JPS6251898B2 - - Google Patents

Info

Publication number
JPS6251898B2
JPS6251898B2 JP55132796A JP13279680A JPS6251898B2 JP S6251898 B2 JPS6251898 B2 JP S6251898B2 JP 55132796 A JP55132796 A JP 55132796A JP 13279680 A JP13279680 A JP 13279680A JP S6251898 B2 JPS6251898 B2 JP S6251898B2
Authority
JP
Japan
Prior art keywords
iron oxide
yellow iron
less
width
major axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55132796A
Other languages
Japanese (ja)
Other versions
JPS5761634A (en
Inventor
Osamu Fujii
Takahiko Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP55132796A priority Critical patent/JPS5761634A/en
Publication of JPS5761634A publication Critical patent/JPS5761634A/en
Publication of JPS6251898B2 publication Critical patent/JPS6251898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、黄色酸化鉄の製造法に関するもので
ある。更に詳しくは、磁性酸化鉄粉末の製造原料
として好適な黄色酸化鉄の製造法に関するもので
ある。 一般に黄色酸化鉄(α−FeOOH)を還元し、
又はこの還元後、酸化して製造される磁性酸化鉄
の粒子形状は、出発原料である黄色酸化鉄に依存
する。 そのため、高品位の磁性酸化鉄を得るには、黄
色酸化鉄の性状が極めて重要である。 近年、磁気記録機器類の発展、高性能化にとも
ない磁気酸化鉄もより高性能なものが求められて
いる。 一般に磁性酸化鉄の磁気特性を向上するには、
粒度が均一で、かつ軸比(長径/幅)の大きな粒
子にしなければならない。また、粒子の大きさも
重要である。 すなわち、より微細でかつ軸比が大きいほど、
磁性酸化鉄粉末の磁気特性は向上するが、一方、
その分散性が悪くなる傾向にあるため、磁気テー
プなどの記録材料に用いる際、本来の特性を生か
せないばかりでなく、分散コストの上昇をもたら
すことにもなる。 前述の如く、磁性酸化鉄の粒子形状が黄色酸化
鉄に依存するため、粒度の均一な軸比の大きな黄
色酸化鉄が求められている。 従来、黄色酸化鉄の製造法として、第一鉄塩溶
液にアルカリを添加して、水酸化第一鉄の沈殿物
とし、これを空気酸化する方法がある。 この方法は少くとも、針状結晶の黄色酸化鉄は
得られるが、難溶性の水酸化第一鉄結晶(六角板
状)の囲りに、黄色酸化鉄の結晶が成長し、針状
粒子相互が枝分れ状に凝集した構造となりやすく
又この方法は、難溶性の中間体(水酸化第一鉄)
から不溶に近い難溶性の黄色酸化鉄を得る反応で
あり、製造条件の調整で、生成物の粒度を整え均
一なものとするのは、極めて困難である。 近年、水酸化第二鉄を加熱熟成し、黄色酸化鉄
を得る方法が提案されているが、この方法におい
ては粒状のα−Fe2O3が副生する傾向があり、こ
のα−Fe2O3が黄色酸化鉄の結晶成長に悪影響を
及ぼし、粒度の均一なものは得られない。 このように、いずれの方法においても粒度が均
一でかつ、軸比の大きな黄色酸化鉄が得られない
状況にある。 黄色酸化鉄の粒度調整を行なう方法として、黄
色酸化鉄を水又は、10N以下のアルカリ中で加圧
水熱処理を行なう方法(特公昭53−28158、黄色
酸化鉄顔料の特性改善方法)がある。 同方法は、黄色酸化鉄に含まれる微細な不完全
結晶を完全結晶とし、粒度を均一にし、さらに針
状結晶の寸法比を改良(軸比を小さくする)する
ものである。 この方法を磁性材料用黄色酸化鉄に適用した場
合、粒子の長径が小さくなり、幅(短径)が大き
くなるため軸比は減少し、粒度が均一で、異方性
磁界分布の優れた、かつ分散性の良好な磁性材料
の原料となる黄色酸化鉄が得られるが、なおその
性能の改善が望まれる。 本発明者らは、叙上の情況に鑑み、水熱処理の
優れた特性、すなわち結晶の完全化と粒度の均一
化を生かし、軸比を減少させない方法を求めて鋭
意研究をした結果、微細な針状の黄色酸化鉄を用
いて水熱処理を施すと、針状結晶の長径方向への
成長が著しく、軸比が大きく粒度の均一な黄色酸
化鉄になるという知見を得て、本発明を完成した
ものである。 すなわち、本発明は長径が0.4μ以下でかつ幅
が0.04μ以下の微細な針状の黄色酸化鉄を水又は
10N以下のアルカリ水溶液に分散し、100〜250℃
で水熱処理を行ない、長径が0.3〜1.0μで幅が0.1
μ以下の単一粒子からなる粒度分布の整つた結晶
を得る事を特徴とする黄色酸化鉄の製造法を提供
するものである。 本発明において、黄色酸化鉄はその製造法の如
何にかかわらず適用する事ができる。 用いる黄色酸化鉄の形状・大きさは極めて重要
である。 すなわち、微細かつ針状であればあるほど長径
方向への成長が著しく、軸比の大きな粒度の整つ
たものが得られる。 また、極めて微細な不完全結晶を含むほどその
効果が大きい。 この長径方向への成長は、本発明において初め
て見い出されたものである。 したがつて、本発明は長径0.4μ以下でかつ幅
が0.04μ以下、好ましくは長径が0.3μ以下でか
つ幅が0.03μ以下の微細な黄色酸化鉄に適用され
る。 上述の如く、黄色酸化鉄はその製造法の如何に
かかわらず適用できるが、特に水酸化第一鉄の酸
化で得られる枝分れの有る微細な黄色酸化鉄に好
都合に適用される。本発明により、枝分れのない
粒度の整つたものとなるからである。 又、水酸化第一鉄をPH11以上のアルカリ性で空
気酸化して得られた黄色酸化鉄のアルカリ溶液を
そのまま水熱処理する事もできる。この場合、分
離操作等の必要がなく経済的である。 水熱処理の媒体は水又は、10N以下のアルカリ
水溶液を用いる。 アルカリとしては、水酸化ナトリウム、水酸化
カルシウム、炭酸ナトリウム、水酸化カリウム、
アンモニア水などが用いられる。 これらの濃度は、10N以下が好適である。 これ以上の濃度では、α−Fe2O3アルカリフエ
ライトが生成する。 又、アルカリ濃度が高いほど短径(幅)方向へ
の成長が大きくなる傾向があるので、2N以下の
アルカリ水溶液中で実施することが好ましい。 水熱処理温度は、100℃〜250℃、好ましくは
150℃〜220℃である。 250℃以上においては、α−Fe2O3やアルカリ
フエライトが生成し、100℃以下では、結晶成長
が進行しないからである。 水熱処理時間は、処理温度や用いる黄色酸化鉄
の粒子の大きさ等により、異なるが通常数分〜数
時間である。 以上の条件で水熱処理を行なうと、長径0.4μ
以下で、幅0.04μ以下の微細でかつ不整いな原料
黄色酸化鉄は長径0.3〜1.0μで、幅が0.1μ以下の
粒度の整つた黄色酸化鉄となる。 この方法で得られた黄色酸化鉄は、還元又は、
還元後酸化して磁性材料とした場合、粒子形状の
変化が非常に少なく粒度が均一で軸比の大きな磁
気特性の優れたものとなる。 又、水熱処理の際、ケイ酸ソーダ等を添加する
と還元又は酸化処理において、粒子形状の変化が
より少ない黄色酸化鉄が得られる。 このケイ酸ソーダの添加量は、黄色酸化鉄に対
して0.1〜5.0重量%が適当である。 更に、本発明で得られた黄色酸化鉄より得られ
た黄色酸化鉄より得られる磁性材料は、長径が
0.3〜1.0μの単一粒子からなるもので微小粒子の
混在がないため、極めて分散性の良いものとな
る。 以下本発明を実施例をもつて説明する。 実施例、参考例において、部及び%は全て重
量、部及び重量%を示す。 実施例 1 硫酸第一鉄水溶液にカ性ソーダを加え、生成し
た水酸化第一鉄を空気酸化する事により得られた
長径約0.1〜0.3μで幅が約0.01〜0.03μの黄色酸
化鉄(電子顕微鏡写真、倍率20000を図−1に示
す)40部と0.5N−水酸化ナトリウム水溶液400部
をテフロン・ライニング・オートクレーブに仕込
み、200℃に2時間加熱した。 冷却後、過水洗して乾燥した。 本実施例で得られた黄色酸化鉄の電子顕微鏡写
真、倍率20000を図−2に示す。 図−2から明らかな如く、本実施例の黄色酸化
鉄は、長径約0.5〜0.7μ、幅が0.04〜0.06μの粒
子であり長径方向へ成長し、軸比も大きくなつて
いる。 本実施例の黄色酸化鉄を水素ガス気流中330℃
1時間加熱し、ついで200℃30分間空気酸化を行
ない、γ−Fe2O3としたところ、本実施例の原料
黄色酸化鉄に比べて磁気特性が非常にすぐれてい
た。 その結果を表−1に示す。
The present invention relates to a method for producing yellow iron oxide. More specifically, the present invention relates to a method for producing yellow iron oxide suitable as a raw material for producing magnetic iron oxide powder. Generally, yellow iron oxide (α-FeOOH) is reduced,
Or, after this reduction, the particle shape of the magnetic iron oxide produced by oxidation depends on the yellow iron oxide that is the starting material. Therefore, in order to obtain high-grade magnetic iron oxide, the properties of yellow iron oxide are extremely important. In recent years, with the development and higher performance of magnetic recording equipment, magnetic iron oxide is also required to have higher performance. In general, to improve the magnetic properties of magnetic iron oxide,
The particles must be uniform in particle size and have a large axial ratio (major axis/width). The size of the particles is also important. In other words, the finer the particle size and the larger the axial ratio, the
Although the magnetic properties of magnetic iron oxide powder are improved,
Since its dispersibility tends to deteriorate, when used in recording materials such as magnetic tapes, it not only fails to take advantage of its original properties, but also leads to an increase in dispersion costs. As mentioned above, since the particle shape of magnetic iron oxide depends on the yellow iron oxide, yellow iron oxide with a uniform particle size and a large axial ratio is required. Conventionally, as a method for producing yellow iron oxide, there is a method in which an alkali is added to a ferrous salt solution to form a ferrous hydroxide precipitate, and the precipitate is air-oxidized. At least, this method yields needle-shaped yellow iron oxide crystals, but the yellow iron oxide crystals grow around hardly soluble ferrous hydroxide crystals (hexagonal plate shape), and the needle-shaped particles interact with each other. This method tends to result in a branched agglomerated structure.
It is a reaction to obtain hardly soluble yellow iron oxide from iron oxide, and it is extremely difficult to adjust the particle size of the product and make it uniform by adjusting the manufacturing conditions. In recent years, a method has been proposed to obtain yellow iron oxide by heating and aging ferric hydroxide, but this method tends to produce granular α-Fe 2 O 3 as a by-product ; O 3 has a negative effect on the crystal growth of yellow iron oxide, making it impossible to obtain uniform grain size. As described above, in any of the methods, yellow iron oxide with uniform particle size and large axial ratio cannot be obtained. As a method for adjusting the particle size of yellow iron oxide, there is a method in which yellow iron oxide is subjected to pressure hydrothermal treatment in water or an alkali of 10N or less (Japanese Patent Publication No. 53-28158, Method for Improving Characteristics of Yellow Iron Oxide Pigment). This method converts the fine imperfect crystals contained in yellow iron oxide into perfect crystals, makes the grain size uniform, and further improves the dimensional ratio of the needle-like crystals (reduces the axial ratio). When this method is applied to yellow iron oxide for magnetic materials, the major axis of the particles becomes smaller and the width (minor axis) increases, so the axial ratio decreases, the particle size is uniform, and the anisotropic magnetic field distribution is excellent. Although yellow iron oxide, which is a raw material for magnetic materials with good dispersibility, can be obtained, it is still desired to improve its performance. In view of the above circumstances, the inventors of the present invention have conducted extensive research in search of a method that takes advantage of the excellent properties of hydrothermal treatment, namely perfecting the crystals and making the grain size uniform, without reducing the axial ratio. The present invention was completed based on the finding that when acicular yellow iron oxide is subjected to hydrothermal treatment, the acicular crystals grow significantly in the major axis direction, resulting in yellow iron oxide with a large axial ratio and uniform particle size. This is what I did. That is, in the present invention, fine needle-shaped yellow iron oxide with a major axis of 0.4μ or less and a width of 0.04μ or less is mixed with water or
Dispersed in alkaline aqueous solution of 10N or less, 100 to 250℃
The long axis is 0.3 to 1.0μ and the width is 0.1.
The present invention provides a method for producing yellow iron oxide, which is characterized by obtaining crystals with a uniform particle size distribution consisting of single particles of μ or less in size. In the present invention, yellow iron oxide can be used regardless of its manufacturing method. The shape and size of the yellow iron oxide used are extremely important. That is, the finer and acicular the grain, the more remarkable the growth in the long axis direction, and the more uniform the grain size with a large axial ratio can be obtained. Moreover, the more extremely fine imperfect crystals are included, the greater the effect is. This growth in the major axis direction was discovered for the first time in the present invention. Therefore, the present invention is applied to fine yellow iron oxide having a major axis of 0.4μ or less and a width of 0.04μ or less, preferably a major axis of 0.3μ or less and a width of 0.03μ or less. As mentioned above, yellow iron oxide can be applied regardless of its manufacturing method, but it is particularly advantageous to apply it to fine branched yellow iron oxide obtained by oxidation of ferrous hydroxide. This is because, according to the present invention, particles with uniform particle size and no branching can be obtained. Further, an alkaline solution of yellow iron oxide obtained by air oxidation of ferrous hydroxide with an alkaline pH of 11 or above can be directly subjected to hydrothermal treatment. In this case, there is no need for separation operations, and it is economical. The medium for hydrothermal treatment is water or an alkaline aqueous solution of 10N or less. Alkali include sodium hydroxide, calcium hydroxide, sodium carbonate, potassium hydroxide,
Ammonia water etc. are used. The concentration of these is preferably 10N or less. At concentrations higher than this, α-Fe 2 O 3 alkali ferrite is produced. Furthermore, since the higher the alkali concentration, the larger the growth in the short axis (width) direction tends to be, it is preferable to carry out the process in an aqueous alkaline solution of 2N or less. Hydrothermal treatment temperature is 100℃~250℃, preferably
The temperature is between 150°C and 220°C. This is because at temperatures above 250°C, α-Fe 2 O 3 and alkali ferrite are produced, and below 100°C, crystal growth does not proceed. The hydrothermal treatment time varies depending on the treatment temperature, the size of the yellow iron oxide particles used, etc., but is usually from several minutes to several hours. When hydrothermal treatment is performed under the above conditions, the major diameter is 0.4μ.
In the following, the fine and irregular raw material yellow iron oxide with a width of 0.04 μm or less becomes a well-ordered yellow iron oxide with a major axis of 0.3 to 1.0 μm and a width of 0.1 μm or less. The yellow iron oxide obtained by this method can be reduced or
When reduced and then oxidized to produce a magnetic material, the particle shape changes very little, the particle size is uniform, the axial ratio is large, and the magnetic material has excellent magnetic properties. Furthermore, when sodium silicate or the like is added during hydrothermal treatment, yellow iron oxide with less change in particle shape can be obtained during reduction or oxidation treatment. The appropriate amount of sodium silicate added is 0.1 to 5.0% by weight based on yellow iron oxide. Furthermore, the magnetic material obtained from the yellow iron oxide obtained by the present invention has a long axis.
Since it is made up of single particles of 0.3 to 1.0μ and does not contain any fine particles, it has extremely good dispersibility. The present invention will be explained below with reference to Examples. In Examples and Reference Examples, all parts and % indicate weight, parts and weight %. Example 1 Yellow iron oxide (with a major axis of about 0.1 to 0.3μ and a width of about 0.01 to 0.03μ) obtained by adding caustic soda to an aqueous ferrous sulfate solution and air-oxidizing the produced ferrous hydroxide ( 40 parts of the electron micrograph (20,000 magnification shown in Figure 1) and 400 parts of 0.5N aqueous sodium hydroxide solution were placed in a Teflon-lined autoclave and heated to 200°C for 2 hours. After cooling, it was washed with water and dried. Figure 2 shows an electron micrograph of the yellow iron oxide obtained in this example at a magnification of 20,000. As is clear from FIG. 2, the yellow iron oxide of this example is a particle with a major axis of about 0.5 to 0.7 μ and a width of 0.04 to 0.06 μ, and grows in the major axis direction, and the axial ratio becomes large. The yellow iron oxide of this example was heated at 330°C in a hydrogen gas stream.
When heated for 1 hour and then air oxidized at 200° C. for 30 minutes to obtain γ-Fe 2 O 3 , the magnetic properties were extremely superior to that of the raw material yellow iron oxide of this example. The results are shown in Table-1.

【表】 また、この両者を磁気テープ用塗料にした場
合、本実施例品は塗料化時の分散性に優れてい
た。 更に、磁気テープにした場合、本実施例品は磁
場配向性に優れ、充てん密度が高く、感度も良好
であつた。 参考例 1 長径が0.5〜1μである市販黄色酸化鉄(電子
顕微鏡写真、倍率20000を図−3に示す)を用い
て、実施例1と同条件で水熱処理を行なつたとこ
ろ、微粒子が減少し、かつ針状形の幅が大きくな
つた黄色酸化鉄が得られた。 この黄色酸化鉄の電子顕微鏡写真を図−4(倍
率20000)に示す。 この写真から明らかな如く、長径方向への成長
はみられなかつた。 実施例 2 硫酸第一鉄の水塩(FeSO4−7H2O)100部を水
1000部に溶解した溶液に、水酸化ナトリウム100
部を水500部に溶解した溶液を加えて、50℃で空
気酸化して、黄色酸化鉄のアルカリ水スラリーを
得た。(この反応液は、常にPH13以上であつた。) このスラリーをオートクレーブに仕込み、180
℃で1時間水熱処理したところ、長径0.3〜0.5μ
で幅が0.02〜0.04μの粒度の整つた黄色酸化鉄が
得られた。 実施例 3 実施例1に用いた黄色酸化鉄40部と、1N−水
酸化ナトリウム水溶液400部とケイ酸ソーダ
Na2SiO3)4部をオートクレーブ中で、200℃1
時間加熱したところ、ケイ酸被服された長径0.3
〜0.5μ、幅0.02〜0.03μの黄色酸化鉄が得られ
た。 このものを実施例1に記載の方法で、γFe2O3
にしたところ、粒子の形状、大きさがもとの黄色
酸化鉄とほとんど変化のないものであり、優れた
磁気特性と分散性を有していた。 実施例 4 実施例1における水酸化ナトリウムの代りに水
酸化ナトリウムを用いても、実施例1と同様の優
れた黄色酸化鉄が得られた。
[Table] Furthermore, when both were used as a paint for magnetic tape, the product of this example had excellent dispersibility when made into a paint. Furthermore, when made into a magnetic tape, the product of this example had excellent magnetic field orientation, high packing density, and good sensitivity. Reference Example 1 Hydrothermal treatment was performed under the same conditions as in Example 1 using a commercially available yellow iron oxide with a major axis of 0.5 to 1μ (electron micrograph, magnification 20,000 is shown in Figure 3). As a result, fine particles were reduced. However, a yellow iron oxide with a needle-like shape and a larger width was obtained. An electron micrograph of this yellow iron oxide is shown in Figure 4 (20,000 magnification). As is clear from this photograph, no growth was observed in the long axis direction. Example 2 Add 100 parts of ferrous sulfate aqueous salt (FeSO 4 −7H 2 O) to water.
Add 100 parts of sodium hydroxide to a solution of 1000 parts of sodium hydroxide.
A solution prepared by dissolving 500 parts of water was added thereto, and air oxidation was performed at 50°C to obtain an alkaline water slurry of yellow iron oxide. (This reaction solution always had a pH of 13 or higher.) This slurry was placed in an autoclave and heated to
After hydrothermal treatment at ℃ for 1 hour, the major diameter was 0.3 to 0.5μ.
Yellow iron oxide with a uniform particle size with a width of 0.02 to 0.04μ was obtained. Example 3 40 parts of yellow iron oxide used in Example 1, 400 parts of 1N sodium hydroxide aqueous solution, and sodium silicate
4 parts of Na 2 SiO 3 ) were heated at 200°C in an autoclave.
When heated for an hour, the major diameter of the silicic acid-covered material was 0.3
A yellow iron oxide of ~0.5μ and a width of 0.02-0.03μ was obtained. This product was converted into γFe 2 O 3 by the method described in Example 1.
As a result, the shape and size of the particles were almost the same as the original yellow iron oxide, and they had excellent magnetic properties and dispersibility. Example 4 Even when sodium hydroxide was used in place of the sodium hydroxide in Example 1, an excellent yellow iron oxide similar to that in Example 1 was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

各図面は以下の内容の電子顕微鏡写真(倍率;
20000)を示す。図−1;実施例1に用いた原料
黄色酸化鉄、図−2;実施例1で得られた黄色酸
化鉄、図−3;参考例1に用いた市販黄色酸化
鉄、図−4;参考例1で得られた黄色酸化鉄。
Each drawing is an electron micrograph (magnification;
20000). Figure-1; Raw yellow iron oxide used in Example 1; Figure-2; Yellow iron oxide obtained in Example 1; Figure-3; Commercially available yellow iron oxide used in Reference Example 1; Figure-4; Reference. Yellow iron oxide obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 長径が0.4μ以下で、かつ幅(短径)が0.04
μ以下の微細な針状の黄色酸化鉄(α−
FeOOH)を水又は10N以下のアルカリ水溶液に
分散し100〜250℃で熱処理を行い、長径が0.3〜
1.0μ、幅が0.1μ以下の単一粒子形状を有する結
晶を得ることを特徴とする黄色酸化鉄の製造法。 2 微細な針状の黄色酸化鉄として水酸化第一鉄
を空気酸化して得たものを用いる特許請求の範囲
1項記載の黄色酸化鉄の製造法。 3 水酸化第一鉄を空気酸化して得られる枝分れ
状のある黄色酸化鉄を用いる特許請求の範囲第2
項記載の黄色酸化鉄の製造法。 4 長径が0.3μ以下で、かつ幅が0.03μ以下で
ある微細な針状の黄色酸化鉄を用いる特許請求の
範囲1〜3項のいずれかの項に記載の黄色酸化鉄
の製造法。 5 熱処理温度が150〜220℃である特許請求の範
囲1〜4項のいずれかの項に記載の黄色酸化鉄の
製造法。 6 2N以下のアルカリ水溶液を用いる特許請求
の範囲1〜5項のいずれかの項に記載の黄色酸化
鉄の製造法。 7 水酸化第一鉄の分散水溶液をPH11以上で空気
酸化して得られる長径が0.4μ以下で、かつ幅が
0.04μ以下の微細な針状の黄色酸化鉄のアルカリ
水溶液分散液を100〜250℃で熱処理を行い、長径
が0.3〜1.0μ、幅が0.1μ以下の単一粒子形状を有
する結晶を得ることを特徴とする黄色酸化鉄の製
造法。 8 長径が0.4μ以下で、かつ幅が0.04μ以下の
微細な針状の黄色酸化鉄をケイ酸ソーダの存在下
に水又は10N以下のアルカリ水溶液に分散し100
〜250℃で熱処理を行い、長径が0.3〜1.0μ、幅
が0.1μ以下の単一粒子形状を有する結晶を得る
ことを特徴とする黄色酸化鉄の製造法。
[Claims] 1. The major axis is 0.4μ or less, and the width (minor axis) is 0.04
Fine needle-like yellow iron oxide (α-
FeOOH) is dispersed in water or an alkaline aqueous solution of 10N or less, heat-treated at 100-250℃, and the major axis is 0.3-
A method for producing yellow iron oxide, characterized by obtaining crystals having a single particle shape of 1.0μ and a width of 0.1μ or less. 2. The method for producing yellow iron oxide according to claim 1, which uses fine acicular yellow iron oxide obtained by air oxidation of ferrous hydroxide. 3. Claim 2 uses branched yellow iron oxide obtained by air oxidation of ferrous hydroxide.
The method for producing yellow iron oxide described in Section 1. 4. The method for producing yellow iron oxide according to any one of claims 1 to 3, using fine acicular yellow iron oxide having a major axis of 0.3μ or less and a width of 0.03μ or less. 5. The method for producing yellow iron oxide according to any one of claims 1 to 4, wherein the heat treatment temperature is 150 to 220°C. 6. The method for producing yellow iron oxide according to any one of claims 1 to 5, using an alkaline aqueous solution of 2N or less. 7 A dispersion solution of ferrous hydroxide is oxidized in air at pH 11 or higher, and the major axis is 0.4 μ or less and the width is
Heat-treating an alkaline aqueous dispersion of yellow iron oxide with a fine needle shape of 0.04μ or less at 100 to 250℃ to obtain crystals having a single particle shape with a major axis of 0.3 to 1.0μ and a width of 0.1μ or less. A method for producing yellow iron oxide characterized by: 8 Fine acicular yellow iron oxide with a major axis of 0.4μ or less and a width of 0.04μ or less is dispersed in water or an alkaline aqueous solution of 10N or less in the presence of sodium silicate.
A method for producing yellow iron oxide, which comprises performing heat treatment at ~250°C to obtain crystals having a single particle shape with a major axis of 0.3 to 1.0μ and a width of 0.1μ or less.
JP55132796A 1980-09-26 1980-09-26 Production of iron oxide Granted JPS5761634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55132796A JPS5761634A (en) 1980-09-26 1980-09-26 Production of iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55132796A JPS5761634A (en) 1980-09-26 1980-09-26 Production of iron oxide

Publications (2)

Publication Number Publication Date
JPS5761634A JPS5761634A (en) 1982-04-14
JPS6251898B2 true JPS6251898B2 (en) 1987-11-02

Family

ID=15089756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55132796A Granted JPS5761634A (en) 1980-09-26 1980-09-26 Production of iron oxide

Country Status (1)

Country Link
JP (1) JPS5761634A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112626A (en) * 1983-11-18 1985-06-19 Dainippon Ink & Chem Inc Manufacture of dense rod-shaped iron oxyhydroxide
JPS60255627A (en) * 1984-06-01 1985-12-17 Ube Ind Ltd Prduction of ferromagnetic powder
JPS6126518A (en) * 1984-07-13 1986-02-05 Ube Ind Ltd Preparation of granular iron oxyhydroxide particle

Also Published As

Publication number Publication date
JPS5761634A (en) 1982-04-14

Similar Documents

Publication Publication Date Title
US4323596A (en) Coating iron oxide particles for magnetic recording
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
US4865834A (en) Process for producing plate-like magnetite particles and plate-like maghemite particles
JPS6311763B2 (en)
JPS6251898B2 (en)
JPS6135135B2 (en)
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
US4348430A (en) Process for producing magnetic particles for magnetic recording medium
JPS6313943B2 (en)
JPS5950607B2 (en) Method for producing acicular magnetic iron oxide particles
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPS5893806A (en) Production of magnetic particle powder of needle crystal alloy
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPS60162707A (en) Production of magnetic particle powder consisting of needle crystal iron alloy for magnetic recording
JPH02267123A (en) Production of lepidocrosite
JPS5853686B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS5932046B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5951725B2 (en) Method for producing acicular magnetic iron oxide particle powder
JPS58151333A (en) Manufacture of needlelike iron oxide particle
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS60255627A (en) Prduction of ferromagnetic powder
JPS61266313A (en) Discoid ferromagnetic powder and its production
JPS59128293A (en) Manufacture of needlelike crystal of alpha-iron oxyhydroxide
JPH0446898B2 (en)
JPS6317886B2 (en)