JPS62153124A - Production of chromium oxide - Google Patents
Production of chromium oxideInfo
- Publication number
- JPS62153124A JPS62153124A JP29243585A JP29243585A JPS62153124A JP S62153124 A JPS62153124 A JP S62153124A JP 29243585 A JP29243585 A JP 29243585A JP 29243585 A JP29243585 A JP 29243585A JP S62153124 A JPS62153124 A JP S62153124A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- chromium oxide
- cr2o3
- particle size
- cro3
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は酸化クロムの製造法、更に詳しく云えば、微細
かつ粒子の大きさが揃い、分散性の良い酸化クロムの製
造法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing chromium oxide, and more specifically, to a method for producing chromium oxide that is fine, has uniform particle size, and has good dispersibility. .
酸化クロムは古くから緑色顔料として、又は研磨材、そ
の他耐火レンガとして一般的に使用されており、その化
学的安定性、耐熱性、硬度は優れており、有用な工業原
料である。Chromium oxide has been commonly used as a green pigment, an abrasive material, and other refractory bricks for a long time, and has excellent chemical stability, heat resistance, and hardness, and is a useful industrial raw material.
従来、この酸化クロムの製造法に種々の方法が知られて
いるが、工業的に実施されている方法は無水クロム酸を
出発原料としてこれを加熱分解して製造する方法と5価
のクロム塩水溶液をアルカリで中和し、水酸化クロムと
して、この水酸化クロムを加熱焼成して製造する方法が
ある。Conventionally, various methods have been known for producing chromium oxide, but the industrially practiced methods include a method in which chromic anhydride is used as a starting material and thermally decomposed, and a method in which chromium oxide is produced using pentavalent chromium salt. There is a method of producing chromium hydroxide by neutralizing an aqueous solution with an alkali and heating and baking the chromium hydroxide.
20rQ、→0rtOs +3/2o、↑・・・・・・
・・・(りの如く分解して酸化クロムとなり、この加熱
焼成によって得られた酸化クロムを粉砕分級して目的の
製品を得る。20rQ, →0rtOs +3/2o, ↑・・・・・・
(It decomposes into chromium oxide, and the chromium oxide obtained by heating and firing is crushed and classified to obtain the desired product.)
しかしながら、この方法による酸化クロムは、焼成初期
に於いて、無水クロム酸がまず溶融する事実から焼成後
の酸化クロムは粒子が大きく、かつ堅く凝集した粉状か
ら塊状であるため、微細化する為には粉砕工程が不可欠
である。However, when producing chromium oxide using this method, due to the fact that the chromic acid anhydride first melts in the early stage of firing, the chromium oxide after firing has large particles and is in the form of tightly aggregated powder or lumps. A grinding process is essential.
また、機械的粉砕のため1ミクロン以下にする事は不可
能で、粒度分布も広く、顔料、研磨材として使用した場
合、粗粒による問題を生ずる事もある。In addition, because of mechanical crushing, it is impossible to reduce the particle size to less than 1 micron, and the particle size distribution is wide, so when used as a pigment or abrasive, problems due to coarse particles may occur.
一方、後者は所謂湿式法と呼ばれている方法でこの方法
で得られる酸化クロムは粒径が整ったものが得られ易い
。On the other hand, the latter is a so-called wet method, and the chromium oxide obtained by this method tends to have a uniform particle size.
塩化クロム水溶液に力性ソーダを加えて中和すると次式
%式%(2)
の如く水酸化クロムが析出する。このケーキを酸化雰囲
気で焼成すると次式
%式%(31
の如く水を発生して酸化クロムとなる。When a chromium chloride aqueous solution is neutralized by adding sodium hydroxide, chromium hydroxide is precipitated as shown in the following formula (% formula % (2)). When this cake is baked in an oxidizing atmosphere, it generates water and becomes chromium oxide as shown in the following formula: % formula % (31).
この方法で得られる酸化クロムは、乾式法よりも微細か
つ粒径の整ったものが得られるが、水酸化物を取扱うた
め、濾過、洗浄の操作及び工程が非常に複雑である。The chromium oxide obtained by this method is finer and has a more uniform particle size than the dry method, but since hydroxide is handled, the operations and steps of filtration and washing are very complicated.
更に、両方法共に酸化クロムは研磨材としての用途があ
る如く、研磨力が大きいため粉砕による粒度低下を求め
れば求めるほど粉砕機からの異物の混入や粉砕機の摩耗
が激しく、粉砕には自ずと限度がある。Furthermore, in both methods, chromium oxide has a large abrasive power, as it is used as an abrasive, so the more you seek to reduce particle size through pulverization, the more contamination of foreign matter from the pulverizer and the wear of the pulverizer. There are limits.
以上の様に酸化クロムの製法は原理的には簡単であるが
、現代の要求する微細かつ粒径が揃い、そして分散性が
良く、又不純物の混入しない酸化クロムの製法は不可能
であった。As mentioned above, the method for producing chromium oxide is simple in principle, but it has not been possible to produce chromium oxide that is fine, has uniform particle size, has good dispersibility, and does not contain impurities, which is the modern requirement. .
本発明者らは、上記の欠点を解消すべく鋭意研究を重ね
た結果、本発明を完成したものである。The present inventors have completed the present invention as a result of extensive research in order to eliminate the above-mentioned drawbacks.
即ち、本発明の要旨とするところは、無水クロム酸水溶
液へアルコールを添加すると、次式2式%(4)
の如く不定形の酸化クロムゲルが生成する。That is, the gist of the present invention is that when alcohol is added to an aqueous chromic acid anhydride solution, an amorphous chromium oxide gel as shown in the following formula 2 (% (4)) is produced.
このゲルを出発原料とし、微細に粉砕して焼成を行う事
を特徴とする微細かつ粒径が揃い、そして分散性が良好
で又不純物の混入のない酸化クロムの製造法である。This gel is used as a starting material, and this method is characterized by finely pulverizing and firing chromium oxide, which is characterized by fine grain size, uniform particle size, good dispersibility, and no contamination with impurities.
次に、本発明の特徴を従来の方法との比較により詳細に
説明する。Next, the features of the present invention will be explained in detail by comparison with conventional methods.
まず、無水クロム酸へのアルコール添加による酸化クロ
ムゲルの生成であるが、アルカリ中和に比較して、まっ
たく水洗を必要としない。なぜなら、後工程で高温で酸
化焼成を行うため、クロムゲルに付着したアルデヒドは
完全に燃焼除去され、製品酸化クロム中には残留しない
。First, chromium oxide gel is produced by adding alcohol to chromic anhydride, but compared to alkaline neutralization, no water washing is required. This is because the aldehyde adhering to the chromium gel is completely burned off and does not remain in the product chromium oxide because oxidation firing is performed at high temperature in the post-process.
この特長は、水酸化物の濾過、洗浄が非常に錬しい事を
考えれば大きな差異である。This feature is a big difference considering that hydroxide filtration and cleaning are very sophisticated.
尚、用いるアルコールは特に指定されない事は言うまで
もない。It goes without saying that the alcohol used is not particularly specified.
次に1この発明の最大の特長である、焼成以前に粉砕し
てお(という事である。この粉砕は通常1μ以下の粒径
となるまで行われる。Next, 1. The greatest feature of this invention is that it is pulverized before firing. This pulverization is usually carried out until the particle size becomes 1 μm or less.
そしてこの微粉化したクロムゲルを焼成する事により、
酸化クロムを得るのであるが、このクロムゲルは500
℃〜1000℃で焼成する事により、粒径を任意にコン
トロール出来る。By firing this finely powdered chromium gel,
Chromium oxide is obtained, and this chromium gel is 500
Particle size can be controlled arbitrarily by firing at a temperature of 1000°C to 1000°C.
つまり、低温で焼成すればより微細となり、高温で焼成
すれば徐々に粒径が大きくなる。但し、1000℃以上
になると粒径のコントロールが難しくなり、粒度分布に
パラつきが出る傾向がある。In other words, if fired at a low temperature, the grain size will become finer, and if fired at a higher temperature, the grain size will gradually increase. However, when the temperature exceeds 1000°C, it becomes difficult to control the particle size, and the particle size distribution tends to become uneven.
つまり、1000℃以上では粒子の生長が大きく部分的
に粗粒が生成することがあるからである。That is, at temperatures above 1000°C, the growth of particles is large and coarse particles may be formed in some areas.
この様にして製造された酸化クロムは、まった(粉砕な
しに、粒径は(LO3〜(13ミクロンの微粒子であり
、又粒子1ケ1ケは形状も揃っており、分散性も良好で
ある。The chromium oxide produced in this way is fine particles with a particle size of (LO3 ~ (13 microns) without pulverization, and each particle has a uniform shape and has good dispersibility. be.
又、後述する様に化学分析の結果、アルカリ。Also, as mentioned later, chemical analysis revealed that it was alkaline.
アルカリ土類及びIPe等の重金属が非常に低い値とな
っている。Heavy metals such as alkaline earths and IPe have very low values.
本発明により得られた酸化クロムは今までなかった数々
の特徴を有する酸化クロムで、現在の最先端の技術分野
の要求を満足するものである。すなわち、微細かつ粒径
が揃っている事から、特に電子材料等の表面研磨材に使
用すれば、表面平滑性が数段向上する。又、塗付型の磁
気記録材に於いて、磁性材そのものが、非常に微細化し
ており、これに滑剤として使用すれば、この酸化クロム
の特徴である微細9粒径が揃っている、かつ分散性が良
い等から有利な事は明白である。The chromium oxide obtained by the present invention is a chromium oxide having a number of characteristics never seen before, and satisfies the requirements of the current state-of-the-art technical field. That is, since it is fine and has a uniform particle size, when used as a surface abrasive material for electronic materials, etc., the surface smoothness is improved by several steps. In addition, in paint-on type magnetic recording materials, the magnetic material itself is extremely finely divided, and if used as a lubricant, it will have the same fine 9 grain size, which is the characteristic of chromium oxide, and It is obvious that it is advantageous because of its good dispersibility.
次に本発明を実施例により更に詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.
実施例1
8 wt%のクロム分を含む、無水クロム酸水溶液を市
販のガラス製還流器付き3tセパラブルフラスコに2を
入れ、ガラス製攪拌棒で10OR/Mで攪拌しながら、
エチルアルコール150gを定量ポンプで毎分19の割
合で投入して反応を行った。この時、反応の以前は室温
であったものが、エチルアルコール投入終了時には約4
0℃に上昇していた。Example 1 A chromic anhydride aqueous solution containing 8 wt% of chromium was placed in a commercially available 3t separable flask with a glass reflux device, and while stirring at 10 OR/M with a glass stirring rod,
The reaction was carried out by adding 150 g of ethyl alcohol at a rate of 19 per minute using a metering pump. At this time, the temperature was at room temperature before the reaction, but at the end of the addition of ethyl alcohol, the temperature was about 4.
The temperature had risen to 0°C.
この反応液を攪拌しながらマントルヒーターで加熱し、
98℃に於いて8時間熟成した。This reaction solution was heated with a mantle heater while stirring,
It was aged for 8 hours at 98°C.
次に室温まで放冷、濾過し、乾燥する事により、黒色の
酸化クロムゲルな約3009得た。Next, the mixture was allowed to cool to room temperature, filtered, and dried to obtain approximately 3009, a black chromium oxide gel.
伺、この物質を理学電機製、X線回折装置でX線回折を
行ったところ、ピークはまったくなく、不定形であった
。When we performed X-ray diffraction on this substance using an X-ray diffraction apparatus manufactured by Rigaku Denki, it was found that there were no peaks at all and the substance was amorphous.
次に卓上ボールミルにて30分間粉砕し、粉砕物を日本
電子製、電子顕微鏡(JΣM 1000XII )で観
察したところ、1ミクロン以下に粉砕されていた。Next, it was ground for 30 minutes in a tabletop ball mill, and the ground product was observed with an electron microscope (JΣM 1000XII, manufactured by JEOL Ltd.), and it was found that it was ground to 1 micron or less.
次にマツフル炉に装入し、700°Cで3時間焼成する
事により最終製品とした。Next, it was charged into a Matsufuru furnace and fired at 700°C for 3 hours to obtain a final product.
このサンプルをまず前記装置にてXi回折を行い、AS
TMカードA6−504C叶i)と比較して結晶性の良
い酸化クロムである事を確認した。This sample was first subjected to Xi diffraction using the above-mentioned apparatus, and AS
It was confirmed that it was a chromium oxide with good crystallinity when compared with the TM card A6-504C.
又、化学分析を行ったところ表−1に示す様に不純物の
非常に少ない物であった。Further, chemical analysis revealed that there were very few impurities as shown in Table 1.
次に微粒子の平均的大きさを表わすと言われている、B
ET法による比表面積を測定したところ2h5rr?/
9であった。この値と酸化クロムの真密度5.219/
dより、この粒子を球と仮定すると、粒径D(ミクロン
)と比表面積s(//9)の間には、D=1.15/S
なる関係になり、これによると、この酸化クロムの平均
的粒径は1049ミクロンであった。Next, B is said to represent the average size of fine particles.
When the specific surface area was measured using the ET method, it was 2h5rr? /
It was 9. This value and the true density of chromium oxide 5.219/
From d, assuming that this particle is a sphere, the difference between the particle diameter D (microns) and the specific surface area s (//9) is D=1.15/S.
According to this relationship, the average particle size of this chromium oxide was 1049 microns.
最大の特徴は図−1に示す電子顕微鏡写真(倍率911
、OO0倍)から判るように、t105ミクロン程度の
粒径の揃った超微粒子であり、かつ超微粒子であるにも
かかわらず、はとんど凝集しておらず、分散性の良い酸
化クロムであった。なお、比較のため市販の酸化クロム
粉末の2種類の電子顕微鏡写真(倍率3α000倍)を
図−2及び図−3に示す。The biggest feature is the electron micrograph shown in Figure 1 (911 magnification).
, OO0 times), they are ultrafine particles with a uniform particle size of about t105 microns, and although they are ultrafine particles, they hardly aggregate and are made of chromium oxide with good dispersibility. there were. For comparison, two types of electron micrographs (magnification: 3α000 times) of commercially available chromium oxide powder are shown in Figures 2 and 3.
表−1化学分析値(単位ppm )
実施例2
8 wt%のクロム分を含む、無水クロム酸水溶液をガ
ラス内張り50tの反応器にSat入れ、攪拌しながら
エチルアルコール1.3009ft定ikポンプで毎分
109の割合で投入して反応を行った。Table 1 Chemical analysis values (unit: ppm) Example 2 A chromic anhydride aqueous solution containing 8 wt% of chromium was placed in a glass-lined 50-ton reactor, and while stirring, it was pumped with ethyl alcohol every time using a 1.3009-ft constant ik pump. The reaction was carried out by adding 109 parts per minute.
この反応液を攪拌しながら、ジャケットに蒸気を通じ加
熱し、98℃に於いて8時間熟成した。While stirring the reaction solution, steam was passed through the jacket and heated, and the mixture was aged at 98° C. for 8 hours.
次に室温まで放冷し、実施例−1と同様な操作で約3に
9の粉砕された酸化クロムゲルを得た。Next, the mixture was allowed to cool to room temperature, and the same procedure as in Example 1 was performed to obtain a pulverized chromium oxide gel of approximately 3 to 9 particles.
このサンプルより各々3009づつを分取し、500°
C〜1000℃の温度で100℃毎K −r 7フル炉
で3時間焼成して最終製品とした。From this sample, 3009 pieces each were collected and 500°
The final product was obtained by firing at a temperature of C to 1000°C for 3 hours in a K-r 7 full furnace every 100°C.
各々のサンプルを粉砕等なんら手を加えず、BIT法で
比表面積を測定した結果を表−2に示す。Table 2 shows the results of measuring the specific surface area of each sample using the BIT method without any modification such as pulverization.
又、前記の比表面積の値と酸化クロムの真密度より粒径
を求めて、焼成温度との関係を図−4に示す。Further, the particle size was determined from the value of the specific surface area and the true density of chromium oxide, and the relationship with the firing temperature is shown in Figure 4.
表−2焼成温度と比表面積
図−4から判るように、同じ中間品から焼成温度を変化
させる事で、粒径の揃った、分散性の良好な、要求に合
った大きさの超微粒酸化クロムが製造出来る。As can be seen from Table 2 Firing Temperature and Specific Surface Area Diagram 4, by changing the firing temperature from the same intermediate product, ultrafine oxidation particles with uniform particle size, good dispersibility, and size that meets the requirements can be obtained. Chromium can be manufactured.
図−1は本発明の一実施例で得た酸化クロムの結晶状態
を示す図面に代る電子顕微鏡写真(倍率9 Q、000
倍)であり、図−2及び図−3は比較のために示した市
販品の酸化クロムの結晶状態を示す図面に代る電子顕微
鏡写真(倍率5へ000倍)である。図−4は焼成温度
と比表面積、平均粒径の関係を示す図である。図−4中
(1)は比表面積を示し、(2)は平均粒径を示す。
特許出願人 東洋曹達工業株式会社
四・〜1Figure 1 is an electron micrograph (magnification: 9 Q, 000
Figures 2 and 3 are electron micrographs (at a magnification of 5 to 000) in place of drawings showing the crystalline state of commercially available chromium oxide for comparison. FIG. 4 is a diagram showing the relationship between firing temperature, specific surface area, and average particle size. In Figure 4, (1) shows the specific surface area, and (2) shows the average particle size. Patent applicant Toyo Soda Kogyo Co., Ltd. 4.~1
Claims (4)
した酸化クロムゲルをろ別し、乾燥後該生成物を微細に
分散し、焼成することを特徴とする酸化クロムの製造法
。(1) A method for producing chromium oxide, which is characterized by adding alcohol to an aqueous chromic acid anhydride solution, filtering out the produced chromium oxide gel, drying, finely dispersing the product, and firing.
はボールミルを用いて、1ミクロン以下に粉砕、分散し
た後、焼成する特許請求の範囲第(1)項の酸化クロム
の製造法。(2) The method for producing chromium oxide according to claim (1), which comprises pulverizing and dispersing chromium oxide gel into particles of 1 micron or less using a jet mill, an attritor, or a ball mill, followed by firing.
請求の範囲第(1)項又は第(2)項に記載の酸化クロ
ムの製造法。(3) The method for producing chromium oxide according to claim (1) or (2), wherein the firing temperature is 500°C to 1000°C.
ある特許請求の範囲第(1)〜(3)項のいずれかの項
に記載の酸化クロムの製造法。(4) The method for producing chromium oxide according to any one of claims (1) to (3), wherein the chromium oxide has a particle size of 0.03 to 0.3 microns.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29243585A JPS62153124A (en) | 1985-12-27 | 1985-12-27 | Production of chromium oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29243585A JPS62153124A (en) | 1985-12-27 | 1985-12-27 | Production of chromium oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62153124A true JPS62153124A (en) | 1987-07-08 |
Family
ID=17781752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29243585A Pending JPS62153124A (en) | 1985-12-27 | 1985-12-27 | Production of chromium oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62153124A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100401990B1 (en) * | 1998-12-21 | 2003-12-18 | 주식회사 포스코 | A method for preparing chromic oxide from electroplating wastewater including hexavalent chrome |
-
1985
- 1985-12-27 JP JP29243585A patent/JPS62153124A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100401990B1 (en) * | 1998-12-21 | 2003-12-18 | 주식회사 포스코 | A method for preparing chromic oxide from electroplating wastewater including hexavalent chrome |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69016057T2 (en) | Process for the production of magnesium oxide. | |
DE3633309C2 (en) | Composition based on zirconia and process for its manufacture | |
JP4992003B2 (en) | Method for producing metal oxide fine particles | |
KR100427005B1 (en) | Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use | |
CN112745105B (en) | High-sintering-activity alumina ceramic powder and preparation method thereof | |
JPS61106414A (en) | Fine powder of electroconductive titanium oxide of low oxidation state and its preparation | |
JPH0624977B2 (en) | Needle-shaped titanium dioxide and method for producing the same | |
JPS62153124A (en) | Production of chromium oxide | |
JP4811723B2 (en) | Method for producing metal oxide fine particle powder | |
US4652439A (en) | Process for preparing fibrous alkali metal titanate | |
JPH03141115A (en) | Production of fine yttrium oxide powder | |
JPS59100167A (en) | Coated talc and production thereof | |
JP2528462B2 (en) | Method for producing sodium hexatitanate fine particle powder | |
EP0459424B1 (en) | Process for producing the precursor of a precipitated catalyst for the ammonia synthesis | |
JPH0967125A (en) | Fine powder of titanium oxide and its production | |
JPH04280815A (en) | Fine particulate alkali titanate and its production | |
JP4183539B2 (en) | Niobium oxide and method for producing the same | |
JP4045178B2 (en) | Tantalum oxide slurry, tantalum oxide powder and method for producing them | |
JPH0380118A (en) | Chromium spinel and its production | |
JPH0127004B2 (en) | ||
JPS5933624B2 (en) | Method for producing inorganic pigment preparations | |
JP2741543B2 (en) | Sized chromium oxide and its production method | |
JPH0247410B2 (en) | ||
JP3282264B2 (en) | Method for producing magnetic oxide powder | |
JPS59232920A (en) | Manufacture of zirconium oxide powder containing yttrium as solid solution |