JP3186929B2 - Method for producing spherical hematite particles with uniform particle size - Google Patents

Method for producing spherical hematite particles with uniform particle size

Info

Publication number
JP3186929B2
JP3186929B2 JP24460694A JP24460694A JP3186929B2 JP 3186929 B2 JP3186929 B2 JP 3186929B2 JP 24460694 A JP24460694 A JP 24460694A JP 24460694 A JP24460694 A JP 24460694A JP 3186929 B2 JP3186929 B2 JP 3186929B2
Authority
JP
Japan
Prior art keywords
hematite particles
uniform particle
particle size
urea
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24460694A
Other languages
Japanese (ja)
Other versions
JPH0881638A (en
Inventor
雅則 高鴨
章 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Ukima Chemicals and Color Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP24460694A priority Critical patent/JP3186929B2/en
Publication of JPH0881638A publication Critical patent/JPH0881638A/en
Application granted granted Critical
Publication of JP3186929B2 publication Critical patent/JP3186929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粒径が整っていて、微
粒子でかつ分散性に優れた球状ヘマタイト粒子の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical hematite particles having a uniform particle size, fine particles and excellent dispersibility.

【0002】[0002]

【従来の技術】酸化第二鉄は、塗料、インキ、合成樹
脂、建材および窯業用等の着色剤として用いられている
他、蛍光体用、紫外線吸収剤用および磁性材料用等その
機能性を生かした用途に広く利用されている。従来、酸
化鉄粒子の湿式製造方法としては、共沈法、湿式酸化
法、水熱法および加水分解法等が知られている。共沈法
は、第一鉄イオンや第二鉄イオンの単独または混合物に
沈殿剤としてアルカリを作用せしめて沈殿を生成し、こ
れを焼成して酸化第二鉄粒子を得るものである。この共
沈法で粒径の整った酸化鉄粒子を得ようとすると沈殿条
件の緻密なコントロールが必要となり工業的には難点が
あった。湿式酸化法は、アルカリ溶液中で第一鉄イオン
を空気等の酸化性ガスで酸化することによって含水酸化
鉄粒子および酸化鉄粒子等を製造する方法であるが、湿
式酸化法では、粒子径の整った針状酸化鉄は得られるも
のの球状ヘマタイトは得られにくい。また、水熱法は、
オートクレーブを使用して150℃以上のアルカリ溶液
中で第一鉄イオンの酸化加水分解反応によってヘマタイ
ト粒子を得るものであるが、この水熱法によると球状、
板状等ある程度整ったヘマタイト粒子は得られるものの
温度、圧力、アルカリ濃度等の条件設定が厳しく工業的
には難点があった。更に加水分解は、3価の鉄塩を原料
とし、これを酸性領域中で希薄濃度状態で数時間ないし
数日かけて加水分解せしめてヘマタイト粒子を得る方法
であるが、この加水分解法によると粒径の整った球状ヘ
マタイトが得られるものの製造溶液は希薄な状態にしな
ければならず、また生成に時間がかかるため工業的に難
点があった。
2. Description of the Related Art Ferric oxide is used as a coloring agent for paints, inks, synthetic resins, building materials, ceramics, and the like, and has a functional property such as a phosphor, an ultraviolet absorber, and a magnetic material. It is widely used for applications that make good use of it. Conventionally, as a wet production method of iron oxide particles, a coprecipitation method, a wet oxidation method, a hydrothermal method, a hydrolysis method and the like are known. In the coprecipitation method, an alkali is applied as a precipitant to a single or a mixture of ferrous ions or ferric ions to generate a precipitate, which is calcined to obtain ferric oxide particles. In order to obtain iron oxide particles having a uniform particle size by this coprecipitation method, precise control of precipitation conditions was required, and there was an industrial difficulty. The wet oxidation method is a method of producing ferrous hydroxide particles and iron oxide particles by oxidizing ferrous ions with an oxidizing gas such as air in an alkaline solution. Although ordered acicular iron oxide is obtained, spherical hematite is hardly obtained. The hydrothermal method is
Hematite particles are obtained by an oxidative hydrolysis reaction of ferrous ions in an alkaline solution at 150 ° C. or higher using an autoclave.
Although hematite particles having a certain shape such as a plate shape can be obtained, conditions such as temperature, pressure, alkali concentration and the like are strictly set, and there is a problem in industry. Furthermore, hydrolysis is a method of obtaining hematite particles by using a trivalent iron salt as a raw material and hydrolyzing it in a dilute concentration state in an acidic region for several hours to several days to obtain hematite particles. Although spherical hematite with a uniform particle size can be obtained, the production solution must be made dilute, and it takes a long time to produce the solution.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記従来技
術の課題を背景になされたもので、粒子の大きさの制御
が容易であり、分散性に優れた粒径の整っている球状の
ヘマタイト粒子を工業的に容易に製造することのできる
製造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is easy to control the size of particles, and it is excellent in dispersibility. An object of the present invention is to provide a production method capable of easily producing hematite particles industrially.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、3
価の鉄塩に鉄塩濃度1×10-6〜1×10-2mol/lの
2価鉄塩または鉄塩濃度0.01〜0.1g/lの鉄粉を
加え、更に尿素を加えて水中で溶解混合後、加熱するこ
とを特徴とする粒径の整った球状ヘマタイト粒子の製造
方法である。
That is, the present invention provides the following:
Divalent iron salt having an iron salt concentration of 1 × 10 −6 to 1 × 10 −2 mol / l or iron powder having an iron salt concentration of 0.01 to 0.1 g / l, and further adding urea And then heating after dissolving and mixing in water.

【0005】[0005]

【作用】3価の鉄塩に微量の2価鉄塩または鉄粉を添加
したものを沈殿剤として尿素を用いることによって、ま
ず3価鉄の水酸化物沈殿が生成される。次に微量の2価
鉄塩または鉄粉がこの水酸化物の脱水反応を促進させる
ことにより、この溶液中で粒径の整った球状ヘマタイト
粒子が短時間で容易に得られる。この際の鉄塩および沈
殿剤の尿素濃度、また昇温速度、温度等の条件によっ
て、形状および粒径を変えることができる。従って、こ
の方法によって得られた球状ヘマタイト粒子は粒径が整
っていて且つ分散性に優れていることから、例えば顔料
として使う場合は、従来の塗料、インキ、合成樹脂、建
材、窯業用の着色剤として用いられる他に、蛍光体用、
紫外線吸収剤用、磁性材料等その機能性を生かした広範
な分野に有用である。
By using urea as a precipitant using a trivalent iron salt to which a trace amount of a ferrous salt or iron powder is added, first, a hydroxide precipitate of trivalent iron is generated. Next, a small amount of ferrous salt or iron powder accelerates the dehydration reaction of this hydroxide, so that spherical hematite particles having a uniform particle diameter can be easily obtained in this solution in a short time. At this time, the shape and particle size can be changed depending on the conditions such as the urea concentration of the iron salt and the precipitant, the rate of temperature rise, and the temperature. Therefore, the spherical hematite particles obtained by this method have a uniform particle size and are excellent in dispersibility. For example, when used as a pigment, when used as a pigment, it can be used for conventional coatings, inks, synthetic resins, building materials, and ceramics. In addition to being used as an agent, for phosphors,
It is useful in a wide range of fields utilizing its functionality, such as for ultraviolet absorbers and magnetic materials.

【0006】次に好ましい実施態様を挙げて本発明を更
に詳しく説明する。本発明で、主に使用する鉄塩は価数
3価の鉄塩であり、3価の鉄塩であれば塩化物塩、硝酸
塩、硫酸塩等どのような塩でもかまわず、また化学工
業、製鉄工業で副製する鉄塩でもかまわない。また微量
に添加する2価の鉄塩も同様にどのような塩でも使用可
能である。これらの塩を尿素と共にコンデンサー付きの
セパラブルフラスコ等の還流機能付き反応槽に所定量を
計り取る。ただし3価の鉄塩濃度は0.03〜0.3mol
/l、2価の鉄塩濃度は1×10-6〜1×10-2mol/
l、鉄粉は0.01〜0.1g/l、尿素の濃度は0.3
〜4.0mol/lの範囲で良好である。好ましくは3価の
鉄イオンのモル数に対して2価の鉄塩は100分の1程
度のモル数が、また尿素は3価鉄塩の10倍以上モル濃
度の尿素が、適当である。ただし、上記の濃度範囲を外
れる場合でも鉄の沈殿は得られるが水酸化物沈殿のまま
で本発明の粒径の整った球状ヘマタイト粒子は得られな
い。この反応は尿素の分解による沈殿反応であるため反
応温度は尿素の分解する温度以上が必要であり好ましく
は70℃以上である。また昇温速度は粒成長に影響を与
え、遅いほど生成する沈殿は比較的大きくなる傾向にあ
る。このようにして粒子径0.01〜1.0μmの粒径の
整った球状ヘマタイト粒子が容易に得られる。
Next, the present invention will be described in more detail with reference to preferred embodiments. In the present invention, the iron salt mainly used is a trivalent iron salt, and any trivalent iron salt such as a chloride salt, a nitrate salt, and a sulfate salt may be used. Iron salts produced by the steel industry may be used. In addition, any salts can be similarly used as a divalent iron salt added in a trace amount. A predetermined amount of these salts is measured together with urea in a reaction tank having a reflux function such as a separable flask equipped with a condenser. However, the trivalent iron salt concentration is 0.03 to 0.3 mol.
/ L, divalent iron salt concentration is 1 × 10 −6 to 1 × 10 −2 mol /
l, iron powder 0.01-0.1 g / l, urea concentration 0.3
It is good in the range of 4.0 mol / l. Preferably, the number of moles of the divalent iron salt is about 1/100 with respect to the number of moles of the trivalent iron ion, and the urea is urea having a molar concentration of 10 times or more that of the trivalent iron salt. However, even when the concentration is outside the above range, precipitation of iron can be obtained, but spherical hematite particles having a uniform particle size of the present invention cannot be obtained with hydroxide precipitation. Since this reaction is a precipitation reaction due to the decomposition of urea, the reaction temperature needs to be higher than the temperature at which urea decomposes, and is preferably 70 ° C. or higher. Further, the heating rate affects the grain growth, and the slower the temperature, the more the generated precipitate tends to be relatively large. In this way, spherical hematite particles having a uniform particle diameter of 0.01 to 1.0 μm can be easily obtained.

【0007】[0007]

【実施例】次に、実施例および比較例を挙げて本発明を
更に具体的に説明する。尚、実施例中の部は特にことわ
らない限り重量基準である。 実施例1 コンデンサー付きのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩102.3部、硫酸第一鉄7水塩0.17
部に沈殿剤として尿素400部を計りとり、これに溶解
水を加えて溶解し全体として1,700部になるように
する。このものをマントルヒーター上にセットして加熱
できるようにする。良く撹拌し各成分を完全に溶解し撹
拌しながら、昇温速度5℃/minで温度を100℃まで
上げ、上がったら一定に保ちそのままの状態で保持す
る。しばらくすると沈殿が析出してくるが、その後も加
熱撹拌を続け2時間経過した後、反応物を取り出しデカ
ンテーションにより十分に水洗し残塩を洗いだす。これ
をろ過し、120℃で10時間乾燥した。このようにし
て得られた生成物についてX線回折、透過型電子顕微鏡
で観察した結果、直径約0.1μmの粒径の整った球状
をしたヘマタイト粒子であることが確認できた。 実施例2 コンデンサー付きのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩51.1部、硫酸第一鉄7水塩0.17
部、沈殿剤として尿素300部を計りとり、これに溶解
水を加えて溶解し全体として1,700部になるように
する。このものをマントルヒーター上にセットして加熱
できるようにする。以下実施例1と同様の方法によって
得られた生成物についてX線回折を行った結果、図1に
示すごとくヘマタイト粒子の結晶ピークが明確に現れて
いる。更に透過型電子顕微鏡で観察した結果、直径約
0.3μmの粒径の整った球状ヘマタイト粒子であるこ
とが確認できた。 実施例3 コンデンサーつきのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩34.1部、鉄粉0.1部に沈殿剤として
尿素150部を計りとり、これに溶解水を加えて溶解し
全体として1,700部になるようにする。このものを
マントルヒーター上にセットして加熱できるようにす
る。昇温速度1℃/minで温度を100℃まで上げ、以
下実施例1と同様の方法にて得られた生成物は直径約
0.7μmの粒径の整った球状ヘマタイト粒子であるこ
とが確認できた。 比較例1 実施例1の微量の硫酸第一鉄を添加することを除き、同
様に試薬1級の塩化第二鉄6水塩102.3部、沈殿剤
として尿素400部を計りとり、これに溶解水を加えて
溶解し全体として1,700部になるようにする。この
ものをマントルヒーター上にセットして加熱できるよう
にする。以下実施例1と同様の方法によって得られた生
成物についてX線回折を行った結果、図2に示すごとく
非晶質の水酸化第二鉄であり、ヘマタイト粒子の結晶ピ
ークは現れなかった。 比較例2 コンデンサー付きのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩34.1部、硫酸第一鉄7水塩5.0部沈
殿剤として尿素150部を計りとり、これに溶解水を加
えて溶解し全体として1,700部になるようにする。
このものをマントルヒーター上にセットして加熱できる
ようにする。以下実施例1と同様にして得られた生成物
はマグネタイト、αオキソ水酸化第二鉄およびヘマタイ
トの混合物であり、粒径の整った球状ヘマタイト粒子は
得られなかった。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Parts in the examples are on a weight basis unless otherwise specified. Example 1 102.3 parts of reagent grade 1 ferric chloride hexahydrate, ferrous sulfate heptahydrate 0.17 in a separable flask equipped with a condenser
Weigh 400 parts of urea as a precipitant in each part and add dissolved water to this to dissolve it so that the total amount becomes 1,700 parts. This is set on a mantle heater to enable heating. The temperature is raised to 100 ° C. at a rate of 5 ° C./min while thoroughly stirring and thoroughly dissolving and stirring each component. After a while, a precipitate starts to be deposited. After that, heating and stirring are continued for 2 hours, and then the reactant is taken out and sufficiently washed with water by decantation to remove residual salts. This was filtered and dried at 120 ° C. for 10 hours. The product thus obtained was observed by X-ray diffraction and transmission electron microscopy. As a result, it was confirmed that the product was spherical hematite particles having a diameter of about 0.1 μm and a uniform particle diameter. Example 2 In a separable flask with a condenser, 51.1 parts of reagent grade 1 ferric chloride hexahydrate, ferrous sulfate heptahydrate 0.17
Urea, 300 parts of urea as a precipitant, and dissolving water added thereto to dissolve so that the total amount becomes 1,700 parts. This is set on a mantle heater to enable heating. The product obtained by the same method as in Example 1 was subjected to X-ray diffraction. As a result, a crystal peak of hematite particles clearly appeared as shown in FIG. Further, as a result of observation with a transmission electron microscope, it was confirmed that the particles were spherical hematite particles having a diameter of about 0.3 μm and a uniform particle diameter. Example 3 In a separable flask equipped with a condenser, 34.1 parts of reagent-grade ferric chloride hexahydrate, and 0.1 part of iron powder, 150 parts of urea as a precipitant were weighed, and dissolved water was added thereto. So that the total is 1,700 copies. This is set on a mantle heater to enable heating. The temperature was raised to 100 ° C. at a rate of 1 ° C./min, and the product obtained in the same manner as in Example 1 was confirmed to be spherical hematite particles having a diameter of about 0.7 μm and having a uniform particle diameter. did it. Comparative Example 1 In the same manner as in Example 1 except that a trace amount of ferrous sulfate was added, 102.3 parts of a reagent first-grade ferric chloride hexahydrate and 400 parts of urea as a precipitant were weighed, and this was taken. Add dissolved water and dissolve to a total of 1,700 parts. This is set on a mantle heater to enable heating. The product obtained by the same method as in Example 1 was subjected to X-ray diffraction, and as a result, as shown in FIG. 2, the product was amorphous ferric hydroxide and no crystal peak of hematite particles appeared. Comparative Example 2 In a separable flask equipped with a condenser, 34.1 parts of reagent grade 1 ferric chloride hexahydrate, 5.0 parts of ferrous sulfate heptahydrate 150 parts of urea was measured as a precipitant and dissolved therein. Add water and dissolve to make a total of 1,700 parts.
This is set on a mantle heater to enable heating. The product obtained in the same manner as in Example 1 was a mixture of magnetite, α-oxoferric hydroxide and hematite, and spherical hematite particles having a uniform particle size could not be obtained.

【0008】[0008]

【発明の効果】本発明のヘマタイトの製造方法によれ
ば、粒子の大きさの制御が容易である上、分散性に優れ
かつ、粒径の整っている球状のヘマタイト粒子を工業的
に容易に製造することのできる利点がある。
According to the method for producing hematite of the present invention, it is easy to control the size of the particles, and it is also easy to industrially produce spherical hematite particles having excellent dispersibility and a uniform particle diameter. There are advantages that can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例2で得られたヘマタイト粒子の
X線回折図である。
FIG. 1 is an X-ray diffraction diagram of hematite particles obtained in Example 2.

【図2】図2は、比較例1で得られた非晶質水酸化第二
鉄のX線回折図である。
FIG. 2 is an X-ray diffraction diagram of the amorphous ferric hydroxide obtained in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 章 東京都中央区日本橋馬喰町一丁目7番6 号 大日精化工業株式会社内 (56)参考文献 特開 昭53−115698(JP,A) 特開 昭63−64925(JP,A) 特開 平1−141823(JP,A) 特開 平6−211524(JP,A) 特開 平7−257930(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 49/06 C09C 1/24 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akira Nishio 1-7-6, Nihonbashi Bakurocho, Chuo-ku, Tokyo Inside Dainichi Seika Kogyo Co., Ltd. (56) References JP-A-53-115698 JP-A-63-64925 (JP, A) JP-A-1-141823 (JP, A) JP-A-6-211524 (JP, A) JP-A-7-257930 (JP, A) (58) Int.Cl. 7 , DB name) C01G 49/06 C09C 1/24

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3価の鉄塩に鉄塩濃度1×10-6〜1×1
-2mol/lの2価鉄塩または鉄塩濃度0.01〜0.1
g/lの鉄粉を加え、更に尿素を加えて水中で溶解混合
後、加熱することを特徴とする粒径の整った球状ヘマタ
イト粒子の製造方法。
An iron salt concentration of 1.times.10.sup.- 6 to 1.times.1
0 -2 mol / l ferrous salt or iron salt concentration 0.01 to 0.1
g / l iron powder, further adding urea, dissolving and mixing in water, and then heating the mixture.
【請求項2】3価の鉄塩の溶解濃度が0.03〜0.3mo
l/lである請求項1記載の粒径の整った球状ヘマタイ
ト粒子の製造方法。
2. The dissolution concentration of the trivalent iron salt is 0.03-0.3 mol.
The method for producing spherical hematite particles having a uniform particle size according to claim 1, wherein the ratio is 1 / l.
【請求項3】尿素の濃度が0.3〜4.0mol/lである
請求項1記載の粒径の整った球状ヘマタイト粒子の製造
方法。
3. The method according to claim 1, wherein the concentration of urea is 0.3 to 4.0 mol / l.
【請求項4】球状ヘマタイト粒子の粒子径が0.01〜
1.0μmである請求項1記載の粒径の整った球状ヘマ
タイト粒子の製造方法。
4. The spherical hematite particles having a particle diameter of 0.01 to
The method for producing spherical hematite particles having a uniform particle diameter according to claim 1, which has a diameter of 1.0 µm.
JP24460694A 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size Expired - Fee Related JP3186929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24460694A JP3186929B2 (en) 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24460694A JP3186929B2 (en) 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size

Publications (2)

Publication Number Publication Date
JPH0881638A JPH0881638A (en) 1996-03-26
JP3186929B2 true JP3186929B2 (en) 2001-07-11

Family

ID=17121239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24460694A Expired - Fee Related JP3186929B2 (en) 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size

Country Status (1)

Country Link
JP (1) JP3186929B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560441B1 (en) * 2013-01-25 2015-10-14 주식회사 엘지화학 Method for fabricating the iron oxide nanoparticles

Also Published As

Publication number Publication date
JPH0881638A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
JP2001164042A (en) Mg-Al-BASED HYDROTALCITE TYPE PARTICLE POWDER, CHLORINE- CONTAINING RESIN STABILIZER, AND METHOD FOR PRODUCING Mg-Al-BASED HYDROTALCITE TYPE PARTICLE POWDER
JP3186929B2 (en) Method for producing spherical hematite particles with uniform particle size
US5055136A (en) Heat-stable iron oxide black pigments, processes for their production and their use
KR20220012350A (en) Method for producing cobalt ferrite particles and cobalt ferrite particles prepared accordingly
JP2662898B2 (en) Method for producing fine particle composite oxide black pigment
US5091012A (en) Cobalt titanate particles and process for producing the same
KR102347578B1 (en) Manufacturing method of light absorbing single crystal alumina powders having hexagonal plate type structure
JPH0426514A (en) Production of plate-like conductive zinc oxide
KR960002625B1 (en) Process for producing microcrystalline barium ferrite platelets
JPH0623054B2 (en) Manufacturing method of hematite particle powder
JP2829644B2 (en) Production method of α-iron oxide
JPH05137995A (en) Method for coating particles with ferrite
JP2727187B2 (en) Method for producing plate-like hematite particle powder
JPS6090828A (en) Manufacture of needlelike spinel ferrite powder
JPH02133324A (en) Production of sr ferrite particles
JPS62176921A (en) Preparation of fine powdery platy barium ferrite
JP3006630B2 (en) Manganese titanate particle powder and method for producing the same
JPS62252324A (en) Production of fine barium ferrite powder
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JPS62207720A (en) Preparation of barium ferrite powder
JP2004026621A (en) Sheet-like iron oxyhydroxide, iron oxide, magnetite, and its manufacturing method
JPH06224020A (en) Manufacture of magnetic oxide powder
JP3645611B2 (en) Flat non-magnetic iron oxide pigment, production method thereof and use thereof
JPH072598A (en) Production of acicular titanium oxide
CA1110037A (en) Method for preparation of basic zinc compound flake like crystalline particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees