JPH01176233A - Production of plate magnetite particle powder - Google Patents

Production of plate magnetite particle powder

Info

Publication number
JPH01176233A
JPH01176233A JP33246787A JP33246787A JPH01176233A JP H01176233 A JPH01176233 A JP H01176233A JP 33246787 A JP33246787 A JP 33246787A JP 33246787 A JP33246787 A JP 33246787A JP H01176233 A JPH01176233 A JP H01176233A
Authority
JP
Japan
Prior art keywords
aqueous solution
particles
plate
magnetite
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33246787A
Other languages
Japanese (ja)
Other versions
JP2583087B2 (en
Inventor
Mamoru Tanihara
谷原 守
Yoshiro Okuda
奥田 嘉郎
Hideaki Sadamura
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP62332467A priority Critical patent/JP2583087B2/en
Priority to EP88301270A priority patent/EP0279626B1/en
Priority to DE8888301270T priority patent/DE3860614D1/en
Priority to US07/156,508 priority patent/US4865834A/en
Publication of JPH01176233A publication Critical patent/JPH01176233A/en
Application granted granted Critical
Publication of JP2583087B2 publication Critical patent/JP2583087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title non-porous non-sintered powder having fine particle size and excellent dispersibility, etc., by reacting an aqueous solution of a ferrous salt with a aqueous solution of an alkali carbonate at a specific equivalent ratio to form FeCO3 and passing an oxygen-containing gas through the system in the presence of a specific amount of tartaric acid (salt), thereby oxidizing the compound. CONSTITUTION:An aqueous solution containing FeCO3 is produced by reacting (A) an aqueous solution of a ferrous salt with (B) an aqueous solution of an alkali carbonate keeping the equivalent ratio of the alkali carbonate in the component B to the ferrous salt in the component A to >=1 and below the value defined by the formula. Tartaric acid (or its salt) is added to the component A or component B or added to the FeCO3-containing aqueous solution in an amount of 0.01-2mol.% based on Fe and the reaction product is oxidized by passing an oxygen-containing gas to obtain non-porous non-sintered plate magnetite particle powder having an average particle diameter of 0.03-0.5mum and a specific surface area of 7-30m<2>/g.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、平均径が0.03〜0.5μ糟であって比表
面積が7〜30r+?/gである無孔且つ無焼結の板状
マグネタイト粒子からなる板状マグネタイト粒子粉末の
製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a non-porous and non-sintered material having an average diameter of 0.03 to 0.5 μm and a specific surface area of 7 to 30 r+?/g. The present invention relates to a method for producing plate-shaped magnetite particle powder made of plate-shaped magnetite particles.

本発明に係る板状マグネタイト粒子粉末の主な用途は、
電磁波吸収材用、シールド材用材料粉末、磁気記録用磁
性材料粉末、塗料用黒色顔料粉末及びゴム・プラスチッ
ク用着色剤等である。
The main uses of the plate-shaped magnetite particle powder according to the present invention are:
These include material powders for electromagnetic wave absorbing materials, shielding materials, magnetic material powders for magnetic recording, black pigment powders for paints, and colorants for rubber and plastics.

(従来の技術〕 マグネタイト粒子粉末は、電磁波吸収材用、シールド材
用材料粉末として使用されている。即ち、電磁波吸収、
シールドは、マグネタイト粒子粉末をビヒクル中に分散
混合させて得られた塗料を電磁波発生源である機器等に
塗布することにより行われている。
(Prior art) Magnetite particle powder is used as material powder for electromagnetic wave absorbing materials and shielding materials.
Shielding is carried out by applying a paint obtained by dispersing and mixing magnetite particles in a vehicle to equipment and the like that are sources of electromagnetic waves.

また、マグネタイト粒子粉末は、磁気記録用磁性材料粉
末として広く使用されている。即ち、磁気テープや磁気
ディスク等の磁気記録媒体は、マグネタイト粒子粉末等
の磁性粒子粉末とビヒクルとを混合して得られた磁性塗
料をディスクやテープに塗布することによって製造され
る。
Moreover, magnetite particle powder is widely used as a magnetic material powder for magnetic recording. That is, magnetic recording media such as magnetic tapes and magnetic disks are manufactured by applying a magnetic paint obtained by mixing magnetic particle powder such as magnetite particle powder and a vehicle to the disk or tape.

更に、マグネタイト粒子粉末は、黒色を呈している為、
顔料とビしクルとを混合して塗料を製造する際の塗料用
顔料粉末として広く使用されており、また、ゴム・プラ
スチックに混線・分散して着色剤としても使用されてい
る。
Furthermore, since magnetite particle powder exhibits a black color,
It is widely used as a pigment powder for paints when mixing pigments and vehicles to produce paints, and it is also used as a coloring agent when mixed and dispersed in rubber and plastics.

上述した通り、マグネタイト粒子粉末は、様々の分野で
使用されているが、いずれの分野においても共通して要
求されているマグネタイト粒子粉末の特性は、塗料化が
容易であり、ビヒクル中又は樹脂中における充填密度が
高(、分散性、配向性に優れており、更に、粒子相互間
における接触率が高いという緒特性である。
As mentioned above, magnetite particle powder is used in various fields, but the properties commonly required in all fields are that it is easy to make into a paint, and it can be used in a vehicle or resin. It has a high packing density, excellent dispersibility and orientation, and a high contact rate between particles.

この事実は、例えば、特開昭55−104923号公報
の「・・・・被覆材料中に個々の粒子の極めて顕著な平
行配向が生ずる。従って、・・・・著しく高い充填密度
を持つことが可能であり、その結果例えば腐食防止効果
が増大し、電磁気干渉基に対する遮蔽が効果的となり、
そして導電性が高くなる。」なる記載、特開昭51−2
8700号公報の「・・・・本発明で用いられる磁気粉
末は、有機バインダー中の充填密度を高くしても、十分
良好な塗料性を確保できるという特徴がある。・・・・
充填密度が飛躍的に向上しているために高い磁束密度を
もっている。」なる記載及びペトロテフク(PETRO
TECll)第9巻第6号(1986年発行)第494
頁の「・・・・電磁波シールドの材料技術・・・・の分
類である。・・・・現在主流になっている導電塗装法で
ある。塗料の中にニッケル微粒子などを入れておく。・
・・・もとより金属間の接触は不可欠であり、・・・・
相互接触率の高いものが選ばれる・・・・、」なる記載
の通りである。
This fact is explained, for example, in Japanese Patent Application Laid-open No. 55-104923, which states, ``...a very pronounced parallel orientation of the individual particles occurs in the coating material. possible, resulting in, for example, increased corrosion protection, effective shielding against electromagnetic interference groups,
And the conductivity becomes high. ”, JP-A-51-2
Publication No. 8700 states, ``...The magnetic powder used in the present invention has the characteristic that it can ensure sufficiently good coating properties even if the packing density in the organic binder is high.
It has a high magnetic flux density because the packing density has been dramatically improved. ” and PETRO
TECll) Volume 9, No. 6 (Published in 1986) No. 494
This is a classification of material technology for electromagnetic shielding on the page. It is a conductive coating method that is currently mainstream. Fine nickel particles are placed in the paint.・
...Of course, contact between metals is essential, and...
Those with a high mutual contact rate are selected...''.

上述した通りの特性を満たすマグネタイト粒子粉末とし
ては、板状形態を呈した微細な粒子であることが必要で
ある。
Magnetite particles that satisfy the above-mentioned characteristics need to be fine particles with a plate-like shape.

この事実は、例えば、前出特開昭51−28700号公
報の「・・・・本質的に板状の形状を持つ磁気粉末を塗
布することにより、磁気粉末の充填率が高く、均一で、
かつ磁気特性の優れた磁性膜を提供する・・・・」なる
記載、前出特開昭55−104923号公報の「・・・
・マグネタイトまたはマグネタイトの構造を有する六角
薄片形(板状)酸化鉄に対する他の用途がある。・・・
・個々の粒子の極めて顕著な平行配向(配向性)が生ず
る。従って、・・・・著しく高い充填密度を持つことが
可能であり・・・・」なる記載及び特開昭61−266
311号公報の「・・・・1μ−以下の微小な盤状のコ
バルト含有酸化鉄強磁性粉末を用いれば盤状形状ゆえに
、粉末の分散性、充填性およびテープの表面平滑性に優
れた磁気記録媒体を提供することが可能である。」なる
記載の通りである。
This fact can be seen, for example, in the above-mentioned Japanese Unexamined Patent Publication No. 51-28700, which states, ``...By applying magnetic powder that essentially has a plate-like shape, the filling rate of the magnetic powder is high and uniform.
and provides a magnetic film with excellent magnetic properties...'', in the above-mentioned Japanese Patent Application Laid-Open No. 55-104923, ``...''
- There are other applications for hexagonal flake-shaped (plate-like) iron oxides with magnetite or magnetite structure. ...
- A very pronounced parallel orientation (orientation) of the individual particles occurs. Therefore, it is possible to have an extremely high packing density...'' and JP-A-61-266
Publication No. 311 states, ``...If a fine plate-shaped cobalt-containing iron oxide ferromagnetic powder of 1μ or less is used, due to its plate-like shape, magnetic properties with excellent dispersibility and filling properties of the powder and surface smoothness of the tape can be obtained. It is possible to provide a recording medium.''

従来、板状マグネタイト粒子粉末の製造法としては、例
えば、水酸化第二鉄又はゲータイトを含むアルカリ性懸
濁液をオートクレーブを用いて水熱処理することにより
水溶液中から板状へマタイト粒子を生成させ、該板状へ
マタイト粒子を還元性ガス中で加熱還元する方法及び水
酸化第一鉄を含むアルカリ性懸濁液を強酸化剤で急激に
酸化することにより、又は、特定の添加剤の存在下で第
二鉄塩とアルカリとを水性媒体中で反応させて水酸化第
二鉄を生成させ、該水酸化第二鉄を水熱処理することに
より水溶液中から板状ゲータイト粒子を生成させ、該板
状ゲータイト粒子を加熱脱水後、還元性ガス中で加熱還
元する方法が知られている。
Conventionally, as a method for producing plate-shaped magnetite particles, for example, plate-shaped hematite particles are generated from an aqueous solution by hydrothermally treating an alkaline suspension containing ferric hydroxide or goethite using an autoclave. By heating and reducing the plate-shaped hematite particles in a reducing gas and rapidly oxidizing an alkaline suspension containing ferrous hydroxide with a strong oxidizing agent, or in the presence of specific additives. A ferric salt and an alkali are reacted in an aqueous medium to produce ferric hydroxide, and the ferric hydroxide is hydrothermally treated to produce plate-shaped goethite particles from the aqueous solution. A method is known in which goethite particles are heated to dehydrate and then heated and reduced in a reducing gas.

前者の方法に属するものとしては、例えば、前出特開昭
51−28700号公報記載の方法、前出特開昭55−
104923号公報に記載の方法があり、後者の方法に
属するものとしては、例えば、前出特開昭61−266
311号公報、前出特開昭55−104923号公報に
記載の方法がある。
Examples of methods belonging to the former method include the method described in the above-mentioned Japanese Patent Application Laid-Open No. 51-28700, and the method described in the above-mentioned Japanese Patent Application Laid-Open No. 55-1989.
There is a method described in Japanese Patent Publication No. 104923, and examples of the latter method include, for example, the method described in Japanese Unexamined Patent Publication No. 61-266 mentioned above.
There are methods described in Japanese Patent Application Publication No. 311 and Japanese Patent Application Laid-open No. 104923/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

充填密度が高く、分散性、配向性が優れている板状マグ
ネタイ1粒子粉末は現在量も要求されているところであ
るが、上述した通りの公知方法による場合には、水溶液
から生成した板状粒子を還元性ガス中で加熱還元するこ
とが必要である為、粒子及び粒子相互間の焼結が生起し
、その結果、ビークル中又は樹脂中への分散が困難とな
り、充填密度が低下し、配向性が劣化するという欠点が
ある。
There is currently a demand for single-grain plate-shaped magnetite powder with high packing density and excellent dispersibility and orientation, but when using the known method as described above, plate-shaped particles produced from an aqueous solution can be used. Because it is necessary to reduce the particles by heating in a reducing gas, sintering of particles and particles occurs, which makes dispersion in a vehicle or resin difficult, reducing packing density and reducing orientation. The disadvantage is that the properties deteriorate.

更に、公知方法のうち前者の方法による場合には、平均
径1μ■以下の、殊に、0.5μm以下の板状へマタイ
ト微粒子を水溶液中から生成することは困難であり、咳
へマタイト粒子を加熱還元して得られる板状マグネタイ
ト粒子も当然平均径1μm以下、殊に、0.5μ−以下
のものを得ることは困難であった。この事実は、例えば
、前出特開昭51−28700号公報の「・・・・六角
板状のα−FelOs(ヘマタイト)は以前からMic
aceous Iron 0xideとして天然に産し
、防錆用無機塗料として知られているが、最近では、こ
れは人工的に合成できるようになり・・・・、このよう
な合成の酸化鉄は、形状が板径1〜40μ・・・・程度
であり、・・・・」なる記載の通りである。
Furthermore, in the case of the former method among known methods, it is difficult to produce plate-shaped hematite fine particles with an average diameter of 1 μm or less, especially 0.5 μm or less from an aqueous solution, and cough hematite particles Of course, it is difficult to obtain plate-like magnetite particles obtained by thermal reduction with an average diameter of 1 μm or less, particularly 0.5 μm or less. This fact can be seen, for example, in the above-mentioned Japanese Unexamined Patent Publication No. 51-28700:
It occurs naturally as aceous iron oxide and is known as an inorganic rust-preventing paint, but recently it has become possible to synthesize it artificially...Synthesized iron oxide has a shape that is The plate diameter is approximately 1 to 40 μm, and is as described in the following.

また、公知方法のうち後者の方法による場合には、板状
ゲータイト粒子の加熱時にゲータイト結晶粒子中の水分
が脱水される為、得られる板状マグネタイト粒子の粒子
表面、粒子内部には多数の空孔が存在することになる。
In addition, in the case of the latter method among the known methods, water in the goethite crystal particles is dehydrated when the plate-shaped goethite particles are heated, so there are many voids on the surface and inside of the obtained plate-shaped magnetite particles. There will be holes.

このような多孔性の板状マグネタイト粒子粉末をビヒク
ル中又は樹脂中に分散させた場合、表面磁極の生じてい
る部分に他の微細粒子の吸引が起こり、その結果、多数
の粒子が集合してかなりの大きさをもつ凝集塊が生じ、
この為、分散が困難となって充填密度が低下し、配向性
が劣化する。
When such porous plate-shaped magnetite particles are dispersed in a vehicle or resin, other fine particles are attracted to the area where the surface magnetic poles are formed, and as a result, many particles aggregate. Agglomerates of considerable size are formed,
For this reason, dispersion becomes difficult, the packing density decreases, and the orientation deteriorates.

上述したところから明らかな通り、無孔且つ無焼結の板
状マグネタイト微粒子粉末を得る為には、板状マグネタ
イト微粒子を水溶液中から直接生成させる方法が強く要
求されているのである。
As is clear from the above, in order to obtain a non-porous and non-sintered plate-shaped magnetite fine particle powder, there is a strong demand for a method of directly producing plate-shaped magnetite fine particles from an aqueous solution.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明者は、板状マグネタイト微粒子を水溶液中から直
接生成させる方法について種々検討を重ねた結果、本発
明に到達したのである。
The present inventor has arrived at the present invention as a result of various studies on methods for directly producing plate-shaped magnetite fine particles from an aqueous solution.

即ち、本発明は、第一鉄塩水溶液と炭酸アルカリ水溶液
とを反応させて得られたFeCO3を含む水溶液に酸素
含有ガスを通気して酸化するにあたり、前記第一鉄塩水
溶液と該第一鉄塩水溶液中の第一鉄塩に対する炭酸アル
カリの当量比が1当量以上であって、一般式 で表される値以下である量の前記炭酸アルカリ水溶液と
を反応させ、且つ、あらかじめ前記第一鉄水溶液、前記
炭酸アルカリ水溶液及び酸素含有ガスを通気して酸化す
る前の前記FeCO5を含む水溶液のいずれかにFeに
対し0.01〜2.0モル%の酒石酸又はその塩を添加
し、次いで酸素含有ガスを通気して酸化することにより
水溶液中から板状マグネタイト粒子を生成させることを
特徴とする平均粒径が0.03〜0.5μmであって比
表面積が7〜30n(/gである無孔且つ無焼結の板状
マグネタイト粒子粉末の製造法である。
That is, in the present invention, when an aqueous solution containing FeCO3 obtained by reacting an aqueous ferrous salt solution and an aqueous alkali carbonate solution is oxidized by passing an oxygen-containing gas through the aqueous solution containing the ferrous salt and the aqueous alkali carbonate solution, The equivalent ratio of the alkali carbonate to the ferrous salt in the salt aqueous solution is 1 equivalent or more, and the amount of the alkali carbonate aqueous solution is equal to or less than the value expressed by the general formula. Tartaric acid or its salt in an amount of 0.01 to 2.0 mol% based on Fe is added to any of the aqueous solution, the alkali carbonate aqueous solution, and the FeCO5-containing aqueous solution before oxidation by passing the oxygen-containing gas through the aqueous solution, and then oxygen It is characterized by producing plate-shaped magnetite particles from an aqueous solution by aerating and oxidizing the contained gas.The average particle size is 0.03 to 0.5 μm and the specific surface area is 7 to 30n (/g). This is a method for producing non-porous and non-sintered plate-shaped magnetite particles.

〔作  用〕[For production]

先ず、本発明において最も重要な点は、第一鉄塩水溶液
と炭酸アルカリ水溶液とを反応させて得られたFeCO
5を含む水溶液に酸素含有ガスを通気して酸化するにあ
たり、前記第一鉄塩水溶液と該第一鉄塩水溶液中の第一
鉄塩に対する炭酸アルカリの当量比が1当量以上であっ
て、−a式で表される値以下である量の前記炭酸アルカ
リ水溶液とを反応させ、且つ、あらかじめ前記第一鉄水
溶液、前記炭酸アルカリ水溶液及び酸素含有ガスを通気
して酸化する前の前記FeCO3を含む水溶液のいずれ
かにFeに対し0.01〜2.0モル%の酒石酸又はそ
の塩を添加し、次いで酸素含有ガスを通気して酸化した
場合には、板状マグネタイト粒子を水溶液中から直接生
成させることができるという事実である。
First, the most important point in the present invention is that FeCO obtained by reacting a ferrous salt aqueous solution and an alkali carbonate aqueous solution
5 is oxidized by passing an oxygen-containing gas through the aqueous solution containing 5, the equivalent ratio of the alkali carbonate to the ferrous salt in the ferrous salt aqueous solution is 1 equivalent or more, - The FeCO3 is reacted with the aqueous alkali carbonate solution in an amount that is less than or equal to the value expressed by formula a, and contains the FeCO3 before being oxidized by aerating the aqueous ferrous iron solution, the aqueous alkali carbonate solution, and an oxygen-containing gas in advance. When 0.01 to 2.0 mol% of tartaric acid or its salt is added to any of the aqueous solutions based on Fe, and then oxidized by passing oxygen-containing gas, plate-shaped magnetite particles are generated directly from the aqueous solution. The fact is that it can be done.

本発明における板状マグネタイト粒子は、粒度が0.5
μm以下の微粒子であり、また、水溶液中から直接生成
させるものであるから無孔且つ無焼結である。
The plate-shaped magnetite particles in the present invention have a particle size of 0.5
Since they are fine particles of micrometers or less in size and are produced directly from an aqueous solution, they are non-porous and non-sintered.

本発明における板状マグネタイト粒子は、微粒子である
にもかかわらず、無孔等である為、比表面積が30i/
g以下、殊に、25nr/g以下と小さく、また、板状
形態であって無孔且つ無焼結である為、塗料化が容易で
あり、分散性、配向性に優れ、ビークル中又は樹脂中へ
の高密度充填が可能である。
Although the plate-shaped magnetite particles in the present invention are fine particles, they are non-porous and have a specific surface area of 30i/
It is small, less than 25nr/g, especially less than 25nr/g, and is plate-like, non-porous, and non-sintered, so it is easy to make into a paint, has excellent dispersibility and orientation, and can be used in vehicles or resins. High-density filling inside is possible.

本発明において、FeCO5を含む水溶液中に、例えば
、窒素ガス等の非酸化性ガスを吹き込みながら、必要に
より攪拌を行い、熟成処理した場合には、板状比(板径
:厚み)の大きい板状マグネタイト粒子が得られやすい
In the present invention, when a non-oxidizing gas such as nitrogen gas is blown into an aqueous solution containing FeCO5, stirring is performed as necessary, and aging treatment is performed, a plate having a large plate ratio (plate diameter: thickness) is obtained. magnetite particles are easily obtained.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明において使用される第一鉄塩水溶液として硫酸第
一鉄水溶液、塩化第−鉄水溶液等がある。
Examples of the ferrous salt aqueous solution used in the present invention include a ferrous sulfate aqueous solution and a ferrous chloride aqueous solution.

本発明において使用される炭酸アルカリとしては、炭酸
ナトリウム、炭酸カリウム、炭酸アンモニウム等を単独
で又は併用して使用するとかできる。
As the alkali carbonate used in the present invention, sodium carbonate, potassium carbonate, ammonium carbonate, etc. can be used alone or in combination.

第一鉄塩水溶液と炭酸アルカリの添加順序はいずれが先
でも、又は同時でもよい。
The ferrous salt aqueous solution and the alkali carbonate may be added either first or simultaneously.

本発明における反応温度は、75〜100℃である。The reaction temperature in the present invention is 75 to 100°C.

75℃以下である場合には、板状マグネタイト粒子中に
紡錘状へマタイト粒子や針状ゲータイト粒子が混在して
くる。100℃以上である場合にも本発明の目的を達成
することはできるが、オートクレーブ等の特殊なりt置
を必要とし、経済的ではない。
When the temperature is 75° C. or lower, spindle-shaped hematite particles and acicular goethite particles are mixed in the plate-shaped magnetite particles. Although the object of the present invention can be achieved when the temperature is 100° C. or higher, it requires a special equipment such as an autoclave, which is not economical.

本発明において使用する炭酸アルカリの量は、第一鉄塩
水溶液中の第一鉄塩に対する炭酸アルカリの当量比が1
当量以上であって、一般式で表される値以下である。上
記特定値以上である場合には、板状マグネタイト粒子中
に紡錘状へマタイトが混在してくる。尚、生産性を考慮
すれば、鉄濃度の下限は0.1 i+ol/Il程度が
好ましい。
The amount of alkali carbonate used in the present invention is such that the equivalent ratio of alkali carbonate to ferrous salt in the ferrous salt aqueous solution is 1.
It is more than equivalent and less than the value expressed by the general formula. If it is more than the above specific value, spindle-shaped hematite will be mixed in the plate-shaped magnetite particles. In addition, in consideration of productivity, the lower limit of the iron concentration is preferably about 0.1 i+ol/Il.

本発明においては酒石酸又はその塩を使用することがで
きる。ここで、その塩とは、酒石酸ナトリウム、酒石酸
カリウム、酒石酸リチウム、酒石酸アンモニウム等があ
る。
In the present invention, tartaric acid or a salt thereof can be used. Here, the salt includes sodium tartrate, potassium tartrate, lithium tartrate, ammonium tartrate, and the like.

本発明における酒石酸又はその塩の添加量は、Feに対
し0.01〜2.0モル%である。 0.01モル%以
下の場合には、板状マグネタイト粒子中に粒状へマタイ
ト粒子、針状ゲータイト粒子が混在してくる。2.0モ
ル%以上である場合には、マグネタイト粒子は生成する
が、飽和磁化の低下が顕著となる。
The amount of tartaric acid or its salt added in the present invention is 0.01 to 2.0 mol% based on Fe. If it is 0.01 mol% or less, granular hematite particles and acicular goethite particles will be mixed in the plate-shaped magnetite particles. When the content is 2.0 mol % or more, magnetite particles are produced, but the saturation magnetization decreases significantly.

本発明における酒石酸又はその塩は、炭酸アルカリとの
相乗作用によって、生成粒子の種類及び形態に影響を及
ぼすものであり、従って、板状マグネタイト粒子の生成
反応が開始される前に添加しておく必要があり、第一鉄
塩水溶液、炭酸アルカリ水溶液及び酸素含有ガスを通気
して酸化する前のFeCO3を含む水溶液のいずれかに
添加することができる。
Tartaric acid or its salt in the present invention affects the type and form of the generated particles through a synergistic effect with the alkali carbonate, and therefore, it is added before the reaction for producing plate-shaped magnetite particles starts. If necessary, it can be added to any of the ferrous salt aqueous solution, the aqueous alkali carbonate solution, and the aqueous solution containing FeCO3 before being oxidized by bubbling oxygen-containing gas.

〔実施例〕〔Example〕

次に、実施例並びに比較例により、本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の平均径、
板状比(板面径と厚みとの比)はいずれも電子顕W1鏡
写真から測定した数値の平均値で示したものであり、比
表面積は、BET法により測定したものである。[気測
定は、振動試料磁力計VSMP−1型(東英工業製)を
使用し、測定磁場10にOeで測定した。
In addition, the average diameter of particles in the following examples and comparative examples,
The plate ratio (ratio of plate surface diameter to thickness) is shown by the average value of the values measured from the electron microscope W1 mirror photograph, and the specific surface area is measured by the BET method. [The magnetic field was measured using a vibrating sample magnetometer VSMP-1 model (manufactured by Toei Kogyo Co., Ltd.) at a measurement magnetic field of 10 Oe.

実施例1 硫酸第一鉄1.08mol/ j水溶液0.834を、
N8ガス流下において、反応器中に準備されたFeに対
し0.5モル%を含むように酒石酸0.67gを添加し
て得られた0、62+sol/ ItのNa1CO1水
溶液3.671に加え(CO37Fe =2.0当量に
該当する。)温度60℃においてFeCQsの生成を行
った。この時の鉄濃度は、Fe換算で0.201101
/ Jであった。上記pecOsを含む水溶液中に引き
続きHzガスを毎分10ffiの割合で吹き込みながら
90℃で30分間熟成処理した後、温度90℃において
毎分101の空気を2.5時間通気して粒子を生成した
Example 1 Ferrous sulfate 1.08 mol/j aqueous solution 0.834,
Under a N8 gas flow, 0.67 g of tartaric acid was added to contain 0.5 mol% of Fe prepared in the reactor. = 2.0 equivalent.) FeCQs was produced at a temperature of 60°C. The iron concentration at this time is 0.201101 in terms of Fe.
/ It was J. The above aqueous solution containing pecOs was subjected to aging treatment at 90°C for 30 minutes while blowing Hz gas at a rate of 10ffi per minute, and then air was passed through at 90°C at a rate of 101 per minute for 2.5 hours to generate particles. .

酸化反応終点は、反応液の一部を抜き取り、塩酸酸性に
調整した後、赤血塩溶液を用いてFe”″の青色呈色反
応の有無で判定した。
The end point of the oxidation reaction was determined by extracting a portion of the reaction solution and adjusting the acidity with hydrochloric acid, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe"".

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末は、透過型電子顕微鏡観察の結果、平均径
0.30μ請であり、図1に示す走査型電子顕微鏡写真
(x30.000)から明らかな通り、板状比(板面径
と厚みとの比)8:1の板状形態を呈した粒子からなり
、粒子表面並びに内部に空孔が存在していないものであ
った。
As a result of transmission electron microscopy observation, this particle powder has an average diameter of 0.30 μm, and as is clear from the scanning electron micrograph (x30,000) shown in Figure 1, the plate-like ratio (plate surface diameter and thickness The particles had a plate-like morphology with a ratio of 8:1 and no pores were present on the surface or inside the particles.

また、この粒子粉末のBET比表面積は、8.8ran
gであり、磁性は、保磁力)1cが1150e、飽和磁
化σSが87.Oemu/g 、角型比(σr/σS)
が0.125であった。
In addition, the BET specific surface area of this particle powder is 8.8ran
g, the coercive force) 1c is 1150e, and the saturation magnetization σS is 87. Oemu/g, squareness ratio (σr/σS)
was 0.125.

この粒子粉末のX線回折図を図2に示す0図2から明ら
かな通り、ピークAはマグネタイトを示すピークであり
、マグネタイトのみからなっていることがわかる。
As is clear from FIG. 2, which shows the X-ray diffraction diagram of this particle powder, peak A is a peak indicating magnetite, and it can be seen that it consists only of magnetite.

実施例2 硫酸第一鉄1.35+sol/J水溶液0.3:lを、
N2ガス流下において、反応器中に準備されたFeに対
し0.5モル%を含むように酒石酸0.33gを添加し
て得られた0、221Iol/ 1のNazCOs水溶
液4.17j!に加え(C03/Fe =2.0当量に
該当する。)、温度60℃においてFeC01の生成を
行った。この時の鉄濃度は、Fe換算で0.1 moI
/lであった。上記FeCO3を含む水溶液中に引き続
きNtガスを毎分15nの割合で吹き込みながら85℃
で30分間熟成処理した後、温度85℃において毎分1
81の空気を1.0時間通気して粒子を生成した。
Example 2 Ferrous sulfate 1.35+sol/J aqueous solution 0.3:l,
Under a flow of N2 gas, 0.33 g of tartaric acid was added to contain 0.5 mol% of the Fe prepared in the reactor, resulting in a 0.221 Iol/1 NazCOs aqueous solution 4.17j! (corresponding to C03/Fe = 2.0 equivalent), FeC01 was generated at a temperature of 60°C. The iron concentration at this time is 0.1 moI in terms of Fe.
/l. While continuously blowing Nt gas into the FeCO3-containing aqueous solution at a rate of 15n/min, the temperature was increased to 85°C.
After aging for 30 minutes at 85°C,
Particles were generated by bubbling 81 air for 1.0 hour.

酸化反応終点は、反応液の一部を抜き取り、塩酸酸性に
調整した後、赤血塩溶液を用いてFe”の青色呈色反応
の有無で判定した。
The end point of the oxidation reaction was determined by extracting a portion of the reaction solution, adjusting it to acidity with hydrochloric acid, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe''.

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末は、図3に示す透過型電子顕微鏡写真(X
50,000)から明らかな通り、平均径0.16μ鵠
であり、また、走査型電子顕微鏡観察の結果、板状比(
板面径と厚みとの比)6:1の板状形態を呈した粒子か
らなり、粒子表面並びに内部に空孔が存在していないも
のであった。
This particle powder is shown in the transmission electron micrograph (X
50,000), the average diameter is 0.16μ, and as a result of scanning electron microscopy observation, the plate-like ratio (
The particles had a plate-like shape with a ratio of plate surface diameter to thickness of 6:1, and there were no pores on the particle surface or inside the particle.

また、この粒子粉末のBET比表面積は、12.8rd
/gであり、磁性は、保磁力Hcが1050e 、飽和
磁化σSが86.8emu/g 、角型比(σr/σS
)が0.165であった。
In addition, the BET specific surface area of this particle powder is 12.8rd
/g, and the magnetism is such that the coercive force Hc is 1050e, the saturation magnetization σS is 86.8emu/g, and the squareness ratio (σr/σS
) was 0.165.

この粒子粉末はX線回折の結果、マグネタイトを示すピ
ークのみからなり、マグネタイトのみからなっていた一 実施例3 硫酸第一鉄1.35+mol/j水溶液1.00 fi
を、Ntガス流下において、反応器中に準備されたFe
に対し0.5モル%を含むように酒石酸1.01gを添
加して得られた0、78mo1/−1のNagCO3水
溶液3.50Ilに加え(C03/Fe =1.5当量
に該当する。)、温度85℃においてFeCO5の生成
を行った。この時の鉄濃度は、Fe換算で0.3 mo
l/lであった。上記FeCO3を含む水溶液中に、温
度85℃において毎分181の空気を2.5時間通気し
て粒子を生成した。
As a result of X-ray diffraction, this particle powder consisted of only a peak indicating magnetite, and it consisted only of magnetite.Example 3 Ferrous sulfate 1.35 + mol/j aqueous solution 1.00 fi
was prepared in the reactor under Nt gas flow.
In addition to 3.50 Il of a 0.78 mo1/-1 NagCO3 aqueous solution obtained by adding 1.01 g of tartaric acid so as to contain 0.5 mol% (corresponding to C03/Fe = 1.5 equivalent). , FeCO5 was produced at a temperature of 85°C. The iron concentration at this time is 0.3 mo in terms of Fe.
It was l/l. Particles were generated by blowing 181 air per minute into the FeCO3-containing aqueous solution for 2.5 hours at a temperature of 85°C.

酸化反応終点は、反応液の一部を抜き取り、塩酸酸性に
調整した後、赤血塩溶液を用いてFe”“の青色呈色反
応の有無で判定した。
The end point of the oxidation reaction was determined by extracting a portion of the reaction solution, acidifying it with hydrochloric acid, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe"".

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末は、透過型電子顕微鏡観察の結果、平均径
0.35μ糟であり、走査型電子顕微鏡観察の結果、板
状比(板面径と厚みとの比)8:lの板状形態を呈した
粒子からなり、粒子表面並びに内部に空孔が存在してい
ないものであった。
As a result of observation with a transmission electron microscope, this particle powder has an average diameter of 0.35 μm, and as a result of observation with a scanning electron microscope, it has a plate-like shape with a plate-like ratio (ratio of plate surface diameter to thickness) of 8:l. It consisted of particles exhibiting the following properties, and there were no pores on the surface or inside the particles.

また、この粒子粉末のBET比表面積は、8.5r+?
/gであり、磁性は、保磁力Hcが1200e 、飽和
磁化σSが88.2e偏u/g 、角型比(σr/σS
)が0.135であった。
Moreover, the BET specific surface area of this particle powder is 8.5r+?
/g, and the magnetism is as follows: coercive force Hc is 1200e, saturation magnetization σS is 88.2e biased u/g, squareness ratio (σr/σS
) was 0.135.

この粒子粉末は、X線回折の結果、マグネタイトを示す
ピークのみからなり、マグネタイトのみからなっていた
As a result of X-ray diffraction, this particle powder was found to consist only of magnetite, with only a peak indicating magnetite.

実施例4 Feに対し0.5モル%を含むように酒石酸0.61g
を添加して得られた硫酸第一鉄1.35mo1/ l水
溶液0.60 nを、N、ガス流下において、反応器中
に準備された0、42vaol/ 1のNa1CO3水
溶液3.901に加え(C03/Fe=3.5当量に該
当する。)、温度85℃においてFeCO5の生成を行
った。この時の鉄濃度は、Fe換算で0.18mol/
 fであった。上記FeCO5を含む水溶液中に引き続
きN2ガスを毎分tSXの割合で吹き込みながら85℃
で30分間熟成処理した後、温度85℃において毎分1
8Ilの空気を2.0時間通気して粒子を生成した。
Example 4 0.61 g of tartaric acid to contain 0.5 mol% based on Fe
0.60 n of a 1.35 mol/l aqueous solution of ferrous sulfate obtained by adding ( corresponding to C03/Fe=3.5 equivalents), and FeCO5 was generated at a temperature of 85°C. The iron concentration at this time is 0.18 mol/Fe equivalent.
It was f. 85°C while continuously blowing N2 gas into the FeCO5-containing aqueous solution at a rate of tSX per minute.
After aging for 30 minutes at 85°C,
Particles were generated by bubbling 8 Il of air for 2.0 hours.

酸化反応終点は、反応液の一部を抜き取り、塩酸酸性に
調整した後、赤血塩溶液を用いてFe”の青色呈色反応
の有無で判定した。
The end point of the oxidation reaction was determined by extracting a portion of the reaction solution, adjusting it to acidity with hydrochloric acid, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe''.

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末は、透過型電子顕微鏡観察の結果、平均径
0.21μ■であり、走査型電子顕微鏡観察の結果、板
状比(板面径と厚みとの比)6:1の板状形態を呈した
粒子からなり、粒子表面並びに内部に空孔が存在してい
ないものであった。
As a result of observation with a transmission electron microscope, this particle powder has an average diameter of 0.21μ■, and as a result of observation with a scanning electron microscope, it has a plate-like shape with a plate-like ratio (ratio of plate surface diameter to thickness) of 6:1. It consisted of particles exhibiting the following properties, and there were no pores on the surface or inside the particles.

また、この粒子粉末のBET比表面積は、10.5rJ
/gであり、磁性は、保磁力Hcが1150e 、飽和
磁化asが87.8emu/g 、角型比(σr/σS
)が0.155であった。
In addition, the BET specific surface area of this particle powder is 10.5 rJ
/g, and the magnetism is such that the coercive force Hc is 1150e, the saturation magnetization as is 87.8emu/g, and the squareness ratio (σr/σS
) was 0.155.

この粒子粉末はX線回折の結果、マグネタイトを示すピ
ークのみからなり、マグネタイトのみからなっていた。
As a result of X-ray diffraction, this particle powder contained only a peak indicating magnetite, and was composed only of magnetite.

実施例5 硫酸第一鉄1.35sol/ l水溶液1.331を、
N富ガス流下において、反応器中に準備されたFeに対
し0.2モル%を含むように酒石酸ナトリウム0.70
gを添加して得られた0、71sol/ jのNa、C
O3水溶液3.17 jに加え(COs/Fe ”1.
25当量に該当する。)、温度60℃においてFeCO
5の生成を行った。この時の鉄濃度は、Fe換算で0.
4軸or/lであった。上記FeCO3を含む水溶液中
に引き続きNtガスを毎分157の割合で吹き込みなが
ら90℃で30分間熟成処理した後、温度90℃におい
て毎分181の空気を3.0時間通気して粒子を生成し
た。
Example 5 Ferrous sulfate 1.35 sol/l aqueous solution 1.331
Under N-rich gas flow, 0.70% sodium tartrate was added to contain 0.2 mol% of Fe prepared in the reactor.
0.71 sol/j of Na, C obtained by adding g
In addition to 3.17j of O3 aqueous solution (COs/Fe"1.
This corresponds to 25 equivalents. ), FeCO at a temperature of 60°C
5 was produced. The iron concentration at this time is 0.
It was 4 axes or/l. The FeCO3-containing aqueous solution was then aged at 90°C for 30 minutes while blowing Nt gas at a rate of 157/min, and then air was bubbled through at 90°C for 3.0 hours at a rate of 181/min to generate particles. .

酸化反応終点は、反応液の一部を抜き取り、塩酸酸性に
調整した後、赤血塩溶液を用いてFe”の青色呈色反応
の有無で判定した。
The end point of the oxidation reaction was determined by extracting a portion of the reaction solution, adjusting it to acidity with hydrochloric acid, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe''.

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末は、透過型電子顕微鏡観察の結果、平均径
0.25μ醜であり、走査型電子顕微鏡観察の結果、板
状比(板面径と厚みとの比)5;lの板状形態を呈した
粒子からなり、粒子表面並びに内部に空孔が存在してい
ないものであった。
As a result of observation with a transmission electron microscope, this particle powder has an average diameter of 0.25μ, and as a result of observation with a scanning electron microscope, it has a plate-like shape with a plate-like ratio (ratio of plate surface diameter to thickness) of 5:1. It consisted of particles exhibiting the following properties, and there were no pores on the surface or inside the particles.

また、この粒子粉末のBET比表面積は、10.5イ/
gであり、磁性は、保磁力Hcが1050e 、飽和磁
化σSが87.2ewu/g−、角型比(σr/σ3)
が0.123であった。
In addition, the BET specific surface area of this particle powder is 10.5 i/
g, and the magnetism is as follows: coercive force Hc is 1050e, saturation magnetization σS is 87.2ewu/g-, squareness ratio (σr/σ3)
was 0.123.

この粒子粉末はX、%i回折の結果、マグネタイトを示
すピークのみからなり、マグネタイトのみからなってい
た。
As a result of X, % i diffraction, this particle powder contained only a peak indicating magnetite, and was composed only of magnetite.

比較例1 硫酸第一鉄を、酒石酸を含む1.08■ol/ lのN
a1CO8水溶液3.67 、gに加え(COs/Fe
 = 3.5当量)た以外は実施例1と同様にして水溶
液中から粒子を生成させた。生成粒子は、常法により炉
別、水洗、乾燥、粉砕した。この粒子粉末は、図4に示
す透過型電子顕微鏡写真(X3G、000)から明らか
な通り、板状粒子と紡錘状粒子とが混在したものであっ
た。また、図5のX&11回折図に示される通り、マグ
ネタイトとへマタイトとのピークを示していた。
Comparative Example 1 Ferrous sulfate was mixed with 1.08 ol/l of N containing tartaric acid.
a1 CO8 aqueous solution 3.67 g, plus (COs/Fe
Particles were produced from an aqueous solution in the same manner as in Example 1, except that the particles were obtained from an aqueous solution. The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method. As is clear from the transmission electron micrograph (X3G, 000) shown in FIG. 4, this particle powder contained a mixture of plate-like particles and spindle-like particles. Moreover, as shown in the X&11 diffraction diagram of FIG. 5, peaks of magnetite and hematite were shown.

図5中、ピークAはマグネタイト、ピークBはヘマタイ
トである。
In FIG. 5, peak A is magnetite and peak B is hematite.

比較例2 酒石酸を添加しなかった以外は、実施例1と同様にして
水溶液中から粒子を生成させた。生成粒子は、常法によ
り炉別、水洗、乾燥、粉砕した。
Comparative Example 2 Particles were produced from an aqueous solution in the same manner as in Example 1, except that tartaric acid was not added. The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末は、図6に示す透過型電子N微鋺写真(X
 20.00G)から明らかな通り、板状粒子、紡錘状
粒子及び針状粒子が混在したものであった。
This particle powder is shown in the transmission electron micrograph (X) shown in Figure 6.
20.00G), plate-like particles, spindle-like particles, and needle-like particles were mixed together.

また、図7のX線回折図に示される通り、マグネタイト
、ヘマタイト及びゲータイトのピークを示していた。
Moreover, as shown in the X-ray diffraction diagram of FIG. 7, peaks of magnetite, hematite, and goethite were shown.

図7中、ピークAはマグネタイト、ピークBはへマタイ
ト、ピークCはゲータイトである。
In FIG. 7, peak A is magnetite, peak B is hematite, and peak C is goethite.

比較例3 酒石酸の添加量を4.0g(Feに対し3.0モル%に
該当する。)とした以外は、実施例1と同様にして水溶
液中から粒子を生成した。
Comparative Example 3 Particles were produced from an aqueous solution in the same manner as in Example 1, except that the amount of tartaric acid added was 4.0 g (corresponding to 3.0 mol % based on Fe).

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

この粒子粉末の磁性は、保磁力Hcが1180eS飽和
磁化σSが68.5emu/g 、角型比(σr/σS
)が0.123であった。
The magnetic properties of this particle powder include a coercive force Hc of 1180 eS, a saturation magnetization σS of 68.5 emu/g, and a squareness ratio (σr/σS
) was 0.123.

比較例4 熟成温度と酸化温度を70℃とした以外は、実施例1と
同様にして水溶液中から粒子を生成した。
Comparative Example 4 Particles were produced from an aqueous solution in the same manner as in Example 1, except that the aging temperature and oxidation temperature were 70°C.

生成粒子は、常法により炉別、水洗、乾燥、粉砕した。The generated particles were separated in a furnace, washed with water, dried, and pulverized using a conventional method.

透過型電子顕微鏡観察の結果、板状粒子、粒状粒子及び
針状粒子が混在したものであった。
As a result of observation using a transmission electron microscope, it was found that plate-like particles, granular particles, and needle-like particles were mixed together.

また、X線回折の結果、マグネタイト、ヘマタイト及び
ゲータイトのピークを示していた。
Moreover, the results of X-ray diffraction showed peaks of magnetite, hematite, and goethite.

〔効  果〕〔effect〕

本発明におけるマグネタイト粒子粉末の製造方法によれ
ば、前出実施例に示した通り、板状形態を呈した微細な
、殊に、0.5μm以下の粒子であって、比表面積が7
〜30nr/gである無孔且つ無焼結の板状マグネタイ
ト粒子を得ることができるの°で、ビヒクル中又は樹脂
中への充填密度が高(、分散性、配向性に優れ、粒子相
互間における接触率が高いものであり、電磁波吸収、シ
ールド材用材料粉末、磁気記録用磁性材料粉末、塗料用
黒色顔料粉末及びゴム・プラスチック用着色剤とじて好
適である。
According to the method for producing magnetite particles according to the present invention, as shown in the above-mentioned examples, fine particles exhibiting a plate-like shape, particularly 0.5 μm or less, and a specific surface area of 7.
It is possible to obtain non-porous and non-sintered plate-shaped magnetite particles with a particle size of ~30 nr/g, and the packing density in the vehicle or resin is high (excellent in dispersibility and orientation, and there are no gaps between particles). It is suitable for electromagnetic wave absorption, material powder for shielding materials, magnetic material powder for magnetic recording, black pigment powder for paints, and coloring agent for rubber and plastics.

【図面の簡単な説明】[Brief explanation of the drawing]

図1、図3、図4及び図6は、いずれも電子顕微鏡写真
である0図1及び図3は、それぞれ実施例1、実施例2
で得られた板状マグネタイト粒子粉末、図4は、比較例
1で得られた板状マグネタイト粒子と紡錘状へマタイト
粒子との混合粉末、図6は、比較例2で得られた板状マ
グネタイト粒子、粒状へマタイト粒子及び針状ゲータイ
ト粒子の混合粉末である。 図2、図5及び図7は、いずれもX線回折図であり、図
2、図5及び図7は、それぞれ実施例1、比較例1及び
比較例2で得られた粒子粉末である。
Figures 1, 3, 4, and 6 are all electron micrographs. Figures 1 and 3 are Example 1 and Example 2, respectively.
FIG. 4 shows a mixed powder of plate-shaped magnetite particles and spindle-shaped hematite particles obtained in Comparative Example 1, and FIG. 6 shows a plate-shaped magnetite particle obtained in Comparative Example 2. It is a mixed powder of particles, granular hematite particles, and acicular goethite particles. 2, FIG. 5, and FIG. 7 are all X-ray diffraction diagrams, and FIG. 2, FIG. 5, and FIG. 7 are the powder particles obtained in Example 1, Comparative Example 1, and Comparative Example 2, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)第一鉄塩水溶液と炭酸アルカリ水溶液とを反応さ
せて得られたFeCO_3を含む水溶液に酸素含有ガス
を通気して酸化するにあたり、前記第一鉄塩水溶液と該
第一鉄塩水溶液中の第一鉄塩に対する炭酸アルカリの当
量比が1当量以上であって、一般式 当量比(〔CO_3^2^−(mol)〕/〔Fe^2
^+(mol)〕)=〔0.13〕/〔(FeCO_3
の濃度(mol/l))^2〕+0.6で表される値以
下である量の前記炭酸アルカリ水溶液とを反応させ、且
つ、あらかじめ前記第一鉄水溶液、前記炭酸アルカリ水
溶液及び酸素含有ガスを通気して酸化する前の前記Fe
CO_3を含む水溶液のいずれかにFeに対し0.01
〜2.0モル%の酒石酸又はその塩を添加し、次いで酸
素含有ガスを通気して酸化することにより水溶液中から
板状マグネタイト粒子を生成させることを特徴とする平
均径が0.03〜0.5μmであって比表面積が7〜3
0m^2/gである無孔且つ無焼結の板状マグネタイト
粒子粉末の製造法。
(1) In oxidizing the FeCO_3-containing aqueous solution obtained by reacting the ferrous salt aqueous solution and the alkali carbonate aqueous solution by passing an oxygen-containing gas through the ferrous salt aqueous solution and the ferrous salt aqueous solution, The equivalent ratio of the alkali carbonate to the ferrous salt of is 1 equivalent or more, and the equivalent ratio of the general formula ([CO_3^2^-(mol)]/[Fe^2
^+(mol)])=[0.13]/[(FeCO_3
(mol/l))^2] + 0.6, and the ferrous aqueous solution, the alkali carbonate aqueous solution, and the oxygen-containing gas The Fe before being oxidized by aeration
0.01 for Fe in any of the aqueous solutions containing CO_3
It is characterized by producing plate-shaped magnetite particles from an aqueous solution by adding ~2.0 mol% of tartaric acid or its salt and then oxidizing by passing oxygen-containing gas.The average diameter is 0.03 to 0. .5μm and specific surface area is 7-3
A method for producing non-porous and non-sintered plate-shaped magnetite particles having a particle size of 0 m^2/g.
JP62332467A 1987-02-16 1987-12-29 Production method of plate-like magnetite particles Expired - Fee Related JP2583087B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62332467A JP2583087B2 (en) 1987-12-29 1987-12-29 Production method of plate-like magnetite particles
EP88301270A EP0279626B1 (en) 1987-02-16 1988-02-16 Plate-like magnetite particles, plate-like maghemite particles and process for producing the same
DE8888301270T DE3860614D1 (en) 1987-02-16 1988-02-16 DISK-SHAPED MAGNETITE AND MAGHEMITE PARTICLES AND METHOD FOR THE PRODUCTION THEREOF.
US07/156,508 US4865834A (en) 1987-02-16 1988-02-16 Process for producing plate-like magnetite particles and plate-like maghemite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332467A JP2583087B2 (en) 1987-12-29 1987-12-29 Production method of plate-like magnetite particles

Publications (2)

Publication Number Publication Date
JPH01176233A true JPH01176233A (en) 1989-07-12
JP2583087B2 JP2583087B2 (en) 1997-02-19

Family

ID=18255297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332467A Expired - Fee Related JP2583087B2 (en) 1987-02-16 1987-12-29 Production method of plate-like magnetite particles

Country Status (1)

Country Link
JP (1) JP2583087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401000A2 (en) * 1989-05-31 1990-12-05 Toda Kogyo Corp. Plate-like magnetite particles and process for producing the same
JP2006335615A (en) * 2005-06-03 2006-12-14 Mitsui Mining & Smelting Co Ltd Method of manufacturing complex iron oxide particle for ferrite molded body
US7387540B1 (en) 2006-12-05 2008-06-17 Hon Hai Precision Ind. Co., Ltd. Electrical connector assembly having improved terminal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401000A2 (en) * 1989-05-31 1990-12-05 Toda Kogyo Corp. Plate-like magnetite particles and process for producing the same
JP2006335615A (en) * 2005-06-03 2006-12-14 Mitsui Mining & Smelting Co Ltd Method of manufacturing complex iron oxide particle for ferrite molded body
JP4718247B2 (en) * 2005-06-03 2011-07-06 三井金属鉱業株式会社 Method for producing composite iron oxide particles for ferrite molded body
US7387540B1 (en) 2006-12-05 2008-06-17 Hon Hai Precision Ind. Co., Ltd. Electrical connector assembly having improved terminal

Also Published As

Publication number Publication date
JP2583087B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US4729846A (en) Method for manufacturing lepidocrocite
US3720618A (en) Method of producing a powder of cobalt-containing needle-like shaped gamma-ferric oxide particles as magnetic recording material
EP0279626B1 (en) Plate-like magnetite particles, plate-like maghemite particles and process for producing the same
EP0401000B1 (en) Plate-like magnetite particles and process for producing the same
JPH01176233A (en) Production of plate magnetite particle powder
US5399278A (en) Process for producing acicular goethite particles and acicular magnetic iron oxide particles
KR100445590B1 (en) Cobalt-coated needle iron magnetic iron oxide particles
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JP2612461B2 (en) Plate-like maghemite particle powder and method for producing the same
JP2704559B2 (en) Plate-like magnetite particle powder and production method thereof
JPS63201019A (en) Granular powder of planar magnetite and its production
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6251898B2 (en)
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
JPH08208235A (en) Production of flat magnetite fine particular powder
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPS62128926A (en) Production of magnetic iron oxide grain powder having spindle type
JPS62296501A (en) Manufacture of magnetic powder
JPH06124827A (en) Manufacture of cobalt adhesive magnetic iron oxide particle powder
JPH03223120A (en) Production of needlelike crystal goethite particle powder
JPH0425686B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees