JPS61219720A - Production of particulate magnet plumbite-type ferrite - Google Patents

Production of particulate magnet plumbite-type ferrite

Info

Publication number
JPS61219720A
JPS61219720A JP60058197A JP5819785A JPS61219720A JP S61219720 A JPS61219720 A JP S61219720A JP 60058197 A JP60058197 A JP 60058197A JP 5819785 A JP5819785 A JP 5819785A JP S61219720 A JPS61219720 A JP S61219720A
Authority
JP
Japan
Prior art keywords
iron
ferrite
compound
added
type ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60058197A
Other languages
Japanese (ja)
Inventor
Hidefumi Yamashita
秀文 山下
Masami Nakamura
正実 中村
Yoshinori Hayakawa
早川 芳憲
Hiromi Kawamoto
博美 川本
Satoshi Nishimura
智 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP60058197A priority Critical patent/JPS61219720A/en
Publication of JPS61219720A publication Critical patent/JPS61219720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce easily the titled ferrite having a small particle diameter by treating hydrothermally iron compounds and a compound containing Ba, Sr or Pb in the presence of Sn(IV) or Sn(IV)-M(II) in an alkaline aqueous solution. CONSTITUTION:At least one kind of iron compound among hydrated iron compound, iron hydroxide or the substance which produces a hydrated iron compound and iron hydroxide by reaction, and a compound containing >=1 kinds of elements selected from Ba, Si and Pb are added into the mixture mixed so as to obtain 4-6 molar ratio of Fe2O3/M (M is Ba, Sr or Pb) and further 0.2-5mol Sn(IV) or Sn(IV)-M(II) (example: sodium stannate) against 12mol Fe(III) is added into said mixture to make a total mixture, which is treated hydrothermally at 80-360 deg.C in the alkaline aqueous solution having >=50wt% concentration. Thus, the titled particulate magnet plumbite-type ferrite having <=0.3mum particle diameter and being useful as magnetic powder for vertical magnetic recording is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、六角板状または板状をしたマグネトブランバ
イト型フェライト微粒子の製造法に関するものであシ、
その目的は、粒径の小さな特に垂直磁気記録用磁性粉と
して好適なマグネトブランバイト型フェライト微粒子を
経済的かつ安定的に製造する方法を提供することにある
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing hexagonal plate-shaped or plate-shaped magnetoblanbite type ferrite fine particles.
The purpose is to provide an economical and stable method for producing magnetoblanbite type ferrite fine particles having a small particle size and particularly suitable as magnetic powder for perpendicular magnetic recording.

近年、磁気記録の高密度化の要求に応え、従来方式(長
手方向記録方式)に比べ数倍以上の高密度記録ができる
垂直磁気記録方式が提案され、実用化が進められている
In recent years, in response to the demand for higher density magnetic recording, a perpendicular magnetic recording method that is capable of recording at a density several times higher than that of the conventional method (longitudinal recording method) has been proposed and is being put into practical use.

この垂直磁気記録方式に使用される磁気記録媒体は、従
来方式の場合とは異なり、磁気テープちるいは磁気ティ
スフ面に垂直方向に磁化容易軸を有することが必要であ
り、これに用いられる磁気記録媒体は、次の2つの系列
に大別される。
Unlike conventional methods, the magnetic recording medium used in this perpendicular magnetic recording method must have an axis of easy magnetization perpendicular to the magnetic tape or magnetic tape surface. Recording media are broadly classified into the following two types.

l)スパッタ、蒸着膜(Co −(3r系)2) 塗布
型膜      (Ba−フェライト)この内、マグネ
ト1ランバイト型フエライトの代表例であるBa−フェ
ライトを用いる塗布型膜は、量産性、安定性、経済性の
点で優れているといわれる。垂直磁気記録用Ba−フェ
ライト粉末に要求される特性としては、 リ 超常磁性にならない範囲でできるだけ微細なこと。
l) Sputtering, vapor deposition film (Co - (3r system)) 2) Coated film (Ba-ferrite) Among these, the coated film using Ba-ferrite, which is a typical example of magneto-1 lambite ferrite, is easy to mass-produce, It is said to be superior in terms of stability and economy. The characteristics required of Ba-ferrite powder for perpendicular magnetic recording are: - Be as fine as possible without becoming superparamagnetic.

2)分散性が良好で、粒度分布が狭く、かつ配向しやす
い粒子であること。
2) Particles with good dispersibility, narrow particle size distribution, and easy orientation.

3)8径が小さくかつ保磁力が例えば3,000(Oc
t)以下と適当に低いこと。
3) If the 8 diameter is small and the coercive force is, for example, 3,000 (Oc
t) Appropriately low.

等が挙げられる。etc.

これらの中でまず、できるだけ微細なかつ均一なりa−
7エライトを製造することが最も肝要であるといわれる
Among these, the first is as fine and uniform as possible.
It is said that it is most important to produce No. 7 elite.

本発明は、このような塗布型垂直磁気記録媒体として使
用可能な粒径が微細かつ均一な六角板状ないし板状をし
たマグネトブランバイト型フェライト微粒子の湿式製造
法である。
The present invention is a wet method for producing magnetobrambite-type ferrite fine particles having a fine and uniform hexagonal plate shape or plate shape that can be used as such a coated perpendicular magnetic recording medium.

(従来の技術) 従来マグネトブランバイト型フェライトの製造法として
はBa(nl)イオンを含む鉄化合物とBa。
(Prior Art) The conventional method for producing magnetoblanbite type ferrite is to use an iron compound containing Ba (nl) ions and Ba.

5r1Pbの1種以上の元素を含む化合物を混会して乾
式で加熱焼結させて反応させるいわゆる乾式法がよく知
られる方法であり、他方湿式法としては如上の如き原料
をアルカリ性懸濁液として水熱処理する方法が知られて
いた。しかしながらこれら乾式法によって得られるフェ
ライトは、粒径が数μmの多結晶体よりな)粉砕によっ
て1μm程度まで微粉化できるものの塗料化したときの
分散性も悪く、垂直磁化記録用として要求される 0.
01〜0.3μmには到底及ぶものではなかった。一方
湿式法によって得られるフェライトは、通常六角板状を
呈し生成条件により七の粒径、磁気的性質が異なるもの
の0.2μm以下の微粒子状フェライトを得ることは極
めて困難なこととされていた。
The so-called dry method is a well-known method in which a compound containing one or more elements of 5r1Pb is mixed and reacted by dry heating and sintering.On the other hand, the wet method involves mixing the above raw materials as an alkaline suspension. A hydrothermal treatment method was known. However, the ferrite obtained by these dry methods is polycrystalline with a particle size of several micrometers, and although it can be finely powdered to about 1 micrometer by crushing, it has poor dispersibility when made into a paint, which is required for perpendicular magnetization recording. ..
It was far from 0.01 to 0.3 μm. On the other hand, ferrite obtained by the wet method usually has a hexagonal plate shape, and although the particle size and magnetic properties vary depending on the production conditions, it has been extremely difficult to obtain fine particle ferrite of 0.2 μm or less.

(発明が解決しようとしている問題点)本発明は湿式法
マグネト1ランバイト型フェライトの製造方法において
0.3μm以下の超微粒子状のフェライトを簡単な方法
によシ容易に製造する方法を提供しようとするもので、
微粒子状フェライトg造上の困難性を解決するものであ
る。
(Problems to be Solved by the Invention) The present invention provides a method for easily producing ultrafine ferrite particles of 0.3 μm or less in a wet method magneto-lambite ferrite production method using a simple method. and
This solves the difficulties in manufacturing particulate ferrite.

(問題点を解決するための手段) 本発明者らは、先にマグネトブランバイト型フェライト
の製造法として、Fe1Oa、(FeO)、Fe1O)
(0<X<1)又はγ−FelO1のような鉄化合物を
鉄源として、これにBa、日r1Pbを含む化合物をア
ルカリ水溶液中で酸化剤と共に水熱処理する際、オレイ
ン酸ソーダの如き界面活性剤を添加することで微粒子化
が図れることを見い出し出願した。(特願昭58−13
6812号) 本発明者らは、引き続き微細なマグネトグラ/パイ動盤
7エライト微粒子の製造法について鋭意検討した結果、
鉄原料として含水酸化鉄、水酸化鉄、反応により水酸化
鉄又は含水酸化鉄を生成する鉄化合物を用いること及び
水熱処理に際し、5n(fV)又は8n(IV ”)−
M(11)化合物を添加することによって極めて微細な
マグネトブランバイト型7エライトB子が得られること
を見い出し本発明を完成したものでちる。
(Means for Solving the Problems) The present inventors have previously developed a method for producing magnetobrambite ferrite (Fe1Oa, (FeO), Fe1O).
(0 < They discovered that fine particles could be achieved by adding an agent and filed an application. (Special application 1986-13
(No. 6812) As a result of continued intensive study by the present inventors on the production method of fine magnetogra/pi-disc 7 elite particles,
Hydrous iron oxide, iron hydroxide, iron compounds that produce iron hydroxide or hydrate iron oxide by reaction are used as iron raw materials, and during hydrothermal treatment, 5n (fV) or 8n (IV '')-
It was discovered that extremely fine magnetobrambite-type 7-elite B particles can be obtained by adding the M(11) compound, and the present invention has been completed.

即ち、本発明は、含水酸化鉄、水酸化鉄あるいは反応に
より含水酸化鉄及び水酸化鉄を生成する化合物の内少く
もlff1の化合物とBa%8r。
That is, the present invention provides a compound containing at least lff1 of hydrous iron oxide, iron hydroxide, or a compound that produces hydrous iron oxide and iron hydroxide by reaction, and Ba% 8r.

pbの内少くとも1種の元素を含む化合物をアルカリ水
溶液中で、酸化剤と共に水熱処理してマグネトグランバ
イト型フェライト微粒子を製造するに際し、5n(IV
)又はan(IV)−M(…)を添加することを特徴と
するマグネトブランバイト型7エ2イト微粒子の製造法
を提供するものである。
5n (IV
) or an(IV)-M(...) is provided.

本発明方法で用いる鉄原料としては、含水酸化鉄として
α−FeOOH(ゲータイト)、δ−PeOOH1水酸
化鉄としてはF′e(on)、、re (OH)zが、
また反応によって水酸化鉄、含水酸化鉄が生成する化合
物としては塩化鉄、硝酸鉄、硫酸鉄などが慣用できる。
The iron raw materials used in the method of the present invention include α-FeOOH (goethite) as hydrous iron oxide, F′e(on), , re (OH)z as δ-PeOOH1 iron hydroxide, and
Further, as the compound which produces iron hydroxide or hydrated iron oxide by reaction, iron chloride, iron nitrate, iron sulfate, etc. can be commonly used.

一方副原料のバリウム、ストロンチウム、および鉛化合
物としては、−6に反応条件下においである程匿の溶解
度を示すものであれば使用可能である。このため通常、
塩化物、硝酸塩および水酸化物が便用される。炭酸塩お
よび硫酸塩は一般に難溶性であυ好ましくない。
On the other hand, barium, strontium, and lead compounds as auxiliary raw materials can be used as long as they exhibit a relatively low solubility under -6 reaction conditions. For this reason, usually
Chlorides, nitrates and hydroxides are commonly used. Carbonates and sulfates are generally poorly soluble and undesirable.

またこれら鉄化合物とバリウム、ストロンチウム、鉛化
合物との仕込み割合としては、バリウム、ストロンチウ
ム、鉛化合物の単独およびこれらの混合の場合を含めて
、モル比(Fe西/MO)表示(ここにM=Ba、 S
r、 Pb )で4〜6好ましくは5〜6の範囲である
In addition, the charging ratio of these iron compounds and barium, strontium, and lead compounds, including barium, strontium, and lead compounds alone and in combination, is expressed as molar ratio (Fe/MO) (where M= Ba, S
r, Pb) is in the range of 4 to 6, preferably 5 to 6.

一般にマグネトブランバイト型フェライト粒子の粒径の
微細化と共に保磁力(tHe)が増大するので、これを
適当に低減化させることが望ましい。該方法としてマグ
ネトブランバイト型フェライトを構成する鉄の一部を異
種金属で置換することが知られている。
Generally, coercive force (tHe) increases as the grain size of magnetobrambite ferrite particles becomes finer, so it is desirable to reduce this appropriately. As such a method, it is known to replace part of the iron constituting the magnetobrambite ferrite with a different metal.

乾式法で用いられる異種金属としては、co!+−T1
4+、Zn”−Ti’+等の金属の添加が曳く知られて
いるが、湿式法においては必ずしもこnらの金属元素の
添加は有効ではなく本発明者らが既に出願したマグネタ
イトを原料とするBaミツエラ)cD裂製造(特願昭5
8−229185 )では5n(IV)又は5n(V)
  M(n)が有効であることを見い出した。
The dissimilar metals used in the dry method include co! +-T1
Although it is well known that metals such as 4+, Zn"-Ti'+, etc. are added, the addition of these metal elements is not necessarily effective in the wet method. cD cleft production (patent application 1973)
8-229185) is 5n (IV) or 5n (V)
We found that M(n) is valid.

これらの異種元素はアルカリ濃度の低い条件での特願昭
55−229185では、保磁力低下に役立つけれども
微細化の効果はなく、むしろ粒径は増大化の傾向にあっ
た。
In Japanese Patent Application No. 55-229185 under conditions of low alkali concentration, these different elements were useful in lowering the coercive force, but had no effect on refinement, and on the contrary, the grain size tended to increase.

しかるに、アルカリ濃度の高い条件で原料として含水酸
化鉄、水酸化鉄および反応によって含水酸化鉄、水酸化
鉄になる鉄化合物の少くとも1種とBa%Sr%pbの
内の少くとも1種の元素を含む化合物とを水熱処理する
際にこれらの5n(IV)又はan(IV)−M(11
)化合物を添加する場合には、粒径の微細化に著効を発
揮することを見い出し本発明を完成させたものである。
However, under conditions of high alkali concentration, at least one of hydrated iron oxide, iron hydroxide, an iron compound that becomes hydrated iron oxide or iron hydroxide through reaction, and at least one of Ba%Sr%PB are used as raw materials. These 5n(IV) or an(IV)-M(11
) The present invention was completed based on the discovery that the addition of a compound has a remarkable effect on reducing the particle size.

本発明で用いられるEln(IV)としてはスズ酸ソー
ダ、四塩化スズがM(n)としては、Fe、 (3u、
 Zn、co%N1、Mn%Mg等の基本的にイオン半
径がFe(III)と類似の二価の金属化合物である。
Eln(IV) used in the present invention is sodium stannate, tin tetrachloride, M(n) is Fe, (3u,
Basically, it is a divalent metal compound having an ionic radius similar to Fe(III), such as Zn, co%N1, Mn%Mg, etc.

一方その添加割合としては、Fe(l[)12モルに対
して5n(IV)単独あるいはM(…)との合量で0.
2〜5モルが用いられる。
On the other hand, the addition ratio is 0.5n(IV) alone or in combination with M(...) per 12 moles of Fe(l[).
2 to 5 moles are used.

0.2モル以下では微細化の効果は少なく、5モル以上
添加しても、却って粗大粒径となるため好ましくない。
If it is less than 0.2 mol, the effect of refining is small, and if it is added in excess of 5 mol, the particle size will become coarser, which is not preferable.

反応に用いるアルカリとしては、通常NaOH1KOH
等の苛性アルカリが用いられ、濃度としては高濃度の方
が微細化に役立つが50wt%以上の添加は不溶解とな
る場合もあるため好ましくない。通常3モル−8モル程
度が好ましい。
The alkali used in the reaction is usually NaOH1KOH.
A caustic alkali such as the above is used, and although a high concentration is useful for micronization, addition of 50 wt % or more is not preferable because it may become insoluble. Generally, about 3 to 8 moles is preferable.

水熱処理温度は80−360℃、好ましくは220〜3
30℃が推奨される。
Hydrothermal treatment temperature is 80-360℃, preferably 220-360℃
30°C is recommended.

酸化剤は鉄原料としてFe(Ill)のものを用いる場
合には必要はないが、Pe(川)を用いるときは同時に
添加する必要がちり硝酸塩、塩素酸塩、亜硝酸塩、過塩
素酸塩、過酸化水素、酸素等の酸化剤が用いられる。
An oxidizing agent is not necessary when Fe (Ill) is used as the iron raw material, but it must be added at the same time when using Pe (River). Nitrate, chlorate, nitrite, perchlorate, Oxidizing agents such as hydrogen peroxide and oxygen are used.

以下、実施例によシ本発明を詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 塩化第2鉄水溶液(5モル)100gjと、塩化バリウ
ム21P1スズ酸ソーダ三水塩4.7Fに苛性ソーダ5
ay及び水50Fを加えて水酸化鉄と水酸化バリウムを
共沈させる。
Example 1 100gj of ferric chloride aqueous solution (5 mol), 5% caustic soda in 21P1 barium chloride, 4.7F sodium stannate trihydrate
ay and water at 50F to co-precipitate iron hydroxide and barium hydroxide.

この混合反応液を攪拌機付きのオートクレーブに仕込み
同時に苛性ソーダ95Fを加えて総量が300 tJと
なるように水を添加した。ついでオートクレーブを27
0℃にて3時間反応させたのち内容物を濾過洗浄後、乾
燥して茶褐色の強磁性粉末を得た。
This mixed reaction solution was placed in an autoclave equipped with a stirrer, and at the same time, 95F caustic soda was added and water was added so that the total amount was 300 tJ. Then autoclave for 27
After reacting at 0° C. for 3 hours, the contents were filtered, washed, and dried to obtain a brown ferromagnetic powder.

このもののX*回析及び電顕写真撮影の結果平均粒径0
.2μmの六角板状Ba−フェライトであることが確認
された。
As a result of X* diffraction and electron microscopy of this material, the average particle size was 0.
.. It was confirmed that it was a 2 μm hexagonal plate-shaped Ba-ferrite.

比較例! スズ酸ソーダを加えなかった以外は実施例1と同様に行
った。得られたBa−フェライトの粒径は0.8μmで
あった。
Comparative example! The same procedure as in Example 1 was carried out except that sodium stannate was not added. The particle size of the obtained Ba-ferrite was 0.8 μm.

実施例2〜3 スズ酸ソーダ4.7Fの代シにスズ酸ソーダ4.72及
び硝酸コバルト六水塩5.1ノを加え念もの、スズ酸ソ
ーダ4.7y及び塩化亜鉛2.4Fを加えた以外は実施
例1と同様に行った。得られた陀−フェライトの粒径は
いずれも0.15μmであった。
Examples 2-3 To 4.7F of sodium stannate, add 4.72F of sodium stannate and 5.1F of cobalt nitrate hexahydrate, and then add 4.7Y of sodium stannate and 2.4F of zinc chloride. The same procedure as in Example 1 was carried out except for the above. The grain size of the obtained ferrite was 0.15 μm.

実施例4〜6 鉄源として塩化第2鉄水溶液の代シに硝酸鉄、硫酸鉄、
α−FeOOH(ゲータイト)を用いかつ、塩化バリウ
ムの代シに硝酸バリウムを用いた以外は実施例2と同様
に行った。得られたBa−フェライトの粒径はいずれも
0.15μmであった。
Examples 4 to 6 As an iron source, iron nitrate, iron sulfate,
The same procedure as in Example 2 was conducted except that α-FeOOH (goethite) was used and barium nitrate was used instead of barium chloride. The particle size of the obtained Ba-ferrite was 0.15 μm.

実施例7 スズ酸ソーダ4.71の代fiK13.4Fを添加した
以外は実施例1と同様に行った。得られたBa−フェラ
イトの粒径は0.1μmであった。
Example 7 The same procedure as in Example 1 was carried out except that fiK13.4F was added instead of 4.71 sodium stannate. The particle size of the obtained Ba-ferrite was 0.1 μm.

実施例8 塩化バリウムの代シに硝酸ストロンチウムを脩加した以
外は実施例1と同様に行った。得られた5r−7エライ
トの粒径は0.2μmであった。
Example 8 The same procedure as in Example 1 was carried out except that strontium nitrate was added in place of barium chloride. The particle size of the obtained 5r-7 elite was 0.2 μm.

比較例2〜3 スズ酸ソーダを4.71添加する代りに0.62及び4
65E添加した以外は実施例五と同様に行った。得られ
たBa−フェライトの粒径は夫々0.8μm及び1.0
μmであった。
Comparative Examples 2-3 Instead of adding 4.71 sodium stannate, 0.62 and 4
The same procedure as in Example 5 was conducted except that 65E was added. The particle sizes of the obtained Ba-ferrite were 0.8 μm and 1.0 μm, respectively.
It was μm.

実施例1〜8及び比較例1〜5の主要製造条件及び生成
した7エライトの諸物性を第1表に示す。
Table 1 shows the main manufacturing conditions of Examples 1 to 8 and Comparative Examples 1 to 5 and the physical properties of the produced 7-elite.

Claims (1)

【特許請求の範囲】[Claims] 含水酸化鉄、水酸化鉄及び反応によって含水酸化鉄、水
酸化鉄が生成する化合物の少くとも1種と、Ba、Sr
、Pbの内少くとも1種以上の元素を含む化合物とをア
ルカリ水溶液中で水熱処理して、マグネトブランバイト
型フェライト微粒子を製造するに際し、Sn(IV)又は
Sn(IV)−M(II)を添加することを特徴とする微粒
子状マグネトブランバイト型フェライトの製造法。
At least one type of hydrated iron oxide, iron hydroxide, and a compound that generates hydrated iron oxide or iron hydroxide by reaction, and Ba, Sr.
, and a compound containing at least one element among Pb in an alkaline aqueous solution to produce magnetobrambite type ferrite fine particles, Sn(IV) or Sn(IV)-M(II) A method for producing fine particulate magnetoblanbite type ferrite, characterized by adding.
JP60058197A 1985-03-25 1985-03-25 Production of particulate magnet plumbite-type ferrite Pending JPS61219720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058197A JPS61219720A (en) 1985-03-25 1985-03-25 Production of particulate magnet plumbite-type ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058197A JPS61219720A (en) 1985-03-25 1985-03-25 Production of particulate magnet plumbite-type ferrite

Publications (1)

Publication Number Publication Date
JPS61219720A true JPS61219720A (en) 1986-09-30

Family

ID=13077295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058197A Pending JPS61219720A (en) 1985-03-25 1985-03-25 Production of particulate magnet plumbite-type ferrite

Country Status (1)

Country Link
JP (1) JPS61219720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193505A (en) * 1987-02-06 1988-08-10 Toshiba Corp Magnetic powder for high density magnetic recording and magnetic recording medium using the powder
JPS63307122A (en) * 1987-06-05 1988-12-14 Ube Ind Ltd Barium ferrite magnetic powder and production thereof
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media
US5433878A (en) * 1993-04-19 1995-07-18 Nissan Chemical Industries Ltd. Method for producing fine particles of barium ferrite
JP2010168250A (en) * 2009-01-22 2010-08-05 Junichiro Suda Structural color developing body and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174118A (en) * 1985-01-28 1986-08-05 Hitachi Maxell Ltd Magnetic powder for vertical magnetic recording and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174118A (en) * 1985-01-28 1986-08-05 Hitachi Maxell Ltd Magnetic powder for vertical magnetic recording and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193505A (en) * 1987-02-06 1988-08-10 Toshiba Corp Magnetic powder for high density magnetic recording and magnetic recording medium using the powder
JPS63307122A (en) * 1987-06-05 1988-12-14 Ube Ind Ltd Barium ferrite magnetic powder and production thereof
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media
US5433878A (en) * 1993-04-19 1995-07-18 Nissan Chemical Industries Ltd. Method for producing fine particles of barium ferrite
JP2010168250A (en) * 2009-01-22 2010-08-05 Junichiro Suda Structural color developing body and method for producing the same
JP4628474B2 (en) * 2009-01-22 2011-02-09 淳一郎 須田 Structural color developing body and method for producing the same

Similar Documents

Publication Publication Date Title
US4323596A (en) Coating iron oxide particles for magnetic recording
KR900000429B1 (en) Barium ferrite particles for magnetic recording media
US4529524A (en) Process for producing plate-like barium ferrite particles for magnetic recording
WO2020217982A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
JPS61219720A (en) Production of particulate magnet plumbite-type ferrite
JPS62216922A (en) Hexagonal ferrite fine powder for magnetic recording medium and its production
JPH02283622A (en) Platy complex ferrite fine particle powder for magnetic recording and production thereof
JPS6253444B2 (en)
JPH0623053B2 (en) Method for producing equiaxed magnetic iron oxide pigment
JP2727187B2 (en) Method for producing plate-like hematite particle powder
JPS61295236A (en) Production of particular magnet plumbite-type ferrite
JPH08325098A (en) Particulate magnetite and its production
JPH0469091B2 (en)
JPH0140770B2 (en)
JP2945460B2 (en) Manufacturing method of granular magnetite particle powder
JP2002356329A (en) Granulated magnetite particles and their producing method
KR0136150B1 (en) Manufacturing method of magnetic iron oxide powder
JPH06184461A (en) Glossy pigment and its production
JPH0532422A (en) Production of granular magnetite grain powder
JPS6289226A (en) Magnetic powder and its production
JPS6320769B2 (en)
JPS62128926A (en) Production of magnetic iron oxide grain powder having spindle type
JPH0377642B2 (en)
JPH04362020A (en) Ferritic magnetic powder and its production
JPH02296733A (en) Planer conjugate ferrite fine grain powder for magnetic recording and its manufacture