heat and oxidize the magnetite particles in air to obtain maghemite particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

粒度が均斉であつて個々の粒子が独立している
ことによつて分散性が優れており、しかも高い保
磁力Hcと大きな飽和磁化σsを有する等方的形状
を呈した磁性酸化鉄粒子は、現在最も要求されて
いるところであるが、上述した通りの公知方法に
よる場合には、水溶液中から生成したマグネタイ
ト粒子粉末の粒度は不均斉であつて個々の粒子が
独立しているとは言い難く、該マグネタイト粒子
を加熱酸化することにより得られたマグヘマイト
粒子の粒度も当然不均斉であつて個々の粒子が独
立しているとは言い難いものである。
Magnetic iron oxide particles exhibit excellent dispersibility due to uniform particle size and independent particles, and exhibit an isotropic shape with high coercive force Hc and large saturation magnetization σs. Although this is currently the most requested method, when using the known method as described above, the particle size of magnetite particles produced from an aqueous solution is asymmetric, and it is difficult to say that the individual particles are independent. The particle size of the maghemite particles obtained by heating and oxidizing the magnetite particles is naturally asymmetric, and it is difficult to say that the individual particles are independent.

また、水溶液中から生成したマグネタイト粒子
粉末の磁気特性は、保磁力Hcが高々120Oe程度、
飽和磁化σsが高々86mu/g程度と低いものであ
り、また、上記マグネタイト粒子粉末を加熱酸化
して得られたマグヘマイト粒子粉末の磁気特性も
同様に保磁力Hcが高々100Oe程度、飽和磁化σs
が高々75mu/g程度と低いものであつた。
In addition, the magnetic properties of magnetite particle powder generated from an aqueous solution have a coercive force Hc of about 120 Oe at most,
The saturation magnetization σs is as low as about 86 mu/g at most, and the magnetic properties of the maghemite particles obtained by heating and oxidizing the above-mentioned magnetite particles have a coercive force Hc of about 100 Oe at most and a saturation magnetization σs.
was as low as 75 mu/g at most.

そこで、粒度が均斉であつて個々の粒子が独立
していることによつて分散性が優れており、しか
も高い抗磁力Hcと大きな飽和磁化σsを有する等
方的形状を呈した磁性酸化鉄粒子粉末を得る為の
技術手段の確立が強く要望されている。
Therefore, magnetic iron oxide particles exhibit excellent dispersibility due to uniform particle size and independent particles, and exhibit an isotropic shape with high coercive force Hc and large saturation magnetization σs. There is a strong need to establish technical means to obtain powder.

〔問題点を解決する為の手段) 本発明者は、粒度が均斉であつて個々の粒子が
独立していることによつて分散性が優れており、
しかも高い保磁力Hcと大きな飽和磁化σsを有す
る等方的形状を呈した磁性酸化鉄粒子粉末を得る
べく種々検討を重ねた結果、本発明に到達したの
である。
[Means for solving the problem] The present inventor has discovered that the particle size is uniform and the individual particles are independent, resulting in excellent dispersibility.
Furthermore, the present invention was achieved as a result of various studies aimed at obtaining isotropically shaped magnetic iron oxide particles having a high coercive force Hc and a large saturation magnetization σs.

即ち、本発明は、比表面積が150m2/g以上で
あるβ−FeOOH粒子を0.1mol/未満の濃度で
含む酸性懸濁液を100〜130℃の温度範囲で水熱処
理することにより、粒度の均斉な等方的形状を呈
したヘマタイト粒子を生成させ、該ヘマタイト粒
子を還元性ガス中で加熱還元して粒度の均斉な等
方的形状を呈したマグネタイト粒子とするか、又
は、更に酸化して粒度の均斉な等方的形状を呈し
たマグヘマイト粒子とすることからなる等方的形
状を呈した磁性酸化鉄粒子粉末の製造法である。
That is, the present invention reduces the particle size by hydrothermally treating an acidic suspension containing β-FeOOH particles with a specific surface area of 150 m 2 /g or more at a concentration of less than 0.1 mol/g in a temperature range of 100 to 130°C. Generate hematite particles with a uniform isotropic shape, heat and reduce the hematite particles in a reducing gas to produce magnetite particles with a uniform isotropic shape, or further oxidize. This is a method for producing magnetic iron oxide particles having an isotropic shape, by forming maghemite particles having an isotropic shape with uniform particle size.

〔作用〕[Effect]

先ず、本発明において最も重要な点は、比表面
積が150m2/g以上であるβ−FeOOH粒子を
0.1mol/未満の濃度で含む酸性懸濁液を100〜
130℃の温度範囲で水熱処理した場合には、粒度
が均斉であつて個々の粒子が独立した等方的形状
を呈したヘマタイト粒子を生成させることが出
来、該ヘマタイト粒子を加熱還元して得られるマ
グネタイト粒子及び必要により更に加熱酸化して
得られるマグヘマイト粒子もまた、出発原料であ
るヘマタイト粒子の粒子形状を保持継承している
ことによつて粒度が均斉であつて個々の粒子が独
立している等方的形状を呈した粒子であるという
事実である。
First, the most important point in the present invention is that β-FeOOH particles with a specific surface area of 150 m 2 /g or more are used.
Acidic suspension containing less than 0.1mol/100~
When hydrothermally treated in a temperature range of 130°C, it is possible to produce hematite particles with a uniform particle size and an isotropic shape in which each individual particle is independent. The magnetite particles produced and the maghemite particles obtained by further heating and oxidation, if necessary, also maintain and inherit the particle shape of the hematite particles that are the starting material, so the particle size is uniform and each particle is independent. This is the fact that the particles have an isotropic shape.

本発明において得られるマグネタイト粒子粉末
の磁気特性は、保磁力Hcが200Oe以上、飽和磁
化σsが88emu/g以上と高いものであり、また、
マグヘマイト粒子粉末の磁気特性は、保磁力Hc
が130Oe以上、飽和磁化σsが76emu/g以上と高
いものである。
The magnetic properties of the magnetite particles obtained in the present invention are high, with a coercive force Hc of 200 Oe or more and a saturation magnetization σs of 88 emu/g or more.
The magnetic properties of maghemite particle powder are coercive force Hc
is 130 Oe or more, and the saturation magnetization σs is high, 76 emu/g or more.

次に、本発明実施にあたつての諸条件について
述べる。
Next, various conditions for implementing the present invention will be described.

本発明におけるβ−FeOOH粒子粉末は、比表
面積が150m2/g以上であることが必要である。
150m2/g未満である場合には、粒度が均斉なヘ
マタイト粒子を得ることは困難であり、また、ヘ
マタイト粒子の生成反応に長時間を要する。150
m2/g以上のβ−FeOOH粒子粉末は、塩化第二
鉄水溶液を70〜90℃の温度範囲で加熱処理するこ
とにより加水分解する方法等により得ることがで
きる。
The β-FeOOH particles in the present invention need to have a specific surface area of 150 m 2 /g or more.
When it is less than 150 m 2 /g, it is difficult to obtain hematite particles with uniform particle size, and the reaction for producing hematite particles takes a long time. 150
β-FeOOH particles having a particle size of m 2 /g or more can be obtained by a method of hydrolyzing a ferric chloride aqueous solution by heating it in a temperature range of 70 to 90°C.

本発明におけるβ−FeOOHを含む懸濁液は、
酸性であることが必要であり、酸性でない場合、
100〜130℃の温度領域においてはβ−FeOOHが
安定して生成する為ヘマタイト粒子が生成しな
い。
The suspension containing β-FeOOH in the present invention is
It must be acidic, and if it is not acidic,
In the temperature range of 100 to 130°C, β-FeOOH is generated stably, so hematite particles are not generated.

本発明におけるβ−FeOOH粒子を含む酸性懸
濁液の濃度は0.1mol/未満である。0.1mol/
以上である場合にはヘマタイト粒子が生成しな
い。
The concentration of the acidic suspension containing β-FeOOH particles in the present invention is less than 0.1 mol/. 0.1mol/
If it is above, hematite particles will not be generated.

本発明における反応温度は、100〜130℃であ
る。100℃未満である場合には、β−FeOOHの
溶解が十分に進行しない為ヘマタイト粒子が生成
しない。130℃を越える場合にもヘマタイト粒子
は生成するが、高圧容器等特殊な装置を必要とす
る為、工業的、経済的ではない。
The reaction temperature in the present invention is 100 to 130°C. If the temperature is less than 100°C, the dissolution of β-FeOOH does not proceed sufficiently, so that hematite particles are not generated. Although hematite particles are generated when the temperature exceeds 130°C, it is not industrially or economically viable because special equipment such as a high-pressure container is required.

本発明における還元性ガス中における加熱還元
処理及び酸化処理は常法により行うことができ
る。
The heating reduction treatment and oxidation treatment in a reducing gas in the present invention can be performed by conventional methods.

また、出発原料であるヘマタイト粒子は、加熱
処理に先立つて通常行われるSi,Al,P化合物
等の焼結防止効果を有する物質によつてあらかじ
め被覆処理しておくことにより、より分散性の優
れた磁性酸化鉄粒子粉末を得ることができる。
In addition, the hematite particles, which are the starting material, can be coated with a substance that has a sintering prevention effect, such as Si, Al, or P compounds, which is usually carried out prior to heat treatment, so that they have better dispersibility. magnetic iron oxide particles can be obtained.

〔実施例〕〔Example〕

次に、実施例並びに比較例により本発明を説明
する。
Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例における粒子の平均径は、電
子顕微鏡写真から測定した数値の平均であり、比
表面積はBET法により測定した値である。
In addition, the average diameter of the particles in the following examples is the average of numerical values measured from electron micrographs, and the specific surface area is the value measured by the BET method.

実施例 1 Fe3+0.05mol/を含むFeCl3水溶液500mlを80
℃で30分間加熱して、黄褐色沈澱粒子を生成させ
た。この時の懸濁液のPHは1.3であつた。反応液
の一部を抜き取り、水洗、過、乾燥して得られ
た黄褐色粒子粉末の電子顕微鏡写真(×50000)
を図1に示す。この黄褐色粒子粉末は、X線回折
の結果、β−FeOOHであり、比表面積は190
m2/gであつた。
Example 1 500 ml of FeCl 3 aqueous solution containing 0.05 mol of Fe 3+ was added to 80
Heating at 0C for 30 minutes produced yellow-brown precipitated particles. The pH of the suspension at this time was 1.3. Electron micrograph (×50000) of yellowish brown particles obtained by extracting a portion of the reaction solution, washing with water, filtering, and drying.
is shown in Figure 1. As a result of X-ray diffraction, this yellowish brown particle powder was found to be β-FeOOH, with a specific surface area of 190
m 2 /g.

上記0.05mol/のβ−FeOOH粒子を含むPH
1.3の酸性懸濁液を密閉容器中に入れ、125℃で15
時間水熱処理して赤褐色沈澱を生成させた。赤褐
色沈澱を水洗、過、乾燥して得られた粒子粉末
は、図2に示すX線回折に示す通り、ヘマタイト
であり、図3に示す電子顕微鏡写真(×20000)
から明らかな通り、平均粒子径が0.6μmの等方的
形状を呈した粒子であり、粒度が均斉で、且つ、
個々の粒子が独立した粒子であつた。
PH containing the above 0.05 mol/β-FeOOH particles
Place the acidic suspension of 1.3 in a closed container and heat it at 125℃ for 15 minutes.
Hydrothermal treatment for hours produced a reddish-brown precipitate. The particles obtained by washing the reddish-brown precipitate with water, filtering, and drying were hematite as shown in the X-ray diffraction shown in Figure 2, and the electron micrograph (×20000) shown in Figure 3
As is clear from the above, the particles have an isotropic shape with an average particle diameter of 0.6 μm, the particle size is uniform, and
Each particle was an independent particle.

上記ヘマタイト粒子粉末70gを1のレトルト
還元容器中に投入し、駆動回転させながらH2
スを毎分1の割合で通気し、還元温度350℃で
還元してマグネタイト粒子粉末を得た。得られた
マグネタイト粒子粉末は、図4に示す電子顕微鏡
写真(×20000)から明らかな通り、粒度が均斉
で、且つ、個々の粒子が独立している平均径
0.6μmの等方的形状を呈した粒子であつた。ま
た、磁気測定の結果、保磁力Hcは261Oe、飽和
磁化σsは、92emu/gであつた。
70 g of the above-mentioned hematite particle powder was put into a retort reduction container 1, and H 2 gas was passed through the container at a rate of 1 minute per minute while driving and rotating the container, and the container was reduced at a reduction temperature of 350° C. to obtain magnetite particle powder. As is clear from the electron micrograph (×20000) shown in Figure 4, the obtained magnetite particles have a uniform particle size and an average diameter in which each particle is independent.
The particles had an isotropic shape of 0.6 μm. Further, as a result of magnetic measurement, the coercive force Hc was 261 Oe, and the saturation magnetization σs was 92 emu/g.

上記マグネタイト粒子粉末70gを空気中300℃
で60分間酸化してマグヘマイト粒子粉末を得た。
70g of the above magnetite particle powder in air at 300℃
was oxidized for 60 minutes to obtain maghemite particle powder.

得られたマグヘマイト粒子粉末は、図5に示す
電子顕微鏡写真(×20000)から明らかな通り、
粒度が均斉であつて個々の粒子が独立している平
均径0.6μmの等方的形状を呈した粒子であつた。、
また、磁気測定の結果、保磁力Hcは152Oe、飽
和磁化σsは78.5emu/gであつた。
As is clear from the electron micrograph (×20000) shown in FIG. 5, the obtained maghemite particle powder has the following characteristics:
The particles were uniform in particle size and had an isotropic shape with an average diameter of 0.6 μm in which each particle was independent. ,
Further, as a result of magnetic measurement, the coercive force Hc was 152 Oe, and the saturation magnetization σs was 78.5 emu/g.

実施例 2 β−FeOOHを生成する際のFeCl3濃度を
0.01mol/とした以外は実施例1と同様にして
比表面積が240m2/gのβ−FeOOHを得た。
Example 2 FeCl 3 concentration when producing β-FeOOH
β-FeOOH with a specific surface area of 240 m 2 /g was obtained in the same manner as in Example 1 except that the amount was 0.01 mol/g.

上記0.01mol/のβ−FeOOH粒子を含むPH
1.4の酸性懸濁液を密閉容器中に入れ、105℃で12
時間水熱処理して赤褐色沈澱を生成させた。赤褐
色沈澱を水洗、過、乾燥して得られた粒子粉末
は、X線回折の結果、ヘマタイトであり、電子顕
微鏡写真観察の結果、平均粒子径が0.15μmの等
方的形状を呈した粒子であり、粒度が均斉で、且
つ、個々の粒子が独立した粒子であつた。
PH containing the above 0.01mol/β-FeOOH particles
Place the acidic suspension of 1.4 in a closed container and heat it at 105℃ for 12
Hydrothermal treatment for hours produced a reddish-brown precipitate. The particles obtained by washing the reddish-brown precipitate with water, filtering, and drying were found to be hematite by X-ray diffraction, and were particles with an isotropic shape with an average particle diameter of 0.15 μm as a result of electron micrograph observation. The particle size was uniform, and each particle was an independent particle.

上記ヘマタイト粒子粉末70gを1のレトルト
還元容器中に投入し、駆動回転させながらH2
スを毎分1の割合で通気し、還元温度350℃で
還元してマグネタイト粒子粉末を得た。
70 g of the above-mentioned hematite particle powder was put into a retort reduction container 1, and H 2 gas was passed through the container at a rate of 1 minute per minute while driving and rotating the container, and the container was reduced at a reduction temperature of 350° C. to obtain magnetite particle powder.

得られたマグネタイト粒子粉末は、電子顕微鏡
観察の結果、粒度が均斉であつて個々の粒子が独
立している平均径0.15μmの等方的形状を呈した
粒子であつた。また、磁気測定の結果、保磁力
Hcは270Oe、飽和磁化σsは90emu/gであつた。
As a result of electron microscopic observation, the obtained magnetite particles were found to be isotropic particles with a uniform particle size and an average diameter of 0.15 μm in which individual particles were independent. In addition, as a result of magnetic measurement, the coercive force
Hc was 270 Oe, and saturation magnetization σs was 90 emu/g.

上記マグネタイト粒子粉末70gを空気中300℃
で60分間酸化してマグヘマイト粒子粉末を得た。
得られたマグヘマイト粒子粉末は、電子顕微鏡観
察の結果、粒度が均斉で、且つ、個々の粒子が独
立している平均径0.15μmの等方的形状を呈した
粒子であつた。また、磁気測定の結果、保磁力
Hcは、184Oe、飽和磁化σsは、77.9emu/gであ
つた。
70g of the above magnetite particle powder in air at 300℃
was oxidized for 60 minutes to obtain maghemite particle powder.
As a result of electron microscopic observation, the obtained maghemite particles were found to be isotropic particles with uniform particle size and an average diameter of 0.15 μm in which individual particles were independent. In addition, as a result of magnetic measurement, the coercive force
Hc was 184 Oe, and saturation magnetization σs was 77.9 emu/g.

比較例 1 Fe2+1.5mol/を含む硫酸第一鉄水溶液20
を、あらかじめ、反応器中に準備された3.45−N
のNaOH水溶液20に加え(Fe2+に対し1.15当量
に該当する。)、PH12.8、温度90℃においてFe
(OH)2を含む第一鉄塩水溶液の生成を行つた。
Comparative example 1 Ferrous sulfate aqueous solution containing 1.5 mol/Fe 2+ 20
3.45-N prepared in advance in the reactor
In addition to NaOH aqueous solution 20 (corresponds to 1.15 equivalents to Fe 2+ ), Fe
An aqueous ferrous salt solution containing (OH) 2 was produced.

上記Fe(OH)2を含む第一鉄塩水溶液に温度90
℃において毎分100の空気を220分間通気してマ
グネタイト粒子粉末を生成した。
The above ferrous salt aqueous solution containing Fe(OH) 2 was heated to a temperature of 90°C.
Magnetite particle powder was produced by bubbling air at 100 °C per minute for 220 minutes.

得られたマグネタイト粒子粉末は、図7に示す
電子顕微鏡写真(×20000)から明らかな通り、
粒度が不均斉であつて個々の粒子が独立している
とは言い難い平均径0.2μmの粒子であつた。ま
た、磁気測定の結果、保磁力Hcは116Oe、飽和
磁化σsは84.5emu/gであつた。
As is clear from the electron micrograph (×20000) shown in FIG. 7, the obtained magnetite particle powder has the following properties:
The particle size was asymmetric, and the particles had an average diameter of 0.2 μm, making it difficult to say that each particle was independent. Further, as a result of magnetic measurement, the coercive force Hc was 116 Oe, and the saturation magnetization σs was 84.5 emu/g.

上記マグネタイト粒子を実施例1と同様にして
酸化して得られたマグヘマイト粒子粉末は、図8
に示す電子顕微鏡写真(×20000)から明らかな
通り、粒度が不均斉であつて個々の粒子が独立し
ているとは言い難い平均径0.2μmの粒子であつ
た。また、磁気測定の結果、保磁力Hcは98Oe、
飽和磁化σsは72.0emu/gであつた。
The maghemite particles obtained by oxidizing the above magnetite particles in the same manner as in Example 1 are shown in FIG.
As is clear from the electron micrograph (x20,000) shown in Figure 2, the particles were asymmetric in particle size and had an average diameter of 0.2 μm, making it difficult to say that the individual particles were independent. In addition, as a result of magnetic measurement, the coercive force Hc is 98Oe,
The saturation magnetization σs was 72.0 emu/g.

〔発明の効果〕〔Effect of the invention〕

本発明における等方的形状を呈した磁性酸化鉄
粒子粉末の製造法によれば、前出実施例並びに比
較例に示した通り、粒度が均斉であつて個々の粒
子が独立していることによつて分散性が優れてお
り、しかも、高い保磁力Hcと大きな飽和磁化σs
とを有する等方的形状を呈した磁性酸化鉄粒子粉
末を得ることができるので、塗料用顔料粉末、磁
気記録用磁性粒子粉末、静電複写用の磁性トナー
用材料粉末として好適なものである。
According to the method for producing magnetic iron oxide particles exhibiting an isotropic shape according to the present invention, as shown in the above examples and comparative examples, the particle size is uniform and the individual particles are independent. Therefore, it has excellent dispersibility, as well as high coercive force Hc and large saturation magnetization σs.
Since it is possible to obtain magnetic iron oxide particles having an isotropic shape having .

【図面の簡単な説明】[Brief explanation of the drawing]

図1、図3乃至図8は、いずれも電子顕微鏡写
真であり、図1は、実施例1でヘマタイトを生成
する際に出発原料として用いたβ−FeOOH粒子
粉末、図3及び図6は、それぞれ実施例1及び実
施例2で得られたヘマタイト粒子粉末、図4及び
図7は、それぞれ実施例1、及び比較例1により
得られたマグネタイト粒子粉末、図5及び図8
は、それぞれ実施例1及び比較例1により得られ
たマグヘマイト粒子粉末である。図2は、実施例
1で得られたヘマタイト粒子粉末のX線回折図で
ある。
1, 3 to 8 are all electron micrographs, and FIG. 1 is the β-FeOOH particle powder used as a starting material when producing hematite in Example 1, and FIGS. 3 and 6 are Hematite particles obtained in Example 1 and Example 2, respectively; FIGS. 4 and 7 show magnetite particles obtained in Example 1 and Comparative Example 1, respectively; FIGS. 5 and 8
are maghemite particles obtained in Example 1 and Comparative Example 1, respectively. FIG. 2 is an X-ray diffraction diagram of the hematite particles obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積が150m2/g以上であるβ−
FeOOH粒子を0.1mol/未満の濃度で含む酸性
懸濁液を100〜130℃の温度範囲で水熱処理するこ
とにより、粒度の均斉な等方的形状を呈したヘマ
タイト粒子を生成させ、該ヘマタイト粒子を還元
性ガス中で加熱還元して粒度の均斉な等方的形状
を呈したマグネタイト粒子とするか、又は、更に
酸化して粒度の均斉な等方的形状を呈したマグヘ
マイト粒子とすることを特徴とする等方的形状を
呈した磁性酸化鉄粒子粉末の製造法。
1 β- with a specific surface area of 150 m 2 /g or more
By hydrothermally treating an acidic suspension containing FeOOH particles at a concentration of less than 0.1 mol/in at a temperature range of 100 to 130°C, hematite particles exhibiting an isotropic shape with uniform particle size are generated, and the hematite particles are is thermally reduced in a reducing gas to produce magnetite particles with a uniform particle size and an isotropic shape, or further oxidized to produce maghemite particles with a uniform particle size and an isotropic shape. A method for producing magnetic iron oxide particles exhibiting a characteristic isotropic shape.
JP61314168A 1986-12-25 1986-12-25 Production of powdery particle of magnetic iron oxide having isotropic shape Granted JPS63162536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61314168A JPS63162536A (en) 1986-12-25 1986-12-25 Production of powdery particle of magnetic iron oxide having isotropic shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61314168A JPS63162536A (en) 1986-12-25 1986-12-25 Production of powdery particle of magnetic iron oxide having isotropic shape

Publications (2)

Publication Number Publication Date
JPS63162536A JPS63162536A (en) 1988-07-06
JPH0573698B2 true JPH0573698B2 (en) 1993-10-14

Family

ID=18050063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61314168A Granted JPS63162536A (en) 1986-12-25 1986-12-25 Production of powdery particle of magnetic iron oxide having isotropic shape

Country Status (1)

Country Link
JP (1) JPS63162536A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20020567A1 (en) * 2002-03-18 2003-09-18 Sud Chemie S R L PROCESS FOR THE PREPARATION OF IRON OXIDES
JP4604942B2 (en) * 2005-09-27 2011-01-05 富士ゼロックス株式会社 Electrostatic latent image developing carrier, electrostatic latent image developing developer, and image forming method
CN112897595B (en) * 2021-03-04 2023-04-14 重庆科技学院 Preparation of hollow rod-shaped nano Fe in water phase 3 O 4 Method (2)

Also Published As

Publication number Publication date
JPS63162536A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
JPS6113362B2 (en)
US4561988A (en) Process for production of plate-like barium ferrite particles for magnetic recording
JPH0573698B2 (en)
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0629145B2 (en) Method for producing magnetic iron oxide powder having isotropic shape
JPS6361362B2 (en)
JPH107420A (en) Granule of cobalt-coated needle-shaped magnetic oxide of iron
JP3087778B2 (en) Method for producing acicular goethite particle powder
JPH0575807B2 (en)
JP3020374B2 (en) Method for producing cobalt-containing magnetic iron oxide powder
US4486467A (en) Process for producing cobalt-containing magnetic iron oxide powder
JPS63162534A (en) Production of powdery hematite particle having shape of ellipsoid of revolution
JPS63162535A (en) Production of powdery acicular hematite particle
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP2945460B2 (en) Manufacturing method of granular magnetite particle powder
JPS639735B2 (en)
JPH0635326B2 (en) Method for producing particles containing iron carbide
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6313943B2 (en)
JPH0782924B2 (en) Method for producing powder of metallic magnetic particles containing iron as the main component and having an isotropic shape
JPS6117425A (en) Magnetic iron oxide particle powder showing spindle shape and its preparation
JPH0613406B2 (en) Manufacturing method of hematite particle powder
JPS5951498B2 (en) Method for producing acicular α-FeOOH particle powder
JPS62105933A (en) Production of needle-like goethite particle powder
JPS60231418A (en) Spindle-shaped magnetic iron oxide powder and its manufacture