JP2690827B2 - Method for producing powder of polyhedral magnetite particles - Google Patents
Method for producing powder of polyhedral magnetite particlesInfo
- Publication number
- JP2690827B2 JP2690827B2 JP3206027A JP20602791A JP2690827B2 JP 2690827 B2 JP2690827 B2 JP 2690827B2 JP 3206027 A JP3206027 A JP 3206027A JP 20602791 A JP20602791 A JP 20602791A JP 2690827 B2 JP2690827 B2 JP 2690827B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetite
- alkali metal
- polyhedral
- aqueous solution
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compounds Of Iron (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、多面体状マグネタイト
粒子粉末の製造方法に係り、詳しくは、粒径が細かく且
つ分散性に優れ、電子写真用磁性トナー、電磁波吸収
材、防錆塗料材等に有用な多面体状マグネタイト粒子粉
末の製造方法に関する。BACKGROUND OF THE INVENTION The present invention relates to a method of manufacturing a powder polyhedral magnetite particles powder, particularly, excellent in particle size finely and dispersibility, electrophotographic magnetic toner, electromagnetic wave absorbing material, anticorrosive coating material Useful polyhedral magnetite particles
It relates to a manufacturing method of powder .
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来よ
り、マグネタイト粒子粉末は、電子写真用のトナー、磁
性トナー、黒色顔料、電磁波吸収材、防錆塗料材等に広
く使用されて来ている。これら用途においては、樹脂等
との混練り作業等の効率を上げるため及び黒色度を向上
させるため等の理由から分散性に優れた物が要求され
る。2. Description of the Related Art Magnetite particle powders have hitherto been widely used as electrophotographic toners, magnetic toners, black pigments, electromagnetic wave absorbers, rust preventive paints and the like. . In these applications, a material having excellent dispersibility is required for the purpose of increasing the efficiency of kneading with a resin or the like and improving the blackness.
【0003】例えば、電子写真現像剤の分野において
は、現像剤は二成分系現像剤と一成分系現像剤に大別す
ることができるが、一成分系現像剤としてのトナー粒径
は解像度を向上させるためには、その粒径を小さくさせ
る必要がある。従って、一成分系トナー中に用いられる
マグネタイトとしては一定の形状で粒度分布が狭く、尚
且つ分散性が良いことが要求される。For example, in the field of electrophotographic developers, developers can be roughly classified into two-component developers and one-component developers. The toner particle size as a one-component developer has a resolution. In order to improve, it is necessary to reduce the particle size. Therefore, the magnetite used in the one-component toner is required to have a uniform shape, a narrow particle size distribution, and good dispersibility.
【0004】しかし、従来のマグネタイト粒子は立方状
粒子または不定形粒子が多く、またその粒子粉末は一定
形状の均一粒子群粉末でないことが実状である。不定形
や立方状のマグネタイト粒子は二次凝集を起こしやす
く、また、その粒子同士も揃っていない場合が多く、そ
の粒子粉末は分散性が悪くなってしまう。このようにマ
グネタイト粒子粉末の分散性が悪くなると、磁性トナー
を製造する場合に個々のトナーの磁性材料含有率が異な
り、画像濃度や解像度を悪くしてしまう。However, many conventional magnetite particles are cubic particles or amorphous particles, and the particle powder is not a uniform particle group powder having a uniform shape. Irregular or cubic magnetite particles are likely to cause secondary agglomeration, and the particles are often not even with each other, resulting in poor dispersibility of the particle powder. When the dispersibility of the magnetite particle powder is deteriorated in this way, when the magnetic toner is manufactured, the content ratio of the magnetic material of each toner is different and the image density and the resolution are deteriorated.
【0005】従って、本発明の目的は、粒度分布が狭
く、一定の形状、特に多面体状を有する分散性の優れた
マグネタイト粒子粉末の製造方法を提供することにあ
る。It is therefore an object of the present invention is that the narrow particle size distribution, provides a certain shape, manufacturing method of powder dispersibility superior magnetite particles powder having a particularly polyhedral shape.
【0006】[0006]
【課題を解決するための手段】本発明は、第一鉄塩水溶
液と、アルカリ金属水酸化物及びアルカリ金属炭酸塩を
含む水溶液とを混合して得られた懸濁液に、酸素を含む
ガスを吹き込んで酸化することによりマグネタイト粒子
粉末を製造するにあたり、第一鉄塩、アルカリ金属水
酸化物、アルカリ金属炭酸塩のモル比を1:0.4〜
1.2:0.8〜1.6とし、酸化反応温度を75〜
100℃とすることにより、平均粒径が0.1〜1.5
μmであり、表面の面数が少なくとも10であり、且つ
比表面積が3〜40m 2 /gである多面体状マグネタイ
ト粒子粉末を製造することを特徴とする多面体状マグネ
タイト粒子粉末の製造方法を提供することにより、上記
目的を達成したものである。The present invention relates to a ferrous salt aqueous solution.
Liquid with alkali metal hydroxide and alkali metal carbonate
Oxygen is added to the suspension obtained by mixing with an aqueous solution containing
Magnetite particles by blowing gas and oxidizing
In producing powder, ferrous salt, alkali metal water
The molar ratio of oxide and alkali metal carbonate is 1: 0.4-
1.2: 0.8-1.6 and the oxidation reaction temperature is 75-
By setting the temperature to 100 ° C, the average particle diameter is 0.1 to 1.5.
μm, the number of surfaces is at least 10, and
Polyhedral magnetite with a specific surface area of 3-40 m 2 / g
Polyhedral magnets characterized by producing powder particles
The above object has been achieved by providing a method for producing a tight particle powder .
【0007】本発明の多面体状マグネタイト粒子粉末の
平均粒径は、コールターカウンターで測定して、0.1
〜1.5μmの範囲にある。また、多面体状マグネット
粒子の表面の面数は、SEM写真で粒子を拡大して実測
したもので、少なくとも10面以上である。また、本発
明の製造方法において、第一鉄塩、アルカリ金属水酸化
物、及びアルカリ金属炭酸塩としては、塩化第一鉄、苛
性ソーダ及び炭酸ソーダ等を挙げることができるがこれ
については後述する。また、酸素を含むガスとは空気で
あってもよい。The average particle size of the polyhedral magnetite particles of the present invention is 0.1 when measured with a Coulter counter.
˜1.5 μm. Further, the number of surfaces of the polyhedral magnet particles is at least 10 or more, which is measured by enlarging the particles with an SEM photograph. In the production method of the present invention, examples of the ferrous salt, alkali metal hydroxide, and alkali metal carbonate include ferrous chloride, caustic soda, sodium carbonate, and the like, which will be described later. Further, the gas containing oxygen may be air.
【0008】[0008]
【作用】本発明者等は、鋭意研究した結果、上記マグネ
タイト粒子粉末の製造方法を見い出したものであり、本
発明の上記マグネタイト粒子粉末は、その粒径が多面体
状であり球形に近くなっている。このため、マグネタイ
ト粒子の平均粒径が比較的細かいにも拘らず、その粒子
粉末には分散性がある。このような分散性は樹脂との混
練り時にも十分発揮されることが期待され、該粒子粉末
は電子写真用磁性トナー、電磁波吸収材及び防錆塗料材
等の組成物中に添加することができる。 (実施の態様) 以下、本発明の多面体状マグネタイト粒子粉末の製造方
法について更に詳しく説明する。The present inventors have conducted intensive studies and found out a method for producing the magnetite particle powder, and the magnetite particle powder of the present invention has a polyhedral shape and a nearly spherical shape. There is. Therefore, although the average particle size of the magnetite particles is relatively small, the particle powder has dispersibility. Such dispersibility is expected to be sufficiently exhibited even when kneading with a resin, and the particle powder may be added to a composition such as a magnetic toner for electrophotography, an electromagnetic wave absorber and an anticorrosive coating material. it can. (Exemplary embodiments) will be described below in further detail a method for manufacturing the powder polyhedral magnetite particles powder of the present invention.
【0009】本発明の多面体状マグネタイト粒子粉末
は、球状に近く粒子の大きさも比較的揃っているため
に、各種樹脂との混練の際に分散性が良好で、たとえば
磁性トナーとする場合、個々のトナー粒子中に均一に混
合することができる利点がある。即ち、本発明のマグネ
タイト粒子の平均粒径は、0.1〜1.5μmの範囲で
あり、十分に細かい。このため、解像度の向上を目的と
する一成分系トナー等の磁性材として好適な使用ができ
る。The polyhedral magnetite particle powder of the present invention is close to spherical and has a relatively uniform particle size, so that it has good dispersibility when kneaded with various resins. There is an advantage that it can be uniformly mixed in the toner particles. That is, the average particle size of the magnetite particles of the present invention is in the range of 0.1 to 1.5 μm, which is sufficiently fine. Therefore, it can be suitably used as a magnetic material such as a one-component toner for the purpose of improving resolution.
【0010】一方、本発明のマグネタイト粒子は、その
比表面積が3〜40m2 /gの範囲にあり、またその表
面の面数が少なくとも10であり、その粒子が球状に近
いものであるため、二次凝集が起こり難く分散性に優れ
ているのである。次に、本発明の多面体状マグネタイト
粒子粉末の製造方法において、第一鉄塩としては、硫酸
第一鉄、塩化第一鉄及びその他の第一鉄塩等が挙げられ
るが、ここでは塩化第一鉄が好ましい。On the other hand, the magnetite particles of the present invention have a specific surface area in the range of 3 to 40 m 2 / g, and the number of surfaces is at least 10, and the particles are nearly spherical. Secondary aggregation hardly occurs and the dispersibility is excellent. Next, in the method for producing a polyhedral magnetite particle powder of the present invention, examples of the ferrous salt include ferrous sulfate, ferrous chloride, and other ferrous salts. Iron is preferred.
【0011】また、アルカリ金属水酸化物及びアルカリ
金属炭酸塩としては、第Ia族のアルカリ金属及び第IIa
族のアルカリ土類金属の水酸化アルカリ及びアルカリ炭
酸塩が挙げられるが、苛性ソーダ及び炭酸ソーダが好ま
しい物として推奨される。第一鉄塩水溶液とアルカリ金
属水酸化物及びアルカリ金属炭酸塩を含む水溶液との混
合比は、これら水溶液中の第一鉄塩とアルカリ金属水酸
化物及びアルカリ金属炭酸塩とのモル比によって決定さ
れる。使用する鉄塩の種類と、アルカリの種類の組合せ
と、モル比と、反応条件とによって、生成するマグネタ
イト粒子は、その形態が針状、板状、立方状等に変化す
るから、上記条件の決定は正確を期する。即ち、本発明
においては、 第一鉄塩、アルカリ金属水酸化物、アルカリ金属炭酸
塩のモル比を1:0.4〜1.2:0.8〜1.6と
し、 酸化反応温度を75〜100℃とすることが重要であ
る。Alkali metal hydroxides and alkali metal carbonates include Group Ia alkali metals and Group IIa
Alkaline hydroxides and alkali carbonates of the group Alkaline earth metals are mentioned, but caustic soda and sodium carbonate are preferred and preferred. The mixing ratio of the aqueous ferrous salt solution and the aqueous solution containing the alkali metal hydroxide and the alkali metal carbonate is determined by the molar ratio of the ferrous salt to the alkali metal hydroxide and the alkali metal carbonate in these aqueous solutions. To be done. Depending on the type of iron salt used, the combination of types of alkali, the molar ratio, and the reaction conditions, the resulting magnetite particles have a morphology of needle-like, plate-like, cubic, etc. The decision is accurate. That is, in the present invention, the molar ratio of ferrous salt, alkali metal hydroxide, and alkali metal carbonate is 1: 0.4 to 1.2: 0.8 to 1.6, and the oxidation reaction temperature is 75. It is important to set the temperature to -100 ° C.
【0012】上記条件をはずれると本発明の多面体状マ
グネタイト粒子粉末を十分に得ることが出来ない。ま
た、アルカリ金属水酸化物及びアルカリ金属炭酸塩を含
む水溶液を用いることも重要である。この水溶液に代え
て、水酸化アルカリ水溶液を使用した場合は、針状粒子
が生成しやすく、またアルカリ金属炭酸塩水溶液を使用
した場合は、紡錘型又は板状粒子となる傾向が強くな
る。If the above conditions are not satisfied, the polyhedral magnetite particle powder of the present invention cannot be sufficiently obtained. It is also important to use an aqueous solution containing an alkali metal hydroxide and an alkali metal carbonate. When an aqueous solution of alkali hydroxide is used in place of this aqueous solution, needle-like particles are likely to be formed, and when an aqueous solution of alkali metal carbonate is used, spindle-shaped or plate-like particles are more likely to be formed.
【0013】本発明者等は、これらの現象を把握し、鋭
意検討の結果、上記条件を見出し、更に多面体状マグネ
タイト粒子粉末を製造するために以下の操作手順を見出
したものである。即ち、アルカリ金属水酸化物及びアル
カリ金属炭酸塩の量を適切にコントロールすることによ
り、微細な六角板状形態を作り出し、その後75〜10
0℃の温度条件で、マグネタイト生成のための酸化を行
い、多面体状マグネタイト粒子に成長させることができ
る。The inventors of the present invention have ascertained these phenomena and, as a result of diligent studies, found the above conditions, and further found the following operation procedure for producing polyhedral magnetite particles. That is, by appropriately controlling the amounts of the alkali metal hydroxide and the alkali metal carbonate, a fine hexagonal plate-like morphology is created, and thereafter 75 to 10
Oxidation for producing magnetite can be performed under the temperature condition of 0 ° C. to grow polyhedral magnetite particles.
【0014】また、上記製造の手順として第一鉄塩水溶
液にアルカリ金属炭酸塩水溶液を添加し、しかる後、水
酸化アルカリ水溶液を添加することが望ましい。さら
に、酸素を含むガスとしては空気が好ましく、また反応
時間は空気の吹き込み速度にもよるが、6〜9時間程度
をかけた方が粒径の揃ったマグネタイトを得る上で好ま
しい。Further, as a procedure of the above production, it is desirable to add an aqueous solution of an alkali metal carbonate to the aqueous solution of a ferrous salt, and then add an aqueous solution of alkali hydroxide. Furthermore, air is preferable as the gas containing oxygen, and the reaction time is preferably 6 to 9 hours, although it depends on the blowing rate of air, in order to obtain magnetite with a uniform particle size.
【0015】[0015]
【実施例】以下に、実施例及び比較例により、本発明を
より具体的に説明する。 実施例1 容量15lの容器に窒素ガスを通気しながら、純水4l
を入れ、その中に3.33mol /lの塩化第一鉄水溶液
1.15lを加え、次いで、2.0mol /lの炭酸ソー
ダ水溶液を2.85l添加し、30分間攪拌混合した
後、2.0mol /lの苛性ソーダ水溶液を2l加えて全
体を10lとした後、攪拌しながら90℃に昇温させ、
1l/min の空気を8時間通気して生成物を濾過、分離
し、乾燥した。得られた生成物は図1に示す通りであ
る。図1は生成物の粒子構造を示す電子顕微鏡写真であ
り、図1に示す通り、得られた生成物は、平均粒径がコ
ールターカウンターで測定した所0.2μmで、表面の
面数が10以上の多面体状マグネタイト粒子であった。
尚、表面の面数は以下の方法により測定した。即ち、図
2に示す通りSEM写真でマグネタイト粒子を拡大し、
粒子20個それぞれの面数を実測した(この時見える表
面を数え、その裏側も同じと考えた)。また、得られた
マグネタイト粒子の比表面積は30m2 /gであった。EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples. Example 1 4 l of pure water was passed through a container having a volume of 15 l while aerating nitrogen gas.
1.15 l of 3.33 mol / l ferrous chloride aqueous solution was added thereto, then 2.85 l of 2.0 mol / l sodium carbonate aqueous solution was added, and the mixture was stirred and mixed for 30 minutes, and then 2. After adding 2 liters of 0 mol / l caustic soda aqueous solution to make 10 liters in total, the temperature was raised to 90 ° C. with stirring,
The product was filtered, separated and dried by bubbling 1 l / min of air for 8 hours. The obtained product is as shown in FIG. FIG. 1 is an electron micrograph showing the particle structure of the product. As shown in FIG. 1, the product obtained has an average particle size of 0.2 μm as measured by a Coulter counter and a surface number of 10 It was the above polyhedral magnetite particles.
The number of surfaces was measured by the following method. That is, as shown in FIG. 2, magnifying the magnetite particles in the SEM photograph,
The number of faces of each of the 20 particles was measured (the number of surfaces visible at this time was counted, and the back side thereof was also considered the same). The specific surface area of the obtained magnetite particles was 30 m 2 / g.
【0016】実施例2 容量15lの容器に窒素ガスを通気しながら、純水6l
を入れ、その中に4.0mol /lの塩化第一鉄水溶液
1.0lを加え、次いで、2.0mol/lの炭酸ソーダ
水溶液を2.0l添加し、30分間攪拌混合した後、
2.0mol /lの苛性ソーダ水溶液を2l加えて全体を
11lとした後、攪拌しながら90℃に昇温させ、1l
/min の空気を8時間通気して生成物を濾過、分離し、
乾燥した。得られた生成物の電子顕微鏡写真を図3に示
す。図3に示す通り、得られた生成物は、平均粒径が
0.3μmで、表面の面数が10以上の多面体状マグネ
タイト粒子であった。尚、表面の面数は、実施例1と同
様の方法で測定した。また、得られたマグネタイト粒子
の比表面積は30m2 /gであった。Example 2 6 l of pure water was passed through a container having a capacity of 15 l while aeration of nitrogen gas.
Then, 1.0 l of a 4.0 mol / l ferrous chloride aqueous solution was added thereto, and then 2.0 l of a 2.0 mol / l sodium carbonate aqueous solution was added thereto, and the mixture was stirred and mixed for 30 minutes.
After adding 2 liters of 2.0 mol / l caustic soda aqueous solution to make 11 liters in total, the temperature was raised to 90 ° C. with stirring and 1 liter was added.
/ Min air for 8 hours to filter and separate the product,
Dried. An electron micrograph of the obtained product is shown in FIG. As shown in FIG. 3, the obtained product was polyhedral magnetite particles having an average particle size of 0.3 μm and a surface number of 10 or more. The number of surfaces was measured by the same method as in Example 1. The specific surface area of the obtained magnetite particles was 30 m 2 / g.
【0017】実施例3 容量15lの容器に窒素ガスを通気しながら、純水5l
を入れ、その中に3.33mol /lの塩化第一鉄水溶液
1.15lを加え、次いで、2.0mol /lの炭酸ソー
ダ水溶液を2.85l添加し、30分間攪拌混合した
後、2.0mol /lの苛性ソーダ水溶液を1l加えて全
体を10lとした後、攪拌しながら90℃に昇温させ、
1l/min の空気を8時間通気して生成物を濾過、分離
し、乾燥した。得られた生成物の電子顕微鏡写真を図4
に示す。図4に示す通り、得られた生成物は、平均粒径
が0.25μmで、表面の面数が10以上の多面体状マ
グネタイト粒子であった。尚、表面の面数は実施例1と
同様の方法で測定した。また、得られたマグネタイト粒
子の比表面積は35m2 /gであった。Example 3 Purified water (5 l) while nitrogen gas was passed through a container having a capacity of 15 l
1.15 l of 3.33 mol / l ferrous chloride aqueous solution was added thereto, then 2.85 l of 2.0 mol / l sodium carbonate aqueous solution was added, and the mixture was stirred and mixed for 30 minutes, and then 2. After adding 1 liter of 0 mol / l caustic soda aqueous solution to make 10 liters in total, the temperature was raised to 90 ° C. with stirring,
The product was filtered, separated and dried by bubbling 1 l / min of air for 8 hours. The electron micrograph of the obtained product is shown in FIG.
Shown in As shown in FIG. 4, the obtained product was polyhedral magnetite particles having an average particle size of 0.25 μm and a surface number of 10 or more. The number of surfaces was measured by the same method as in Example 1. The specific surface area of the obtained magnetite particles was 35 m 2 / g.
【0018】比較例1 苛性ソーダ水溶液の添加を省略した以外は実施例1と同
様にしてマグネタイトを製造した。得られたマグネタイ
トは、図5に示す通り、立方状、板状及び多面体状結晶
の混合物であった。 比較例2 3.0mol /lの苛性ソーダ水溶液を用いた以外は実施
例1と同様にしてマグネタイトを製造した。得られたマ
グネタイトは、図6に示す通り、不定形のマグネタイト
であった。Comparative Example 1 Magnetite was produced in the same manner as in Example 1 except that the addition of the caustic soda aqueous solution was omitted. The obtained magnetite was a mixture of cubic, plate-like and polyhedral crystals as shown in FIG. Comparative Example 2 Magnetite was produced in the same manner as in Example 1 except that a 3.0 mol / l caustic soda aqueous solution was used. The obtained magnetite was an amorphous magnetite as shown in FIG.
【0019】[0019]
【発明の効果】本発明のマグネタイト粒子粉末は、粒度
分布が狭く、一定の形状、特に多面体状を有する分散性
の優れたもので、電子写真用トナー材、電磁波吸収材、
防錆塗料材等に有用なものである。また、本発明のマグ
ネタイト粒子粉末の製造方法によれば、上記の本発明の
多面体状マグネタイト粒子粉末を得ることができる。INDUSTRIAL APPLICABILITY The magnetite particle powder of the present invention has a narrow particle size distribution and a uniform shape, especially a polyhedron shape, and is excellent in dispersibility.
It is useful as an anticorrosion paint material. Further, according to the method for producing magnetite particle powder of the present invention, the above polyhedral magnetite particle powder of the present invention can be obtained.
【図1】実施例1で得られた多面体状マグネタイト粒子
の粒子構造を示す電子顕微鏡写真である。FIG. 1 is an electron micrograph showing the particle structure of polyhedral magnetite particles obtained in Example 1.
【図2】実施例1で得られた多面体状マグネタイト粒子
の粒子構造を拡大して示すSEM写真である。FIG. 2 is an SEM photograph showing an enlarged particle structure of the polyhedral magnetite particles obtained in Example 1.
【図3】実施例2で得られた多面体状マグネタイト粒子
の粒子構造を示す電子顕微鏡写真である。FIG. 3 is an electron micrograph showing a particle structure of polyhedral magnetite particles obtained in Example 2.
【図4】実施例3で得られた多面体状マグネタイト粒子
の粒子構造を示す電子顕微鏡写真である。FIG. 4 is an electron micrograph showing a particle structure of polyhedral magnetite particles obtained in Example 3.
【図5】比較例1で得られたマグネタイト粒子の粒子構
造を示す電子顕微鏡写真である。5 is an electron micrograph showing the particle structure of magnetite particles obtained in Comparative Example 1. FIG.
【図6】比較例2で得られたマグネタイト粒子の粒子構
造を示す電子顕微鏡写真である。6 is an electron micrograph showing the particle structure of magnetite particles obtained in Comparative Example 2. FIG.
Claims (1)
物及びアルカリ金属炭酸塩を含む水溶液とを混合して得
られた懸濁液に、酸素を含むガスを吹き込んで酸化する
ことによりマグネタイト粒子粉末を製造するにあたり、 第一鉄塩、アルカリ金属水酸化物、アルカリ金属炭酸
塩のモル比を 1:0.4〜1.2:0.8〜1.6とし、 酸化反応温度を75〜100℃とすることにより、 平均粒径が0.1〜1.5μmであり、表面の面数が少
なくとも10であり、且つ比表面積が3〜40m 2 /g
である多面体状マグネタイト粒子粉末を製造する ことを
特徴とする多面体状マグネタイト粒子粉末の製造方法。1. An oxygen-containing gas is blown into a suspension obtained by mixing an aqueous solution of a ferrous salt and an aqueous solution containing an alkali metal hydroxide and an alkali metal carbonate to oxidize the suspension.
In producing the magnetite particle powder, the molar ratio of ferrous salt, alkali metal hydroxide and alkali metal carbonate is set to 1: 0.4 to 1.2: 0.8 to 1.6, and the oxidation reaction By setting the temperature to 75 to 100 ° C. , the average particle diameter is 0.1 to 1.5 μm, and the number of surfaces is small.
At least 10 and specific surface area 3-40 m 2 / g
A method for producing a polyhedral magnetite particle powder, which comprises producing a polyhedral magnetite particle powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3206027A JP2690827B2 (en) | 1991-08-16 | 1991-08-16 | Method for producing powder of polyhedral magnetite particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3206027A JP2690827B2 (en) | 1991-08-16 | 1991-08-16 | Method for producing powder of polyhedral magnetite particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0543253A JPH0543253A (en) | 1993-02-23 |
JP2690827B2 true JP2690827B2 (en) | 1997-12-17 |
Family
ID=16516685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3206027A Expired - Lifetime JP2690827B2 (en) | 1991-08-16 | 1991-08-16 | Method for producing powder of polyhedral magnetite particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2690827B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3594160B2 (en) * | 1996-08-30 | 2004-11-24 | 三井金属鉱業株式会社 | Magnetite particles and method for producing the same |
JPH10101339A (en) * | 1996-09-27 | 1998-04-21 | Titan Kogyo Kk | Magnetite particulate powder, its production and application |
JP3525662B2 (en) * | 1996-12-24 | 2004-05-10 | 富士ゼロックス株式会社 | Electrophotographic toner composition and image forming method |
JP4735810B2 (en) * | 2004-04-09 | 2011-07-27 | 戸田工業株式会社 | Magnetic iron oxide particle powder for magnetic toner and magnetic toner using the magnetic iron oxide particle powder |
KR101349995B1 (en) | 2007-02-23 | 2014-01-13 | 도다 고교 가부시끼가이샤 | Black magnetic iron oxide particle powders |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3821342A1 (en) * | 1988-06-24 | 1989-12-28 | Bayer Ag | NEW IRON OXIDE PIGMENTS, METHOD FOR THE PRODUCTION AND USE THEREOF |
-
1991
- 1991-08-16 JP JP3206027A patent/JP2690827B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0543253A (en) | 1993-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5874019A (en) | Magnetic particles for magnetic toner and process for producing the same | |
EP0187434B1 (en) | Spherical magnetite particles | |
JPH10101339A (en) | Magnetite particulate powder, its production and application | |
JP2690827B2 (en) | Method for producing powder of polyhedral magnetite particles | |
JP4026982B2 (en) | Magnetite particles and method for producing the same | |
JPH05213620A (en) | Magnetite particles and its production | |
JPS6251208B2 (en) | ||
JP3440586B2 (en) | Granular magnetite particle powder and method for producing the same | |
JP2756845B2 (en) | Hexahedral magnetite particle powder and its manufacturing method | |
JPH08325098A (en) | Particulate magnetite and its production | |
US6083476A (en) | Black ultrafine magnetite particles and process for preparing the same | |
JP3440585B2 (en) | Granular magnetite particle powder and method for producing the same | |
JP3290200B2 (en) | Method for producing white magnetic powder | |
JP3739805B2 (en) | Fine magnetite particle powder and method for producing the same | |
JP6521254B2 (en) | Black magnetic iron oxide particle powder and method for producing the same | |
JPS61219720A (en) | Production of particulate magnet plumbite-type ferrite | |
JP2000351630A (en) | Production of magnetite | |
JP5310994B2 (en) | Magnetic iron oxide particle powder for magnetic toner and method for producing the same | |
JPH10279313A (en) | Magnetite particle and its production | |
JP2002356329A (en) | Granulated magnetite particles and their producing method | |
JPH06345440A (en) | Spherical magnetite granular powder, production thereof and magnetic toner containing the spherical magnetite | |
JP3437714B2 (en) | Magnetite particles and method for producing the same | |
JP2003238164A (en) | Black compound oxide particle and its production method | |
JPH0689367B2 (en) | Magnetic particle powder composed mainly of spherical iron alloy and its manufacturing method | |
JPH07138023A (en) | Magnetite particle and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070829 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080829 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080829 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090829 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100829 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100829 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |