JPH0613406B2 - Manufacturing method of hematite particle powder - Google Patents

Manufacturing method of hematite particle powder

Info

Publication number
JPH0613406B2
JPH0613406B2 JP61209813A JP20981386A JPH0613406B2 JP H0613406 B2 JPH0613406 B2 JP H0613406B2 JP 61209813 A JP61209813 A JP 61209813A JP 20981386 A JP20981386 A JP 20981386A JP H0613406 B2 JPH0613406 B2 JP H0613406B2
Authority
JP
Japan
Prior art keywords
particle powder
hematite
particles
particle
feooh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61209813A
Other languages
Japanese (ja)
Other versions
JPS6364925A (en
Inventor
龍哉 中村
晴己 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP61209813A priority Critical patent/JPH0613406B2/en
Publication of JPS6364925A publication Critical patent/JPS6364925A/en
Publication of JPH0613406B2 publication Critical patent/JPH0613406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘマタイト粒子粉末の製造法、詳しくは、低
い温度で、しかも、短時間裡の反応により、粒度が均斉
であり、且つ、個々の粒子が独立しているヘマタイト粒
子粉末を得ることができる工業的、経済的に有利なヘマ
タイト粒子粉末の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a hematite particle powder, more specifically, a uniform particle size at a low temperature and a short reaction time, and The present invention relates to an industrially and economically advantageous method for producing a hematite particle powder capable of obtaining a hematite particle powder having independent particles.

本発明によって製造されるヘマタイト粒子粉末の主な用
途は、塗料用赤色顔料粉末、ゴム・プラスチック用着色
剤、磁性粒子粉末用出発原料等である。
The main uses of the hematite particle powder produced by the present invention are as a red pigment powder for paints, a colorant for rubber / plastics, and a starting material for magnetic particle powders.

〔従来の技術〕[Conventional technology]

ヘマタイト粒子粉末は、赤色を呈している為、塗料用顔
料粉末として広く使用されており、また、ゴム・プラス
チックスの接着剤としても使用されている。
Since the hematite particle powder has a red color, it is widely used as a pigment powder for paints, and is also used as an adhesive for rubber / plastics.

更に、ヘマタイト粒子粉末は、磁気記録用又は静電複写
用磁性粒子粉末を製造する際の出発原料としても使用さ
れている。即ち、マグネタイト粒子粉末、マグヘマイト
粒子粉末等の磁性粒子粉末は、ヘマタイト粒子粉末を還
元するか、又は必要により更に酸化することにより製造
されている。
Further, the hematite particle powder is also used as a starting material in the production of magnetic particle powder for magnetic recording or electrostatic copying. That is, magnetic particle powders such as magnetite particle powder and maghemite particle powder are produced by reducing the hematite particle powder or further oxidizing it if necessary.

上述した通り、ヘマタイト粒子粉末は、様々の分野で使
用されているが、いずれの分野においても共通して要求
されている特性は、分散性が優れていることであり、こ
のようなヘマタイト粒子粉末としては、粒度が均斉であ
り、且つ、個々の粒子が独立していることが必要であ
る。即ち、塗料の製造においては塗料化に際して、ゴム
・プラスチックスの着色においては混練に際してヘマタ
イト粒子粉末を均一、且つ、容易に分散させることが必
要である。また、磁気記録媒体の製造においてはベース
フィルム上に塗布する磁性塗料の製造に際して、静電複
写用の磁性トナーの製造においては樹脂への混練に際し
て、磁性粒子粉末を均一、且つ、容易に分散させること
が必要であり、その為には出発原料であるヘマタイト粒
子粉末が均一、且つ、容易に分散するものであることが
必要である。
As described above, the hematite particle powder is used in various fields, but the characteristic commonly required in any field is that the dispersibility is excellent. As a result, it is necessary that the particle sizes are uniform and that the individual particles are independent. That is, it is necessary to disperse the hematite particle powder uniformly and easily in the production of a paint, in the case of forming a paint, and in the case of kneading in the coloring of rubber / plastics. Further, in the manufacture of a magnetic recording medium, the magnetic particle powder is uniformly and easily dispersed at the time of manufacturing a magnetic paint to be applied on a base film, and at the time of kneading with a resin in the manufacture of a magnetic toner for electrostatic copying. Therefore, it is necessary that the starting material, hematite particle powder, be uniform and easily dispersed.

従来、ヘマタイト粒子粉末の製造法としては、第一鉄塩
水溶液とアルカリとを反応させて得られた水酸化第一鉄
を含む反応水溶液に酸素含有ガスを通気することによ
り、水溶液中から出発原料としてのマグネタイト粒子を
生成させ、次いで、該マグネタイト粒子粉末を空気中で
加熱する方法が知られている。
Conventionally, as a method for producing a hematite particle powder, an oxygen-containing gas is aerated in a reaction aqueous solution containing ferrous hydroxide obtained by reacting an aqueous ferrous salt solution with an alkali, so that a starting material is prepared from the aqueous solution. Is known, and then the magnetite particle powder is heated in air.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

粒度が均斉で、且つ、個々の粒子が独立しているヘマタ
イト粒子粉末、換言すれば分散性が優れたヘマタイト粒
子粉末は、現在最も要求されているところであるが、上
述した通りの公知方法による場合には、水溶液中から生
成したマグネタイト粒子粉末の粒度が不均斉であること
に起因して、該マグネタイト粒子を加熱することにより
得られたヘマタイト粒子の粒度も当然不均斉となり、ま
た、500℃以上で加熱することにより、粒子相互間で焼
結が生起したものとなる。
The particle size is uniform, and the hematite particle powder in which the individual particles are independent, in other words, the hematite particle powder having excellent dispersibility is the most demanded at present, but in the case of the known method as described above. The particle size of the magnetite particles powder generated from the aqueous solution is asymmetric, the particle size of the hematite particles obtained by heating the magnetite particles is naturally asymmetric, and is 500 ° C or more. By heating at, the sintering occurs between the particles.

また、個々の粒子が独立したヘマタイト粒子粉末を製造
する方法は、従来から試みられており、例えば、特公昭
55-8459号公報に記載の塩化第一鉄水溶液を高圧容器内
で酸素を添加しながら水熱処理する方法及びジャーナル
・オブ・コロイド・アンド・インターフェイス・サイエ
ンス(Journal of Colloid and Interface Science)第
63巻第3号(1978年)の第509〜524頁記載の塩化第二鉄
水溶液を水処理する方法が知られている。これらの方法
は、いずれも水溶液中から直接ヘマタイト粒子粉末を製
造することにより、個々の粒子が独立したヘマタイト粒
子粉末を得るものである。
Further, a method for producing a hematite particle powder in which individual particles are independent has been tried in the past, and for example, Japanese Patent Publication No.
55-8459, Method of hydrothermal treatment of ferrous chloride aqueous solution in a high-pressure vessel while adding oxygen, and Journal of Colloid and Interface Science
A method for treating an aqueous solution of ferric chloride described in Vol. 63, No. 3 (1978), pp. 509-524 is known. In all of these methods, hematite particle powder is directly produced from an aqueous solution to obtain a hematite particle powder in which individual particles are independent.

しかしながら、前者の方法は、130℃以上という高温を
必要とする為、高圧容器という特殊な装置を必要とし、
しかも、高温高圧下の反応において酸素を添加するとい
う作業上の危険生を伴うという欠点がある。後者の方法
は、100℃〜130℃の反応である為、高圧容器等の特殊な
装置を必要としないが、粒度が不均斉なヘマタイト粒子
が生成しやすく、また、ヘマタイト粒子粉末を100%生成
させる為には、30時間以上という長時間の反応が必要で
あり、工業的、経済的ではない。
However, the former method requires a high temperature of 130 ° C or higher, and thus requires a special device called a high-pressure container,
In addition, there is a drawback in that there is a risk of adding oxygen in the reaction under high temperature and high pressure. The latter method does not require a special device such as a high-pressure container because it is a reaction at 100 ° C to 130 ° C, but hematite particles with asymmetric particle size are easily generated, and 100% hematite particle powder is generated. To do so, a long reaction time of 30 hours or more is required, which is not industrial or economical.

そこで、高圧容器等の特殊な装置を必要としない130℃
未満の低い温度で、しかも、短時間裡の反応により、粒
度が均斉であり、且つ、個々の粒子が独立したヘマタイ
ト粒子粉末を工業的、経済的に有利に得る為の技術手段
の確立が強く要望されている。
Therefore, 130 ℃ that does not require special equipment such as high-pressure container
At a low temperature of less than 1, and by a reaction for a short time, the particle size is uniform, and the technical means for industrially and economically obtaining a hematite particle powder in which each particle is independent is strongly established. Is requested.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者は、130℃未満の低い温度で、しかも、短時間
裡の反応により、粒度が均斉であり、且つ、個々の粒子
が独立したヘマタイト粒子粉末を得るべく種々検討を重
ねた結果、本発明に到達したのである。
The present inventor, at a low temperature of less than 130 ° C., and further, by a reaction of a short time, the particle size is uniform, and as a result of various studies to obtain a hematite particle powder in which individual particles are independent, The invention was reached.

即ち、本発明は、Fe3+の濃度が0.1mol/未満の塩化
第二鉄水溶液を70〜90℃の温度範囲に加熱して加水分解
させて得た比表面積が150m2/g以上のβ-FeOOH粒子を
0.1mol/未満の濃度で含む酸性懸濁液を、100〜130
℃の温度範囲で水熱処理することにより、粒度の均斉な
ヘマタイト粒子を生成させることによりなるヘマタイト
粒子粉末の製造法である。
That is, the present invention has a specific surface area of 150 m 2 / g or more obtained by heating a ferric chloride aqueous solution having a Fe 3+ concentration of less than 0.1 mol / to a temperature range of 70 to 90 ° C. to cause hydrolysis. An acidic suspension containing β-FeOOH particles at a concentration of less than 0.1 mol / 100-130
It is a method for producing a hematite particle powder, which comprises producing a hematite particle having a uniform particle size by performing a hydrothermal treatment in a temperature range of ° C.

〔作 用〕[Work]

先ず、本発明において最も重要な点は、Fe3+の濃度が
0.1mol/未満の塩化第二鉄水溶液を70〜90℃の温度
範囲に加熱して加水分解させて得た比表面積が150m2/g
以上のβ-FeOOH粒子を0.1mol/未満の濃度で含む酸
性懸濁液を、水熱処理した場合には、130℃未満の低い
温度で、しかも、短時間裡の反応により、粒度が均斉
で、且つ、個々の粒子が独立したヘマタイト粒子粉末が
得られる点である。
First, the most important point in the present invention is that the specific surface area obtained by hydrolyzing an aqueous ferric chloride solution having a Fe 3+ concentration of less than 0.1 mol / 70 ° C. in a temperature range of 70 to 90 ° C. is 150 m 2. 2 / g
When an acidic suspension containing the above β-FeOOH particles at a concentration of less than 0.1 mol / is subjected to hydrothermal treatment, the particle size becomes uniform at a low temperature of less than 130 ° C and for a short reaction time. In addition, it is the point that a hematite particle powder in which each particle is independent is obtained.

本発明において粒度が均斉なヘマタイト粒子が短時間裡
に生成する理由については未だ解明されていないが、本
発明者は、塩化第二鉄水溶液を水熱処理することにより
ヘマタイト粒子を生成させる反応機構は、塩化第二鉄が
加水分解して生成したβ-FeOOH粒子の溶解析出反応によ
るものであり、比表面積が150m2/g以上のβ-FeOOH粒子
を水熱処理する場合には、粒度が均斉で、且つ、微細で
あることに起因して、溶解速度が均一であり、且つ、反
応が急速に生起する為であろうと推定している。
In the present invention, the reason why hematite particles having a uniform particle size are produced in a short time has not been clarified yet, but the present inventor has a reaction mechanism for producing hematite particles by hydrothermally treating an aqueous solution of ferric chloride. , Is due to the dissolution precipitation reaction of β-FeOOH particles produced by hydrolysis of ferric chloride, and when hydrothermally treating β-FeOOH particles having a specific surface area of 150 m 2 / g or more, the particle size is uniform. It is presumed that the dissolution rate is uniform and the reaction occurs rapidly due to the fineness.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for carrying out the present invention will be described.

本発明におけるβ-FeOOH粒子粉末は、比表面積が150m2/
g以上であることが必要である。150m2/g未満である場合
には、粒度が均斉なヘマタイト粒子を得ることは困難で
あり、また、ヘマタイト粒子の生成反応に長時間を要す
る。本発明においては、150m2/g以上のβ-FeOOH粒子粉
末は、塩化第二鉄水溶液を70〜90℃の温度範囲で加熱処
理することにより加水分解する方法により得る。
The β-FeOOH particle powder in the present invention has a specific surface area of 150 m 2 /
It must be g or more. If it is less than 150 m 2 / g, it is difficult to obtain hematite particles having a uniform particle size, and it takes a long time for the hematite particle formation reaction. In the present invention, the β-FeOOH particle powder of 150 m 2 / g or more is obtained by a method of hydrolyzing a ferric chloride aqueous solution by heating it in the temperature range of 70 to 90 ° C.

本発明において水熱処理するβ-FeOOHを含む懸濁液は、
酸性であることが必要であり、酸性でない場合、100〜1
30℃の温度領域においてはα-FeOOHが安定して生成する
為ヘマタイト粒子が生成しない。
The suspension containing β-FeOOH to be hydrothermally treated in the present invention,
Must be acidic, otherwise 100-1
In the temperature range of 30 ℃, hematite particles are not formed because α-FeOOH is stably formed.

本発明におけるβ-FeOOH粒子を含む酸性懸濁液の濃度は
0.1mol/未満である。0.1mol/以上である場合
には、ヘマタイト粒子が生成しない。
The concentration of the acidic suspension containing β-FeOOH particles in the present invention is less than 0.1 mol /. When it is 0.1 mol / or more, hematite particles are not formed.

本発明における反応温度は、100〜130℃である。100℃
未満である場合には、β-FeOOHの溶解が十分に進行しな
い為ヘマタイト粒子が生成しない。130℃を越える場合
にもヘマタイト粒子は生成するが、高圧容器等特殊な装
置を必要とする為、工業的、経済的ではない。
The reaction temperature in the present invention is 100 to 130 ° C. 100 ° C
If it is less than this, hematite particles are not formed because the dissolution of β-FeOOH does not proceed sufficiently. Hematite particles are generated even when the temperature exceeds 130 ° C, but this is not industrially and economically because a special device such as a high-pressure container is required.

〔実施例〕〔Example〕

次に、実施例並びに比較例により本発明を説明する。 Next, the present invention will be described with reference to Examples and Comparative Examples.

尚、以下の実施例における粒子の平均径は、電子顕微鏡
写真から測定した数値の平均値であり、比表面積はBE
T法により測定した値である。
The average diameter of the particles in the following examples is the average of the numerical values measured from electron micrographs, and the specific surface area is BE.
It is a value measured by the T method.

実施例1 Fe3+0.05mol/を含むFeCl3水溶液500mlを80℃で30分間
加熱して、黄褐色沈澱粒子を生成させた。この時の懸濁
液のpH1.3であった。反応液の一部を抜き取り、水洗、
過、乾燥して得られた黄褐色粒子粉末の電子顕微鏡写
真(×100,000)を図1に示す。この黄褐色粒子粉末
は、X線回折の結果、β-FeOOHであり、比表面積は190m
2/gであった。
Example 1 500 ml of an FeCl 3 aqueous solution containing Fe 3+ 0.05 mol / was heated at 80 ° C. for 30 minutes to produce yellowish brown precipitate particles. The pH of the suspension at this time was 1.3. Remove a part of the reaction solution, wash with water,
An electron micrograph (× 100,000) of the yellowish brown particle powder obtained by drying and drying is shown in FIG. As a result of X-ray diffraction, this yellow-brown particle powder was β-FeOOH and had a specific surface area of 190 m.
It was 2 / g.

上記0.05mol/のβ-FeOOH粒子を含むpH1.3の酸性懸濁
液を密閉容器中に入れ、125℃で15時間水熱処理して赤
褐色沈澱を生成させた。赤褐色沈澱を水洗、過、乾燥
して得られた粒子粉末は、図2に示すX線回折に示す通
り、ヘマタイトであり、図3に示す電子顕微鏡写真(×
10,000)から明らかな通り、平均粒子径が0.6μmで
あり、粒度が均斉で、且つ、個々の粒子が独立した粒子
であった。図4に得られた粒子粉末の粒度分布をヒスト
グラムで示した。
The acidic suspension having a pH of 1.3 containing 0.05 mol / β-FeOOH particles was placed in a closed container, and hydrothermally treated at 125 ° C. for 15 hours to form a reddish brown precipitate. The particle powder obtained by washing the reddish brown precipitate with water, filtering and drying was hematite as shown in the X-ray diffraction of FIG. 2, and the electron micrograph (×
As is clear from 10,000), the average particle size was 0.6 μm, the particle sizes were uniform, and the individual particles were independent particles. The particle size distribution of the obtained particle powder is shown in a histogram in FIG.

実施例2 β-FeOOHを生成する際のFeCl3濃度を0.01mol/とした
以外は実施例1と同様にして比表面積が240m2/gのβ-Fe
OOHを得た。
Example 2 β-Fe having a specific surface area of 240 m 2 / g was prepared in the same manner as in Example 1 except that the FeCl 3 concentration when producing β-FeOOH was 0.01 mol /.
Got OOH.

上記0.01mol/のβ-FeOOH粒子を含むpH1.4の酸性懸濁
液を密閉容器中に入れ、105℃で12時間水熱処理して赤
褐色沈澱を生成させた。赤褐色沈澱を水洗、過、乾燥
して得られた粒子粉末は、X線回折の結果ヘマタイトで
あり、図5に示す電子顕微鏡写真(×20,000)から明ら
かな通り、平均粒子径が0.15μmであり、粒度が均斉
で、且つ、個々の粒子が独立した粒子であった。図6に
得られた粒子粉末の粒度分布をヒストグラムで示した。
The acidic suspension of pH 1.4 containing the above 0.01 mol / β-FeOOH particles was placed in a closed container and subjected to hydrothermal treatment at 105 ° C. for 12 hours to form a reddish brown precipitate. The particle powder obtained by washing the reddish brown precipitate with water, filtering and drying was hematite as a result of X-ray diffraction, and had an average particle diameter of 0.15 μm, as is clear from the electron micrograph (× 20,000) shown in FIG. , The particle size was uniform, and the individual particles were independent particles. The particle size distribution of the obtained particle powder is shown in a histogram in FIG.

比較例1 Fe3+0.05mol/を含むpH1.8のFeCl3酸性水溶液500mlを
密閉容器中に入れ、125℃で15時間水熱処理した後、室
温まで冷却し、赤黄褐色沈澱を生成した。反応溶液の一
部を抜き取り、水洗、過、乾燥して得られた赤黄褐色
粒子粉末は、図7に示す電子顕微鏡写真(×15,000)か
ら明らかな通り、針状粒子と等方的な粒子とが混在して
おり、また、図8に示すX線回折から明らかな通り、β
-FeOOHとヘマタイトのピークが確認された。図8中、ピ
ークAはヘマタイト、ピークBはβ-FeOOHである。
Comparative Example 1 500 ml of FeCl 3 acidic aqueous solution containing Fe 3+ 0.05 mol / pH 1.8 was put in a closed container, hydrothermally treated at 125 ° C. for 15 hours, and then cooled to room temperature to form a reddish brown precipitate. The reddish yellowish brown particle powder obtained by extracting a part of the reaction solution, washing with water, filtering and drying was, as is clear from the electron micrograph (× 15,000) shown in FIG. 7, isotropic particles with needle-like particles. And are mixed, and as is clear from the X-ray diffraction shown in FIG.
-The peaks of FeOOH and hematite were confirmed. In FIG. 8, peak A is hematite and peak B is β-FeOOH.

上記赤黄褐色沈澱を含む酸性懸濁液を引き続き125℃で2
0時間水熱処理し赤褐色沈澱を生成させた。赤褐色沈澱
を水洗、過、乾燥して得られた粒子粉末は、X線回折
の結果、ヘマタイト粒子であり、図9に示す電子顕微鏡
写真(×10,000)から明らかな通り、粒度が不均斉な粒
子であった。図10に得られた粒子粉末の粒度分布をヒス
トグラムで示した。
The acidic suspension containing the reddish-brown precipitate was then washed at 125 ° C for 2
Hydrothermal treatment was performed for 0 hours to form a reddish brown precipitate. The particle powder obtained by washing the reddish brown precipitate with water, filtering and drying was a hematite particle as a result of X-ray diffraction. As is clear from the electron micrograph (× 10,000) shown in FIG. 9, the particle size was non-uniform. Met. The histogram of the particle size distribution of the obtained particle powder is shown in FIG.

比較例2 120m2/gのβ-FeOOHを含むpH1.3の酸性懸濁液を用いた以
外は、実施例1と同様に水熱処理して黄褐色沈澱を生成
させた。黄褐色沈澱を水洗、過、乾燥して得られた粒
子粉末は、X線回折の結果及び図11に示す電子顕微鏡写
真(×100,000)から明らかな通り、β-FeOOHのままで
あった。
Comparative Example 2 A yellowish brown precipitate was formed by hydrothermal treatment in the same manner as in Example 1 except that an acidic suspension having a pH of 1.3 containing 120 m 2 / g of β-FeOOH was used. The particle powder obtained by washing the yellowish brown precipitate with water, filtering and drying, remained as β-FeOOH, as is clear from the X-ray diffraction results and the electron micrograph (× 100,000) shown in FIG.

比較例3 0.15mol/のβ-FeOOH粒子を含むpH1.3の酸性懸濁液を
実施例1と同様に水熱処理して黄褐色沈澱を生成させ
た。黄褐色沈澱を水洗、過、乾燥して得られた粒子粉
末は、図12に示すX線回折及び図13に示す電子顕微鏡写
真(×30,000)から明らかな通り、β-FeOOHのままであ
った。
Comparative Example 3 An acidic suspension having a pH of 1.3 containing 0.15 mol / β-FeOOH particles was hydrothermally treated in the same manner as in Example 1 to form a yellowish brown precipitate. The particle powder obtained by washing the yellowish brown precipitate with water, filtering and drying, remained as β-FeOOH as is clear from the X-ray diffraction shown in FIG. 12 and the electron micrograph (× 30,000) shown in FIG. .

比較例4 水熱処理の温度を95℃とした以外は、実施例1と同様に
して黄褐色沈澱を生成させた。黄褐色沈澱を水洗、
過、乾燥して得られた粒子粉末は、図14に示すX線回折
及び図15に示す電子顕微鏡写真(×20,000)から明らか
な通り、β-FeOOHのままであった。
Comparative Example 4 A yellow-brown precipitate was produced in the same manner as in Example 1 except that the hydrothermal treatment temperature was 95 ° C. Wash the yellowish brown precipitate with water,
The particle powder obtained by drying and drying remained β-FeOOH as is clear from the X-ray diffraction shown in FIG. 14 and the electron micrograph (× 20,000) shown in FIG.

〔効 果〕[Effect]

本発明におけるヘマタイト粒子粉末の製造法によれば、
前出実施例に示した通り、粒度が均斉で、且つ、個々の
粒子が独立しているヘマタイト粒子粉末を得ることがで
き、当該粒子粉末は分散性が優れているので、塗料用赤
色顔料粉末、ゴム・プラスチック用着色剤、磁性粒子粉
末用出発原料として好適である。
According to the method for producing the hematite particle powder in the present invention,
As shown in the above Examples, the particle size is uniform, and it is possible to obtain a hematite particle powder in which individual particles are independent, and since the particle powder has excellent dispersibility, a red pigment powder for paints. Suitable as a colorant for rubber / plastics and a starting material for magnetic particle powder.

また、本発明においては、高圧容器等の特殊な装置を必
要としない130℃未満の低い温度で、しかも、短時間裡
の反応により、粒度が均斉で、且つ、個々の粒子が独立
しているヘマタイト粒子粉末を工業的、経済的に有利に
得ることができる。
Further, in the present invention, at a low temperature of less than 130 ° C. which does not require a special device such as a high-pressure container, and moreover, due to the reaction for a short time, the particle size is uniform, and the individual particles are independent. The hematite particle powder can be obtained industrially and economically.

【図面の簡単な説明】[Brief description of drawings]

図1、図3、図5、図7、図9、図11、図13及び図15
は、いずれも粒子粉末の粒子構造を示す電子顕微鏡写真
であり、図1は実施例1の出発原料であるβ-FeOOH粒子
粉末、図3、図5並びに図9はそれぞれ実施例1、実施
例2及び比較例1で得られたヘマタイト粒子粉末、図7
は比較例1の反応途中における生成物であるβ-FeOOHと
ヘマタイトの混合粒子粉末及び図11、図13並びに図15は
それぞれ比較例2、比較例3及び比較例4で得られたβ
-FeOOH粒子粉末である。 図4、図6及び図10はそれぞれ実施例1、実施例2及び
比較例1で得られたヘマタイト粒子粉末の粒度分布を示
すヒストグラムである。 図2、図8、図12及び図14はそれぞれ実施例1、比較例
1、比較例3及び比較例4で得られた粒子粉末のX線回
折図である。
1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11, FIG. 13, and FIG.
Are all electron micrographs showing the particle structure of the particle powder. FIG. 1 is the starting material of Example 1, β-FeOOH particle powder, and FIGS. 3, 5 and 9 are Example 1 and Example, respectively. 2 and the hematite particle powder obtained in Comparative Example 1, FIG.
Is a mixed particle powder of β-FeOOH and hematite which is a product in the course of the reaction of Comparative Example 1, and FIGS. 11, 13 and 15 show β obtained in Comparative Example 2, Comparative Example 3 and Comparative Example 4, respectively.
-FeOOH particle powder. 4, 6 and 10 are histograms showing the particle size distributions of the hematite particles obtained in Example 1, Example 2 and Comparative Example 1, respectively. 2, FIG. 8, FIG. 12 and FIG. 14 are X-ray diffraction patterns of the particle powders obtained in Example 1, Comparative Example 1, Comparative Example 3 and Comparative Example 4, respectively.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Fe3+の濃度が0.1mol/未満の塩化第二
鉄水溶液を70〜90℃の温度範囲に加熱して加水分解させ
て得た比表面積150m2/g以上のβ-FeOOH粒子を0.1mol
/未満の濃度で含む酸性懸濁液を、100〜130℃の温度
範囲で水熱処理することにより、粒度の均斉なヘマタイ
ト粒子を生成させることを特徴とするヘマタイト粒子粉
末の製造法。
1. A β- having a specific surface area of 150 m 2 / g or more obtained by heating an aqueous solution of ferric chloride having a Fe 3+ concentration of less than 0.1 mol / l to a temperature range of 70 to 90 ° C. to hydrolyze it. 0.1 mol of FeOOH particles
A method for producing a hematite particle powder, characterized in that a hematite particle having a uniform particle size is produced by hydrothermally treating an acidic suspension containing a concentration of less than / in a temperature range of 100 to 130 ° C.
JP61209813A 1986-09-05 1986-09-05 Manufacturing method of hematite particle powder Expired - Fee Related JPH0613406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61209813A JPH0613406B2 (en) 1986-09-05 1986-09-05 Manufacturing method of hematite particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61209813A JPH0613406B2 (en) 1986-09-05 1986-09-05 Manufacturing method of hematite particle powder

Publications (2)

Publication Number Publication Date
JPS6364925A JPS6364925A (en) 1988-03-23
JPH0613406B2 true JPH0613406B2 (en) 1994-02-23

Family

ID=16579032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61209813A Expired - Fee Related JPH0613406B2 (en) 1986-09-05 1986-09-05 Manufacturing method of hematite particle powder

Country Status (1)

Country Link
JP (1) JPH0613406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100572289C (en) * 2002-08-16 2009-12-23 阿尔伯麦尔荷兰有限公司 Prepare iron cpd by hydrothermal conversion
KR100463801B1 (en) * 2002-10-17 2004-12-29 한국지질자원연구원 a method for manufacturing the nano-size hematite powder against red-tide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210896A (en) * 1975-06-20 1977-01-27 Hitachi Maxell Ltd Process for production of beta-iron oxy hydroxide
JPS5210897A (en) * 1975-07-04 1977-01-27 Hitachi Maxell Ltd Process for production of ferromagnetic iron oxide powder
JPS5820733A (en) * 1981-07-29 1983-02-07 Kanto Denka Kogyo Kk Preparation of extremely small iron oxide not in needle state

Also Published As

Publication number Publication date
JPS6364925A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
JP3456665B2 (en) Transparent iron oxide pigment and method for producing the same
EP0145229B1 (en) Production of barium ferrite particles
JP3006640B2 (en) Manufacturing method of granular hematite particle powder
JPH0613406B2 (en) Manufacturing method of hematite particle powder
JP3045207B2 (en) Production method of plate-like iron oxide particles
CN113677626B (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by the method
JPS62128930A (en) Production of hematite grain powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JPH05137995A (en) Method for coating particles with ferrite
JPH0559848B2 (en)
JP2727187B2 (en) Method for producing plate-like hematite particle powder
JPH0573698B2 (en)
JPS63162535A (en) Production of powdery acicular hematite particle
KR920001518B1 (en) Process for the preparation iron oxide of particle size
JPS6364924A (en) Production of beta-hydrous ferric oxide particle powder showing bar shape
JP2704559B2 (en) Plate-like magnetite particle powder and production method thereof
JPH01176233A (en) Production of plate magnetite particle powder
JPS63210032A (en) Production of magnetic iron oxide granular powder having isotropic shape
JPH0580412B2 (en)
JPH06166520A (en) Production of fine particle powder of platy iron oxide
JPH0463208A (en) Manufacture of metal magnetic powder
JPH0310579B2 (en)
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPH0321489B2 (en)
JPH01222409A (en) Manufacture of needle-like magnetic iron-oxide particle and powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees