JPH0881638A - Production of spherical hematite particle with even diameter - Google Patents

Production of spherical hematite particle with even diameter

Info

Publication number
JPH0881638A
JPH0881638A JP24460694A JP24460694A JPH0881638A JP H0881638 A JPH0881638 A JP H0881638A JP 24460694 A JP24460694 A JP 24460694A JP 24460694 A JP24460694 A JP 24460694A JP H0881638 A JPH0881638 A JP H0881638A
Authority
JP
Japan
Prior art keywords
concentration
salt
urea
hematite particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24460694A
Other languages
Japanese (ja)
Other versions
JP3186929B2 (en
Inventor
Masanori Takakamo
雅則 高鴨
Akira Nishio
章 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Ukima Chemicals and Color Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP24460694A priority Critical patent/JP3186929B2/en
Publication of JPH0881638A publication Critical patent/JPH0881638A/en
Application granted granted Critical
Publication of JP3186929B2 publication Critical patent/JP3186929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE: To obtain in an industrially advantageous way fine spherical hematite particles easy to control the size thereof, excellent in dispersibility, by adding a ferrous salt, etc., and urea to a ferric salt followed by mixing to effect dissolution in water and then by heating the resultant solution. CONSTITUTION: (A) A ferric salt having a concentration of pref. 0.03-0.3mol/L when dissolved is incorporated with about 0.01 molar times of (B) (i) a ferrous salt 1×10-<6> to 1×10-<2> in concentration or (ii) iron powder 0.01-0.1g/L in iron salt concentration followed by addition, as precipitant, of (C) at least 10 molar times of urea pref. 0.3-4mol/L in concentration, and the resultant system is mixed in water into an aqueous solution, which is, in turn, heated to 70 deg.C or higher, thus obtaining the objective spherical hematite particles 0.01-1.0μm in diameter. The particles can be used as a colorant for coating materials, ink, synthetic resins, construction materials and the ceramic industry, and is also useful for fluophors, ultraviolet absorbers and magnetic materials, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒径が整っていて、微
粒子でかつ分散性に優れた球状ヘマタイト粒子の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical hematite particles having a uniform particle size, fine particles and excellent dispersibility.

【0002】[0002]

【従来の技術】酸化第二鉄は、塗料、インキ、合成樹
脂、建材および窯業用等の着色剤として用いられている
他、蛍光体用、紫外線吸収剤用および磁性材料用等その
機能性を生かした用途に広く利用されている。従来、酸
化鉄粒子の湿式製造方法としては、共沈法、湿式酸化
法、水熱法および加水分解法等が知られている。共沈法
は、第一鉄イオンや第二鉄イオンの単独または混合物に
沈殿剤としてアルカリを作用せしめて沈殿を生成し、こ
れを焼成して酸化第二鉄粒子を得るものである。この共
沈法で粒径の整った酸化鉄粒子を得ようとすると沈殿条
件の緻密なコントロールが必要となり工業的には難点が
あった。湿式酸化法は、アルカリ溶液中で第一鉄イオン
を空気等の酸化性ガスで酸化することによって含水酸化
鉄粒子および酸化鉄粒子等を製造する方法であるが、湿
式酸化法では、粒子径の整った針状酸化鉄は得られるも
のの球状ヘマタイトは得られにくい。また、水熱法は、
オートクレーブを使用して150℃以上のアルカリ溶液
中で第一鉄イオンの酸化加水分解反応によってヘマタイ
ト粒子を得るものであるが、この水熱法によると球状、
板状等ある程度整ったヘマタイト粒子は得られるものの
温度、圧力、アルカリ濃度等の条件設定が厳しく工業的
には難点があった。更に加水分解は、3価の鉄塩を原料
とし、これを酸性領域中で希薄濃度状態で数時間ないし
数日かけて加水分解せしめてヘマタイト粒子を得る方法
であるが、この加水分解法によると粒径の整った球状ヘ
マタイトが得られるものの製造溶液は希薄な状態にしな
ければならず、また生成に時間がかかるため工業的に難
点があった。
BACKGROUND OF THE INVENTION Ferric oxide is used as a coloring agent for paints, inks, synthetic resins, building materials, ceramics, etc., as well as its functionality for phosphors, ultraviolet absorbers, magnetic materials, etc. It is widely used for various purposes. Conventionally, as a wet production method of iron oxide particles, a coprecipitation method, a wet oxidation method, a hydrothermal method, a hydrolysis method and the like are known. The coprecipitation method is a method in which an alkali or a mixture of ferrous ions and ferric ions is caused to act as a precipitant to generate a precipitate, and the precipitate is fired to obtain ferric oxide particles. When trying to obtain iron oxide particles having a uniform particle size by this coprecipitation method, it is necessary to precisely control the precipitation conditions, which is an industrial problem. The wet oxidation method is a method for producing iron oxide hydroxide particles and iron oxide particles by oxidizing ferrous ions with an oxidizing gas such as air in an alkaline solution. Although regular needle-shaped iron oxide can be obtained, it is difficult to obtain spherical hematite. In addition, the hydrothermal method is
Hematite particles are obtained by an oxidative hydrolysis reaction of ferrous ions in an alkaline solution at 150 ° C. or higher using an autoclave. According to this hydrothermal method, spherical particles,
Although it is possible to obtain hematite particles having a certain degree of regularity such as a plate shape, the conditions such as temperature, pressure and alkali concentration are severely set, which is a problem in industrial terms. Further, hydrolysis is a method in which a trivalent iron salt is used as a raw material, and this is hydrolyzed in a dilute concentration state in an acidic region for several hours to several days to obtain hematite particles. According to this hydrolysis method, Although spherical hematite having a uniform particle size can be obtained, the manufacturing solution has to be made into a dilute state, and it takes a long time to generate it, which is an industrially difficult point.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記従来技
術の課題を背景になされたもので、粒子の大きさの制御
が容易であり、分散性に優れた粒径の整っている球状の
ヘマタイト粒子を工業的に容易に製造することのできる
製造方法を提供することにある。
The present invention has been made against the background of the above-mentioned problems of the prior art, and it is easy to control the size of particles, and spherical particles having a uniform particle size excellent in dispersibility are provided. An object of the present invention is to provide a production method capable of easily producing hematite particles industrially.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、3
価の鉄塩に鉄塩濃度1×10-6〜1×10-2mol/lの
2価鉄塩または鉄塩濃度0.01〜0.1g/lの鉄粉を
加え、更に尿素を加えて水中で溶解混合後、加熱するこ
とを特徴とする粒径の整った球状ヘマタイト粒子の製造
方法である。
That is, the present invention has three features.
Add divalent iron salt with iron salt concentration of 1 × 10 -6 to 1 × 10 -2 mol / l or iron powder with iron salt concentration of 0.01 to 0.1 g / l, and further add urea The method is a method for producing spherical hematite particles having a uniform particle size, which is characterized in that the solution is dissolved and mixed in water and then heated.

【0005】[0005]

【作用】3価の鉄塩に微量の2価鉄塩または鉄粉を添加
したものを沈殿剤として尿素を用いることによって、ま
ず3価鉄の水酸化物沈殿が生成される。次に微量の2価
鉄塩または鉄粉がこの水酸化物の脱水反応を促進させる
ことにより、この溶液中で粒径の整った球状ヘマタイト
粒子が短時間で容易に得られる。この際の鉄塩および沈
殿剤の尿素濃度、また昇温速度、温度等の条件によっ
て、形状および粒径を変えることができる。従って、こ
の方法によって得られた球状ヘマタイト粒子は粒径が整
っていて且つ分散性に優れていることから、例えば顔料
として使う場合は、従来の塗料、インキ、合成樹脂、建
材、窯業用の着色剤として用いられる他に、蛍光体用、
紫外線吸収剤用、磁性材料等その機能性を生かした広範
な分野に有用である。
By using urea containing a trivalent iron salt to which a small amount of divalent iron salt or iron powder is added as a precipitant, a hydroxide precipitate of trivalent iron is first produced. Next, a small amount of divalent iron salt or iron powder accelerates the dehydration reaction of the hydroxide, so that spherical hematite particles having a uniform particle size can be easily obtained in this solution in a short time. At this time, the shape and particle size can be changed depending on the urea concentration of the iron salt and the precipitating agent, and the conditions such as the temperature rising rate and the temperature. Therefore, since the spherical hematite particles obtained by this method have a uniform particle size and excellent dispersibility, when used as a pigment, for example, conventional paints, inks, synthetic resins, building materials, coloring for ceramics are used. Besides being used as an agent, for phosphors,
It is useful in a wide range of fields such as UV absorbers and magnetic materials that make the most of its functionality.

【0006】次に好ましい実施態様を挙げて本発明を更
に詳しく説明する。本発明で、主に使用する鉄塩は価数
3価の鉄塩であり、3価の鉄塩であれば塩化物塩、硝酸
塩、硫酸塩等どのような塩でもかまわず、また化学工
業、製鉄工業で副製する鉄塩でもかまわない。また微量
に添加する2価の鉄塩も同様にどのような塩でも使用可
能である。これらの塩を尿素と共にコンデンサー付きの
セパラブルフラスコ等の還流機能付き反応槽に所定量を
計り取る。ただし3価の鉄塩濃度は0.03〜0.3mol
/l、2価の鉄塩濃度は1×10-6〜1×10-2mol/
l、鉄粉は0.01〜0.1g/l、尿素の濃度は0.3
〜4.0mol/lの範囲で良好である。好ましくは3価の
鉄イオンのモル数に対して2価の鉄塩は100分の1程
度のモル数が、また尿素は3価鉄塩の10倍以上モル濃
度の尿素が、適当である。ただし、上記の濃度範囲を外
れる場合でも鉄の沈殿は得られるが水酸化物沈殿のまま
で本発明の粒径の整った球状ヘマタイト粒子は得られな
い。この反応は尿素の分解による沈殿反応であるため反
応温度は尿素の分解する温度以上が必要であり好ましく
は70℃以上である。また昇温速度は粒成長に影響を与
え、遅いほど生成する沈殿は比較的大きくなる傾向にあ
る。このようにして粒子径0.01〜1.0μmの粒径の
整った球状ヘマタイト粒子が容易に得られる。
The present invention will be described in more detail with reference to the preferred embodiments. In the present invention, the iron salt mainly used is an iron salt having a valence of 3, and any salt such as chloride salt, nitrate salt, and sulfate salt may be used as long as it is a trivalent iron salt. An iron salt produced as a by-product in the steel industry may be used. Further, as the divalent iron salt added in a trace amount, any salt can be used as well. A predetermined amount of these salts is measured together with urea into a reaction tank having a reflux function such as a separable flask equipped with a condenser. However, the concentration of trivalent iron salt is 0.03 to 0.3 mol
/ L, the divalent iron salt concentration is 1 × 10 -6 to 1 × 10 -2 mol /
1, iron powder 0.01-0.1g / l, urea concentration 0.3
Good in the range of up to 4.0 mol / l. It is preferable that the divalent iron salt has a molar ratio of about 1/100, and the urea has a urea concentration of 10 times or more that of the trivalent iron salt. However, even if the concentration is out of the above range, iron precipitation can be obtained, but hydroxide precipitation remains and the spherical hematite particles of the present invention having a uniform particle size cannot be obtained. Since this reaction is a precipitation reaction due to the decomposition of urea, the reaction temperature needs to be higher than the temperature at which urea is decomposed, and is preferably 70 ° C. or higher. In addition, the rate of temperature rise affects grain growth, and the slower the rate, the larger the precipitation that forms. In this way, spherical hematite particles having a uniform particle size of 0.01 to 1.0 μm can be easily obtained.

【0007】[0007]

【実施例】次に、実施例および比較例を挙げて本発明を
更に具体的に説明する。尚、実施例中の部は特にことわ
らない限り重量基準である。 実施例1 コンデンサー付きのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩102.3部、硫酸第一鉄7水塩0.17
部に沈殿剤として尿素400部を計りとり、これに溶解
水を加えて溶解し全体として1,700部になるように
する。このものをマントルヒーター上にセットして加熱
できるようにする。良く撹拌し各成分を完全に溶解し撹
拌しながら、昇温速度5℃/minで温度を100℃まで
上げ、上がったら一定に保ちそのままの状態で保持す
る。しばらくすると沈殿が析出してくるが、その後も加
熱撹拌を続け2時間経過した後、反応物を取り出しデカ
ンテーションにより十分に水洗し残塩を洗いだす。これ
をろ過し、120℃で10時間乾燥した。このようにし
て得られた生成物についてX線回折、透過型電子顕微鏡
で観察した結果、直径約0.1μmの粒径の整った球状
をしたヘマタイト粒子であることが確認できた。 実施例2 コンデンサー付きのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩51.1部、硫酸第一鉄7水塩0.17
部、沈殿剤として尿素300部を計りとり、これに溶解
水を加えて溶解し全体として1,700部になるように
する。このものをマントルヒーター上にセットして加熱
できるようにする。以下実施例1と同様の方法によって
得られた生成物についてX線回折を行った結果、図1に
示すごとくヘマタイト粒子の結晶ピークが明確に現れて
いる。更に透過型電子顕微鏡で観察した結果、直径約
0.3μmの粒径の整った球状ヘマタイト粒子であるこ
とが確認できた。 実施例3 コンデンサーつきのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩34.1部、鉄粉0.1部に沈殿剤として
尿素150部を計りとり、これに溶解水を加えて溶解し
全体として1,700部になるようにする。このものを
マントルヒーター上にセットして加熱できるようにす
る。昇温速度1℃/minで温度を100℃まで上げ、以
下実施例1と同様の方法にて得られた生成物は直径約
0.7μmの粒径の整った球状ヘマタイト粒子であるこ
とが確認できた。 比較例1 実施例1の微量の硫酸第一鉄を添加することを除き、同
様に試薬1級の塩化第二鉄6水塩102.3部、沈殿剤
として尿素400部を計りとり、これに溶解水を加えて
溶解し全体として1,700部になるようにする。この
ものをマントルヒーター上にセットして加熱できるよう
にする。以下実施例1と同様の方法によって得られた生
成物についてX線回折を行った結果、図2に示すごとく
非晶質の水酸化第二鉄であり、ヘマタイト粒子の結晶ピ
ークは現れなかった。 比較例2 コンデンサー付きのセパラブルフラスコに試薬1級の塩
化第二鉄6水塩34.1部、硫酸第一鉄7水塩5.0部沈
殿剤として尿素150部を計りとり、これに溶解水を加
えて溶解し全体として1,700部になるようにする。
このものをマントルヒーター上にセットして加熱できる
ようにする。以下実施例1と同様にして得られた生成物
はマグネタイト、αオキソ水酸化第二鉄およびヘマタイ
トの混合物であり、粒径の整った球状ヘマタイト粒子は
得られなかった。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. The parts in the examples are based on weight unless otherwise specified. Example 1 102.3 parts of reagent grade ferric chloride hexahydrate, ferrous sulfate heptahydrate 0.17 in a separable flask equipped with a condenser
400 parts of urea as a precipitating agent is weighed in 1 part, and dissolved water is added to this to dissolve it, so that the total amount becomes 1,700 parts. Set this on the mantle heater so that it can be heated. While stirring well, each component is completely dissolved and stirred, the temperature is raised to 100 ° C. at a temperature rising rate of 5 ° C./min, and when the temperature rises, it is kept constant and kept as it is. After a while, a precipitate begins to precipitate, but after that, heating and stirring are continued and after 2 hours, the reaction product is taken out and thoroughly washed with water by decantation to wash out the residual salt. This was filtered and dried at 120 ° C. for 10 hours. The product thus obtained was observed by X-ray diffraction and a transmission electron microscope, and as a result, it was confirmed that the product was spherical hematite particles having a diameter of about 0.1 μm and a regular particle size. Example 2 In a separable flask equipped with a condenser, 51.1 parts of reagent grade ferric chloride hexahydrate and ferrous sulfate heptahydrate 0.17
Parts, 300 parts of urea as a precipitant is weighed, and dissolved water is added to this to dissolve it, so that the total amount becomes 1,700 parts. Set this on the mantle heater so that it can be heated. As a result of X-ray diffraction of the product obtained by the same method as in Example 1 below, a crystal peak of hematite particles clearly appears as shown in FIG. Further, as a result of observation with a transmission electron microscope, it was confirmed that the particles were spherical hematite particles having a diameter of about 0.3 μm and a uniform particle size. Example 3 In a separable flask equipped with a condenser, 34.1 parts of ferric chloride hexahydrate of the first grade reagent and 0.1 part of iron powder were weighed with 150 parts of urea as a precipitating agent, and dissolved water was added thereto to dissolve. The total number of copies will be 1,700. Set this on the mantle heater so that it can be heated. The temperature was raised to 100 ° C. at a temperature rising rate of 1 ° C./min, and it was confirmed that the product obtained by the same method as in Example 1 below was spherical hematite particles having a diameter of about 0.7 μm and a regular particle size. did it. Comparative Example 1 102.3 parts of ferric chloride hexahydrate of reagent grade 1 and 400 parts of urea as a precipitating agent were weighed in the same manner as in Example 1 except that a small amount of ferrous sulfate was added. Dissolved water is added and dissolved to make a total of 1,700 parts. Set this on the mantle heater so that it can be heated. The product obtained by the same method as in Example 1 was subjected to X-ray diffraction. As a result, it was amorphous ferric hydroxide and no crystal peak of hematite particles appeared as shown in FIG. Comparative Example 2 In a separable flask equipped with a condenser, 34.1 parts of reagent grade ferric chloride hexahydrate, 5.0 parts ferrous sulfate heptahydrate 5.0 parts, 150 parts of urea as a precipitant were measured and dissolved. Add water to dissolve and make a total of 1,700 parts.
Set this on the mantle heater so that it can be heated. The product obtained in the same manner as in Example 1 below was a mixture of magnetite, α-ferric oxohydroxide and hematite, and spherical hematite particles having a uniform particle size could not be obtained.

【0008】[0008]

【発明の効果】本発明のヘマタイトの製造方法によれ
ば、粒子の大きさの制御が容易である上、分散性に優れ
かつ、粒径の整っている球状のヘマタイト粒子を工業的
に容易に製造することのできる利点がある。
EFFECT OF THE INVENTION According to the method for producing hematite of the present invention, the size of the particles can be easily controlled, and the spherical hematite particles having an excellent dispersibility and a uniform particle size can be easily industrially produced. There are advantages that can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例2で得られたヘマタイト粒子の
X線回折図である。
FIG. 1 is an X-ray diffraction diagram of hematite particles obtained in Example 2.

【図2】図2は、比較例1で得られた非晶質水酸化第二
鉄のX線回折図である。
FIG. 2 is an X-ray diffraction diagram of amorphous ferric hydroxide obtained in Comparative Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】3価の鉄塩に鉄塩濃度1×10-6〜1×1
-2mol/lの2価鉄塩または鉄塩濃度0.01〜0.1
g/lの鉄粉を加え、更に尿素を加えて水中で溶解混合
後、加熱することを特徴とする粒径の整った球状ヘマタ
イト粒子の製造方法。
1. An iron salt concentration of 1 × 10 −6 to 1 × 1 in trivalent iron salt.
0 -2 mol / l divalent iron salt or iron salt concentration 0.01-0.1
A method for producing spherical hematite particles having a uniform particle size, which comprises adding g / l iron powder, further adding urea, dissolving and mixing in water, and then heating.
【請求項2】3価の鉄塩の溶解濃度が0.03〜0.3mo
l/lである請求項1記載の粒径の整った球状ヘマタイ
ト粒子の製造方法。
2. The dissolved concentration of trivalent iron salt is 0.03 to 0.3 mo.
The method for producing spherical hematite particles having a uniform particle size according to claim 1, which is 1 / l.
【請求項3】尿素の濃度が0.3〜4.0mol/lである
請求項1記載の粒径の整った球状ヘマタイト粒子の製造
方法。
3. The method for producing spherical hematite particles having a uniform particle size according to claim 1, wherein the concentration of urea is 0.3 to 4.0 mol / l.
【請求項4】球状ヘマタイト粒子の粒子径が0.01〜
1.0μmである請求項1記載の粒径の整った球状ヘマ
タイト粒子の製造方法。
4. The spherical hematite particles have a particle size of 0.01 to
The method for producing spherical hematite particles having a uniform particle size according to claim 1, which is 1.0 μm.
JP24460694A 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size Expired - Fee Related JP3186929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24460694A JP3186929B2 (en) 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24460694A JP3186929B2 (en) 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size

Publications (2)

Publication Number Publication Date
JPH0881638A true JPH0881638A (en) 1996-03-26
JP3186929B2 JP3186929B2 (en) 2001-07-11

Family

ID=17121239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24460694A Expired - Fee Related JP3186929B2 (en) 1994-09-13 1994-09-13 Method for producing spherical hematite particles with uniform particle size

Country Status (1)

Country Link
JP (1) JP3186929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116064A1 (en) * 2013-01-25 2014-07-31 주식회사 엘지화학 Method of producing iron oxide nanoparticles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116064A1 (en) * 2013-01-25 2014-07-31 주식회사 엘지화학 Method of producing iron oxide nanoparticles
CN104755429A (en) * 2013-01-25 2015-07-01 株式会社Lg化学 Trimanganese tetraoxide and method for producing same
US9755231B2 (en) 2013-01-25 2017-09-05 Lg Chem, Ltd. Method of preparing iron oxide nanoparticles

Also Published As

Publication number Publication date
JP3186929B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
JP5619257B2 (en) Yellow iron oxide pigment
JPH0627006B2 (en) Method for producing iron oxide red pigment
JPH04214037A (en) Black manganese/iron oxide pigment
US5055136A (en) Heat-stable iron oxide black pigments, processes for their production and their use
CN110228823B (en) Iron oxide yellow and preparation method thereof, and iron oxide red and preparation method thereof
US2811463A (en) Inorganic black pigment
JP3006640B2 (en) Manufacturing method of granular hematite particle powder
JPH0881638A (en) Production of spherical hematite particle with even diameter
KR20220012350A (en) Method for producing cobalt ferrite particles and cobalt ferrite particles prepared accordingly
US5091012A (en) Cobalt titanate particles and process for producing the same
JP4745485B2 (en) Magnetite production method
US2631085A (en) Preparation of black oxide of iron
JP2662898B2 (en) Method for producing fine particle composite oxide black pigment
JPH0623054B2 (en) Manufacturing method of hematite particle powder
JP2829644B2 (en) Production method of α-iron oxide
US20020127176A1 (en) Method of preparing an aluminium-containing iron oxide nucleus
JPS6090828A (en) Manufacture of needlelike spinel ferrite powder
JPH05208829A (en) Production of fine particle of hematite
JP2006282423A (en) Bismuth vanadate fine particles and method for manufacturing bismuth vanadate fine particles
JPS62252324A (en) Production of fine barium ferrite powder
JPH01226740A (en) Production of hematite particulate powder
JPH072598A (en) Production of acicular titanium oxide
JP3282264B2 (en) Method for producing magnetic oxide powder
JPH06342717A (en) Manufacture of magnetic oxide powder
JPH0193427A (en) Production of lamellar hematite particle powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090511

LAPS Cancellation because of no payment of annual fees