JPH01298028A - Illumenite powder and production thereof - Google Patents

Illumenite powder and production thereof

Info

Publication number
JPH01298028A
JPH01298028A JP63128706A JP12870688A JPH01298028A JP H01298028 A JPH01298028 A JP H01298028A JP 63128706 A JP63128706 A JP 63128706A JP 12870688 A JP12870688 A JP 12870688A JP H01298028 A JPH01298028 A JP H01298028A
Authority
JP
Japan
Prior art keywords
particles
particle
ilmenite
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63128706A
Other languages
Japanese (ja)
Inventor
Tatsuya Nakamura
龍哉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP63128706A priority Critical patent/JPH01298028A/en
Publication of JPH01298028A publication Critical patent/JPH01298028A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

PURPOSE:To obtain a well-balanced particle size distribution and to improve dispersibility, work efficiency and heat resistance by hydrothermally treating an alkaline Fe(OH)2 suspension contg. Ti (III). CONSTITUTION:An alkaline Fe(OH)2 suspension of 8.0-10.0pH contg. Ti (III) (e.g., TiCl3), Fe (II) (e.g., FeSO4) and alkali (e.g., Na2CO3) is hydrothermally treated at 200-300 deg.C in an autoclave and the resulting black precipitate is separated by filtration, washed and dried to obtain illumenite powder consisting of separate particles having 0.05-2.0mum average particle size and a well-balanced particle size distribution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平均径0.05〜2.0μmであって、粒子
が1個1個バラバラであり且つ粒度が均斉なFeTiO
4粒子からなるイルメナイト粒子粉末及びその製造法に
関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to FeTiO, which has an average diameter of 0.05 to 2.0 μm, each particle is disjoint, and the particle size is uniform.
The present invention relates to an ilmenite particle powder consisting of four particles and a method for producing the same.

その主な用途は、塗料用、トナー用黒色顔料粉末である
Its main use is as a black pigment powder for paints and toners.

〔従来の技術〕[Conventional technology]

近時、省エネルギー時代における作業能率の向上並びに
塗膜物性の改良という観点から、塗料の製造に際して顔
料粒子粉末のビヒクル中での分散性、作業性及び耐熱性
の向上が益々要求されている。
In recent years, from the viewpoint of improving work efficiency and improving the physical properties of paint films in the energy-saving era, there has been an increasing demand for improvements in the dispersibility of pigment particle powder in a vehicle, workability, and heat resistance when producing paints.

分散性及び作業性の向上の為には、顔料粒子粉末として
適度な粒度を有し、且つ、粒子が1個1個バラバラであ
り、しかも、粒度が均斉であることが必要である6 耐熱性について言えば、近年、複写機器の普及に伴って
、需要が増大している現像用トナーは、その製造工程に
おいて150℃以上の高温となる為、現像用トナーの着
色剤として用いられる顔料粒子粉末は、150”C以上
の温度においても色彩が安定していることが必要である
In order to improve dispersibility and workability, it is necessary that the pigment particle powder has an appropriate particle size, that each particle is different, and that the particle size is uniform6. Heat resistance In recent years, with the spread of copying equipment, the demand for developing toner has increased, and since the manufacturing process involves high temperatures of 150°C or higher, pigment particle powder used as a coloring agent in developing toner is required. The color must be stable even at temperatures of 150"C or higher.

従来、黒色顔料粒子粉末としてマグネタイト粒子粉末、
カーボンブラック粒子粉末が広く一般に使用されている
Conventionally, magnetite particle powder was used as black pigment particle powder,
Carbon black particulate powder is widely and commonly used.

また、黒色粒子粉末としてイルメナイト粒子粉末が知ら
れている。イルメナイト粒子粉末は、天然に産出するも
のと合成されるものがあり、合成法としては、例えば、
ジャーナル オブ フィジイ力ル ソサイエティ オブ
 ジャパン(Journalof Physical 
5ocjety of Japan)第11巻第5号(
1956年)の第497頁に記載されている通り、Re
gos 、TiO□及び鉄粉を混合、成型し、次いで真
空管(10−”nnHg)中、1350℃で焼成後、室
温まで冷却して粉砕することにより得られている。
Ilmenite particles are also known as black particles. There are two types of ilmenite particle powder: naturally occurring ones and synthetic ones. Examples of synthetic methods include:
Journal of Physical Society of Japan
5ocjety of Japan) Volume 11 No. 5 (
(1956), page 497, Re
It is obtained by mixing GOS, TiO□ and iron powder, molding, firing at 1350°C in a vacuum tube (10-''nnHg), cooling to room temperature, and pulverizing.

〔発明が解決しようとする問題点1 分散性、作業性及び耐熱性に優れた黒色顔料粒子粉末は
、現在量も要求されているところであるが、上述した通
りの公知のマグネタイト粒子粉末は、平均径0.2〜0
.5μm程度の粒状又は立方状粒子であり、水溶液中か
ら生成する為粒子が1個1個バラバラであり、且つ、粒
度が均斉ではあるが、磁性を有する為粒子相互間で再凝
集が生じやすいものであるという欠点があった。また、
マグネタイト粒子粉末は、150℃以上の温度でマグネ
タイトに変態して黒色から茶褐色に変色し耐熱性に問題
があった。
[Problem to be Solved by the Invention 1 There is a current demand for black pigment particles with excellent dispersibility, workability, and heat resistance, but the known magnetite particles as described above have an average Diameter 0.2~0
.. It is a granular or cubic particle of about 5 μm, and because it is generated from an aqueous solution, each particle is disjointed, and the particle size is uniform, but because it has magnetic properties, particles tend to reagglomerate among themselves. It had the disadvantage of being. Also,
Magnetite particle powder transforms into magnetite at a temperature of 150° C. or higher, changing its color from black to brown, and has a problem in heat resistance.

また、公知のカーボンブラックは、耐熱性に優れてはい
るが、0.OI〜0.02μm程度の超微細粒子であり
かさ高い粉末である為取り扱いが困難で作業性が悪いも
のである。また、発ガン性等の安全、衛生面からの問題
点も指摘されている。
Further, although known carbon blacks have excellent heat resistance, 0. Since it is an ultrafine particle with an OI of about 0.02 μm and a bulky powder, it is difficult to handle and has poor workability. In addition, safety and hygiene issues such as carcinogenicity have also been pointed out.

一方、黒色粒子粉末であるイルメナイト粒子粉末は、非
磁性である為再凝集を生起することがなく、また、耐熱
性に優れてはいるが、天然に産出するものは粒度が不均
斉であって、板状、塊状及び粒状等の粒子が混在した不
定形粒子粉末であり、また、特に、赤色へマタイトを数
乗量%程度含有していることによって暗褐色を呈するも
のであり、合成法によるものは、高温加熱焼成後粉砕す
る為、粒子相互間で焼結を生起しており、且つ、粒度が
不均斉な不定形粒子粉末である。
On the other hand, ilmenite particles, which are black particles, are non-magnetic and therefore do not cause reagglomeration, and have excellent heat resistance, but naturally occurring particles have asymmetric particle sizes. It is an amorphous particle powder containing a mixture of plate-like, lump-like, and granular particles, and in particular, it has a dark brown color due to the fact that it contains about several percent of red hematite. Since the powder is pulverized after being heated and fired at a high temperature, sintering occurs between the particles, and the particles are irregularly shaped particles with asymmetric particle sizes.

そこで、黒色顔料粒子粉末として使用できる粒子相互間
の焼結がなく1個1個がバラバラであり、且つ、粒度が
均斉な合成イルメナイト粒子粉末が強く要求されている
Therefore, there is a strong demand for a synthetic ilmenite particle powder that can be used as a black pigment particle powder, which has no sintering between the particles, each particle is discrete, and the particle size is uniform.

〔問題を解決する為の手段] 本発明者は、高温加熱焼成及び粉砕工程を経ることなく
、合成イルメナイト粒子粉末を得るべく種々検討した結
果、本発明に到達したのである。
[Means for Solving the Problem] The present inventor has arrived at the present invention as a result of various studies aimed at obtaining synthetic ilmenite particle powder without going through high-temperature heating and calcination and pulverization steps.

即ち、本発明は、平均径0.05〜2.0μmであって
、粒子が111個バラバラであり且つ粒度が均斉なFe
TiO3粒子からなるイルメナイト粒子粉末及びFe1
Il及びTi(III)を含むpH8.0〜10.0の
アルカリ性Fe(OH)z懸濁液を200〜300℃の
温度範囲で水熱処理することにより平均径0.05〜2
.0μmであって、粒子が1個1個バラバラであり且つ
粒度が均斉なFeTiOs粒子を生成させることからな
るイルメナイト粒子粉末の製造法である。
That is, the present invention provides Fe with an average diameter of 0.05 to 2.0 μm, 111 discrete particles, and uniform particle size.
Ilmenite particle powder consisting of TiO3 particles and Fe1
By hydrothermally treating an alkaline Fe(OH)z suspension containing Il and Ti(III) with a pH of 8.0 to 10.0 in a temperature range of 200 to 300°C, an average diameter of 0.05 to 2
.. This is a method for producing ilmenite particle powder, which consists of producing FeTiOs particles having a diameter of 0 μm, each particle being discrete, and uniform in particle size.

〔作用〕[Effect]

先ず、本発明において最も重要な点は、Ti(2)を含
むpue、o 〜10.0のアルカリ性Fe (OR)
 z懸濁液を200〜300℃の温度範囲で水熱処理し
た場合には、水溶液中から直接FeTi0)粒子を生成
させることができるという事実である。
First, the most important point in the present invention is that pue containing Ti(2), alkaline Fe (OR) of o ~ 10.0
The fact is that if the Z suspension is hydrothermally treated in the temperature range of 200-300°C, FeTi0) particles can be generated directly from the aqueous solution.

本発明に係るイルメナイト粒子粉末は、平均径0.05
〜2.0μmの黒色粒子粉末であり、反応pHによって
粒子形態が異なった粒子が生成する。即ち、pH8.0
〜8.5においては粒状形態の粒子のみが、pH8.5
〜10.0においては板状形態の粒子のみが生成する。
The ilmenite particle powder according to the present invention has an average diameter of 0.05
It is a black particle powder of ~2.0 μm, and particles with different particle shapes are produced depending on the reaction pH. That is, pH 8.0
~8.5, only particles in granular form were present at pH 8.5.
~10.0, only plate-like particles are produced.

本発明に係るイルメナイト粒子粉末は、−S式FeTi
O3で示される通り、Tiが4価であるにもかかわらず
後出実施例及び比較例に示す通り、Ti(5)を使用し
た場合には、FeTjOsは生成せず、Ti(2)を使
用した場合にのみFeTiO3が生成する。
The ilmenite particles according to the present invention are -S type FeTi
As shown by O3, although Ti is tetravalent, as shown in the Examples and Comparative Examples below, when Ti(5) is used, FeTjOs is not generated and Ti(2) is used. FeTiO3 is produced only in this case.

本発明者は、Ti(III)を使用した場合にのみFe
Ti0)が生成する理由について、Ti@は強還元剤で
あり、高温の水溶液中においてFe(Ifの酸化を防止
すると共に、Ti@が溶存酸素等により選択的に酸化さ
れてTi面が徐々に供給される為、価数の差が大きい場
合には共沈が生じにくいという技術常識にもかかわらず
、Fe0rlとTi面の共沈が可能となったことによる
ものと考えている。
The inventor found that Fe only when using Ti(III)
The reason for the formation of Ti0) is that Ti@ is a strong reducing agent and prevents the oxidation of Fe (If) in a high-temperature aqueous solution. We believe that this is due to the fact that coprecipitation between Fe0rl and Ti surfaces became possible, despite common technical knowledge that coprecipitation is difficult to occur when the difference in valence is large.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明におけるFe(11としては、硫酸第一鉄、塩化
第−鉄等を使用することができる。
As Fe(11) in the present invention, ferrous sulfate, ferrous chloride, etc. can be used.

本発明におけるTi(2)としては、三塩化チタン等を
使用することができる。
As Ti(2) in the present invention, titanium trichloride or the like can be used.

本発明におけるアルカリとしては、炭酸ナトリウム、ア
ンモニウム水、水酸化ナトリウム等を用いることができ
、炭酸ナトリウム、アンモニア水が好ましい。
As the alkali in the present invention, sodium carbonate, ammonium water, sodium hydroxide, etc. can be used, and sodium carbonate and ammonia water are preferable.

本発明における反応pHは、8.0〜10.0である。The reaction pH in the present invention is 8.0 to 10.0.

8.0以下の場合には、F e TIIが沈澱すること
なく溶解し、アナターゼ型酸化チタン(Tie、)粒子
が単独で生成沈澱する。 io、o以上である場合には
、FeQ[lとTi(IVIが共沈せずマグネタイト粒
子とイルメナイトとの混合物が生成する。
When it is 8.0 or less, F e TII is dissolved without precipitating, and anatase-type titanium oxide (Tie) particles are independently formed and precipitated. io, o or more, FeQ[l and Ti(IVI) do not co-precipitate and a mixture of magnetite particles and ilmenite is produced.

本発明における反応温度は、200〜300“Cである
。  200℃以下である場合には、イルメナイト粒子
中にマグネタイト粒子やアナターゼ型酸化チタン(Ti
(h)が混在する。300℃以上である場合にもイルメ
ナイト粒子の生成は可能であるが、装置の安全性等を考
慮した場合、温度の上限は300℃である。
The reaction temperature in the present invention is 200 to 300"C. When the temperature is below 200"C, magnetite particles and anatase titanium oxide (Ti) are added to the ilmenite particles.
(h) is mixed. Although it is possible to generate ilmenite particles at a temperature of 300°C or higher, the upper limit of the temperature is 300°C when considering the safety of the apparatus.

〔実施例〕〔Example〕

次に、実施例並びに比較例により、本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の平均径は
電子顕vIi鏡写真から測定した数値の平均値で示した
In addition, the average diameter of particles in the following Examples and Comparative Examples is shown as the average value of numerical values measured from electron micrographs vIi.

実施例1 Feso、  0.2111ol、 TiCl3 0.
2 molと1la2cO=  o。
Example 1 Feso, 0.2111 ol, TiCl3 0.
2 mol and 1la2cO = o.

55 molとを混合して全glを300 dとしたp
u 8.3のアルカリ性Fe(OH)z懸濁液をオート
クレーブに投入した後、200℃まで加熱し、機械的に
攪拌しつつこの温度に5時間保持し、黒色沈澱を生成さ
せた。室温まで冷却後、黒色沈澱を常法により炉別、水
洗、乾燥した。
55 mol to make the total gl 300 d.
After charging the alkaline Fe(OH)z suspension of u 8.3 into an autoclave, it was heated to 200°C and kept at this temperature for 5 hours with mechanical stirring to form a black precipitate. After cooling to room temperature, the black precipitate was separated in a furnace, washed with water, and dried in a conventional manner.

この黒色粒子粉末は、図1に示すX線回折図及びネール
点を評価した結果、FeTiOsであり、図2に示す電
子顕微鏡写真(x 50000)に示す通り、平均径0
.08μmの粒状粒子であり、粒子が1個1個バラバラ
で粒度が均斉な粒子であった。図1中、ピークAはイル
メナイトである。
As a result of evaluating the X-ray diffraction pattern and Neel point shown in Figure 1, this black particle powder was found to be FeTiOs, and as shown in the electron micrograph (x 50000) shown in Figure 2, the average diameter was 0.
.. The particles were granular particles with a diameter of 0.08 μm, and each particle was dispersed and the particle size was uniform. In FIG. 1, peak A is ilmenite.

実施例2 FeSOa   O,2mol、 TiCl3  0.
2  molとNa、COl   0゜75 molと
を混合して全容量を300dとしたpH9,5のアルカ
リ性Fe(OH)z懸濁液をオートクレーブに投入した
後、250℃まで加熱し、機械的に攪拌しつつこの温度
に5時間保持し、黒色沈澱を生成させた。室温まで冷却
後、黒色沈澱を常法により炉別、水洗、乾燥した。
Example 2 FeSOa O, 2 mol, TiCl3 0.
An alkaline Fe(OH)z suspension with a pH of 9.5 made by mixing 0.75 mol of Na, COl and 0.75 mol of Na, COl to a total volume of 300 d was charged into an autoclave, heated to 250°C, and mechanically This temperature was maintained for 5 hours with stirring to form a black precipitate. After cooling to room temperature, the black precipitate was separated in a furnace, washed with water, and dried in a conventional manner.

この黒色粒子粉末は、図3に示すX線回折図及びネール
点を評価した結果、FeTi0*であり、電子顕微鏡観
察の結果、平均径2.0μmの板状粒子であり、粒子が
1個1個バラバラで粒度が均斉な粒子であった。
As a result of evaluating the X-ray diffraction diagram and Neel point shown in FIG. 3, this black particle powder is FeTi0*, and as a result of electron microscopy observation, it is plate-shaped particles with an average diameter of 2.0 μm, and each particle is 1. The particles were discrete and uniform in size.

比較例l T1Cl、の代わりにTiCl4を用いた以外は、実施
例2と同様にして黒色沈澱を生成させた。室温まで冷却
後、黒色沈澱を常法により炉別、水洗、乾燥した。
Comparative Example 1 A black precipitate was produced in the same manner as in Example 2, except that TiCl4 was used instead of T1Cl. After cooling to room temperature, the black precipitate was separated in a furnace, washed with water, and dried in a conventional manner.

この黒色粒子粉末は、図4に示すX線回折図に示す通り
、マグネタイト中に酸化チタンが混在した混合粒子粉末
であった。図4中、ピークBはマグネタイト、ピークC
は酸化チタンである。
As shown in the X-ray diffraction diagram shown in FIG. 4, this black particle powder was a mixed particle powder in which titanium oxide was mixed in magnetite. In Figure 4, peak B is magnetite, peak C
is titanium oxide.

比較例2 NazCOs  0.75’+*olの代わりにNaO
H3,Omatを用いてpH12のアルカリ性Fe(0
)1)z M、濁液とした以外は、実施例2と同様にし
て黒色沈澱を生成させた。
Comparative Example 2 NaO instead of NazCOs 0.75'+*ol
Alkaline Fe (0
)1)z A black precipitate was produced in the same manner as in Example 2, except that a turbid liquid was used.

室温まで冷却後、黒色沈澱を常法により炉別、水洗、乾
燥した。
After cooling to room temperature, the black precipitate was separated in a furnace, washed with water, and dried in a conventional manner.

この黒色粒子粉末は、図5に示すX線回折図に示す通り
、マグネタイト中に少量のイルメナイトが混在した混合
粒子粉末であった。図5中、ピークAはイルメナイト、
ピークBはマグネタイトである。
As shown in the X-ray diffraction diagram shown in FIG. 5, this black particle powder was a mixed particle powder in which a small amount of ilmenite was mixed in magnetite. In Figure 5, peak A is ilmenite,
Peak B is magnetite.

比較例3 1JazcO30,75+*olの代わりにNaOH0
,45ealを用いてPH7,0のアルカリ性Fe (
OH) z懸濁液とした以外は、実施例2と同様にして
黒色沈澱を生成させた。室温まで冷却後、黒色沈澱を常
法により炉別、水洗、乾燥した。
Comparative Example 3 NaOH0 instead of 1JazcO30,75+*ol
, 45eal was used to prepare alkaline Fe (
A black precipitate was produced in the same manner as in Example 2, except that a suspension was used. After cooling to room temperature, the black precipitate was separated in a furnace, washed with water, and dried in a conventional manner.

この粒子粉末は、図6に示すX線回折図に、示す通り、
酸化チタンのピークのみが認められた。図6中、ピーク
Cは酸化チタンである。
As shown in the X-ray diffraction diagram shown in FIG.
Only the peak of titanium oxide was observed. In FIG. 6, peak C is titanium oxide.

比較例4 反応温度180”Cとした以外は、実施例2と同様にし
て黒色沈澱を生成させた。室温まで冷却後、黒色沈澱を
常法によりp別、水洗、乾燥した。
Comparative Example 4 A black precipitate was produced in the same manner as in Example 2, except that the reaction temperature was 180"C. After cooling to room temperature, the black precipitate was separated by p, washed with water, and dried in a conventional manner.

この粒子粉末は、図7に示すX線回折図に示す通り、イ
ルメナイト粒子中にマグネタイト粒子や酸化チタンが混
在した混合粒子粉末であった。図7中、ピークAはイル
メナイト、ピークBはマグ2タイト、ピークCは酸化チ
タンである。
As shown in the X-ray diffraction diagram shown in FIG. 7, this particle powder was a mixed particle powder in which magnetite particles and titanium oxide were mixed in ilmenite particles. In FIG. 7, peak A is ilmenite, peak B is mag2tite, and peak C is titanium oxide.

〔発明の効果〕〔Effect of the invention〕

本発明に係るイルメナイト粒子粉末は、前出実施例に示
した通り、水溶液中から直接生成させることができるこ
とに起因して粒子が1個1個バラバラであり、且つ、粒
度が均斉である為ビヒクル中又は樹脂中での分散性に優
れ、また、平均径0゜05〜2.0μmの粒子である為
作業性に優れ、しかも、耐熱性に優れた粒子であるから
、塗料用、トナー用黒色顔料粒子粉末として好適である
As shown in the above example, the ilmenite particles according to the present invention can be produced directly from an aqueous solution, so the particles are individually dispersed, and the particle size is uniform, so the vehicle The particles have excellent dispersibility in medium or resin, and have an average diameter of 0.05 to 2.0 μm, making them excellent in workability. Furthermore, the particles have excellent heat resistance, making them suitable for use in black paints and toners. Suitable as pigment particle powder.

ξた、本発明に係るイルメナイト粒子粉末は、周知の通
り、硬度5〜6程度を有するものであるから、研磨剤と
しての使用も期待される。
In addition, since the ilmenite particles according to the present invention have a hardness of about 5 to 6, as is well known, it is also expected to be used as an abrasive.

【図面の簡単な説明】[Brief explanation of the drawing]

図1及び図3乃至図7は、いずれもX線回折図であり、
それぞれ実施例1、実施例2及び比較例1乃至比較例4
で得られた粒子粉末である。 図2は電子顕微鏡写真(X 50000)であり、実施
例1で得られた粒状イルメナイト粒子粉末である。
1 and 3 to 7 are all X-ray diffraction diagrams,
Example 1, Example 2, and Comparative Examples 1 to 4, respectively.
This is the particle powder obtained in . FIG. 2 is an electron micrograph (X 50000) of the granular ilmenite particles obtained in Example 1.

Claims (2)

【特許請求の範囲】[Claims] (1)平均径0.05〜2.0μmであって、粒子が1
個1個バラバラであり且つ粒度が均斉なFeTiO_3
粒子からなるイルメナイト粒子粉末。
(1) The average diameter is 0.05 to 2.0 μm, and the particle size is 1
FeTiO_3 with individual pieces and uniform particle size
Ilmenite particle powder consisting of particles.
(2)Ti(III)を含むpH8.0〜10.0のアル
カリ性Fe(OH)_2懸濁液を200〜300℃の温
度範囲で水熱処理することにより平均径0.05〜2.
0μmであって、粒子が1個1個バラバラであり且つ粒
度が均斉なFeTiO_3粒子を生成させることを特徴
とするイルメナイト粒子粉末の製造法。
(2) An alkaline Fe(OH)_2 suspension containing Ti(III) with a pH of 8.0 to 10.0 is hydrothermally treated in a temperature range of 200 to 300°C to obtain an average diameter of 0.05 to 2.
A method for producing ilmenite particle powder, which is characterized by producing FeTiO_3 particles having a size of 0 μm, each particle being discrete, and uniform in particle size.
JP63128706A 1988-05-25 1988-05-25 Illumenite powder and production thereof Pending JPH01298028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128706A JPH01298028A (en) 1988-05-25 1988-05-25 Illumenite powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128706A JPH01298028A (en) 1988-05-25 1988-05-25 Illumenite powder and production thereof

Publications (1)

Publication Number Publication Date
JPH01298028A true JPH01298028A (en) 1989-12-01

Family

ID=14991414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128706A Pending JPH01298028A (en) 1988-05-25 1988-05-25 Illumenite powder and production thereof

Country Status (1)

Country Link
JP (1) JPH01298028A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317927A (en) * 2005-04-15 2006-11-24 Toda Kogyo Corp Iron-based black particulate powder for toner
JP2007126348A (en) * 2005-10-07 2007-05-24 Mitsui Mining & Smelting Co Ltd Low magnetic black pigment particle, electrophotographic toner and image forming method
US7327974B2 (en) 2002-09-12 2008-02-05 Ricoh Printing Systems, Ltd. Electrophotographic toner and image-forming system
CN108298591A (en) * 2018-04-13 2018-07-20 哈尔滨工业大学 A kind of synthetic method of hexagon iron titanate nanometer sheet material and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327974B2 (en) 2002-09-12 2008-02-05 Ricoh Printing Systems, Ltd. Electrophotographic toner and image-forming system
US7459252B2 (en) 2002-09-12 2008-12-02 Ricoh Printing Systems, Ltd. Electrophotographic toner
JP2006317927A (en) * 2005-04-15 2006-11-24 Toda Kogyo Corp Iron-based black particulate powder for toner
JP2007126348A (en) * 2005-10-07 2007-05-24 Mitsui Mining & Smelting Co Ltd Low magnetic black pigment particle, electrophotographic toner and image forming method
JP4682063B2 (en) * 2005-10-07 2011-05-11 三井金属鉱業株式会社 Low magnetic black pigment particles, electrophotographic toner, and image forming method
CN108298591A (en) * 2018-04-13 2018-07-20 哈尔滨工业大学 A kind of synthetic method of hexagon iron titanate nanometer sheet material and application

Similar Documents

Publication Publication Date Title
JPS61155223A (en) Magnetite granular powder having spherical form and its production
JPH01298028A (en) Illumenite powder and production thereof
JPS61106414A (en) Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JPS6071529A (en) Manufacture of spherical magnetite powder
JPH0455324A (en) Cobalt titanate powder and its production
JPH05163022A (en) Spherical anatase titanium oxide and its production
JP3682079B2 (en) Iron oxide pigment, method for producing the same, and use thereof
JPH0656429A (en) Production of plate-like iron oxide particulate powder
JP2662898B2 (en) Method for producing fine particle composite oxide black pigment
JP3006630B2 (en) Manganese titanate particle powder and method for producing the same
JP2737756B2 (en) Production method of spherical hematite particles
JPS6364925A (en) Production of hematite particle powder
JPS63162536A (en) Production of powdery particle of magnetic iron oxide having isotropic shape
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JP3186929B2 (en) Method for producing spherical hematite particles with uniform particle size
Nath et al. Utilization of magnetic nanoferrite-based photocatalysts for elimination of organic pollutants from wastewater
Fatmawati et al. Crystal Structure, Morphology, and Magnetic Properties of Magnetic Nanocomposites with Iron Oxide Core and Zinc Oxide/Titanium Oxide Shell
JPS62283822A (en) Production of fine beta-ferric oxide hydrate particles
JPS62153124A (en) Production of chromium oxide
JPH04224115A (en) Fine-grained zinc ferrite pigment and its production
JPS63210032A (en) Production of magnetic iron oxide granular powder having isotropic shape
JPS60235725A (en) Preparation of iron oxyhydroxide particle
JPH0647465B2 (en) BaO.9 / 2Fe (2) O (3) O (3) Microcrystalline powder manufacturing method
JPS58135137A (en) Preparation of powder of granular black ferromagnetic iron oxide particle having high coercive force
JPH05186225A (en) Production of platy goethite particle powder