JP4628474B2 - Structural color developing body and method for producing the same - Google Patents

Structural color developing body and method for producing the same Download PDF

Info

Publication number
JP4628474B2
JP4628474B2 JP2009012395A JP2009012395A JP4628474B2 JP 4628474 B2 JP4628474 B2 JP 4628474B2 JP 2009012395 A JP2009012395 A JP 2009012395A JP 2009012395 A JP2009012395 A JP 2009012395A JP 4628474 B2 JP4628474 B2 JP 4628474B2
Authority
JP
Japan
Prior art keywords
structural color
solution
lead
solvent
color developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009012395A
Other languages
Japanese (ja)
Other versions
JP2010168250A (en
Inventor
淳一郎 須田
Original Assignee
淳一郎 須田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淳一郎 須田 filed Critical 淳一郎 須田
Priority to JP2009012395A priority Critical patent/JP4628474B2/en
Publication of JP2010168250A publication Critical patent/JP2010168250A/en
Application granted granted Critical
Publication of JP4628474B2 publication Critical patent/JP4628474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光干渉性を有する構造色発色体およびその製造方法に関する。   The present invention relates to a structural color developing body having optical coherence and a method for producing the same.

自然界に存在する色は、色素や顔料などによる色素色(化学的発色)と、光干渉性による構造色とに大別することができる。色素色は光のエネルギーが物質の電子エネルギーに変化するときに見える色で、例えば、反射色は物質により吸収、透過した残りの色であり、透過色は吸収、反射した残りの色のことである。
この色素色は、色素や顔料などの化学的発色剤を対象物に塗布し乾燥するだけの極めて簡便な操作で化学的に発色させることができるという利点がある一方で、色素や顔料物質を使用するため、近年、リサイクル性や環境保護の観点から問題視されるようになり、さらに紫外線による褪色という本質的に解決できない問題も抱えている。
Colors that exist in nature can be broadly divided into pigment colors (chemical coloring) such as pigments and pigments, and structural colors due to light interference. The pigment color is the color that can be seen when the light energy changes to the electronic energy of the material.For example, the reflected color is the remaining color that is absorbed and transmitted by the material, and the transmitted color is the remaining color that is absorbed and reflected. is there.
While this dye color has the advantage that it can be chemically developed by a very simple operation by simply applying a chemical color former such as a dye or pigment to an object and drying it, it uses a dye or pigment substance. Therefore, in recent years, it has been regarded as a problem from the viewpoint of recyclability and environmental protection, and also has a problem that cannot be solved essentially, such as fading due to ultraviolet rays.

これに対し、光干渉性による構造色は物質そのものが色素を持たないので、光と物質の間でエネルギーのやりとりがなく、可視領域の光の波長あるいは、それ以下の微細構造を持つことで生じる光学現象、例えば、光の干渉、回折、散乱およびフォトニック結晶によって発色する色のことである。代表的な構造色の例として、自然界では、モルフォ蝶の翅、孔雀の羽、玉虫の甲殻そしてオパールの遊色などがある。これらの構造色の発色原理については、例えば、モルフォ蝶の翅が独特の「きらきら光る青色」を呈するのは、モルフォ蝶の翅の鱗粉上の筋が約0.2μm間隔の規則的な棚構造になっており、これらの多層膜干渉によって、強烈な青色の構造色を発色するためであることが明らかにされている(例えば、非特許文献1、2参照)。   On the other hand, the structural color due to optical coherence is caused by the fact that the substance itself does not have a pigment, so there is no exchange of energy between the light and the substance, and it has a fine structure with a wavelength of light in the visible region or less. A color developed by optical phenomena such as light interference, diffraction, scattering, and photonic crystals. Examples of typical structural colors include morpho butterfly wings, peacock feathers, iridescent shells and opal play colors in nature. Regarding the coloration principle of these structural colors, for example, Morpho butterfly wings exhibit a unique “brilliant blue” color because of the regular shelf structure with streaks on the scales of Morpho butterfly wings spaced about 0.2 μm It has been clarified that this is because of the intense blue structural color due to the multilayer film interference (see, for example, Non-Patent Documents 1 and 2).

近年、構造色を呈する構造物(以下、「構造色発色体」と称す。)を人工的に形成する方法が注目されている。
例えば、ナノテクノロジーの一つである集束イオンビームCVD法によって、モルフォ蝶の翅の鱗粉上の棚構造とほぼ同じ構造を作り、モルフォ蝶独特の翅の構造色をほぼ再現することができるようになった(例えば、非特許文献3参照。)。しかしながら、この方法では高価な装置を使用する必要があるため高コストであり、その製造工程も複雑で量産性に問題がある。
In recent years, a method of artificially forming a structure exhibiting a structural color (hereinafter referred to as “structural color developing body”) has attracted attention.
For example, by using focused ion beam CVD, which is one of the nanotechnology, it is possible to create almost the same structure as the shelf structure on the scales of morpho butterfly wings, and to reproduce the wing color unique to morpho butterflies. (For example, see Non-Patent Document 3). However, since this method requires the use of an expensive device, the cost is high, the manufacturing process is complicated, and there is a problem in mass productivity.

溶媒中の棒状または板状コロイド粒子が重力により沈降し、自己組織化することで、構造色を発現することは、以前から知られている(例えば、非特許文献4)。例えば、酸化バナジウム(V)やタバコモザイクウイルス、ミオシン、フィブリン、ベンゾパープリンなどの棒状コロイド粒子はゾル状態において集合し、光学的異方性を示す。このように自然に光学的異方性を示すゾルをタクトゾル(tactosol)といい、タクトゾルのコロイド粒子が平行に配列してできる粒子群による現象はタクトイド(tactoid)と呼ばれている。古い水酸化鉄コロイドゾルや酸化タングステンゾルなどの板状コロイド粒子は配列して層状(層間隔:約200〜400μm)をなし、容器の底の方では、層が垂直方向に規則正しく並んでいる。この規則正しい層配列のため、反射光は赤や青の構造色(干渉色)を呈する。この配列した層をシラー層(Schiller layer)または多色層(iridescent layer)といい、層の形成は非常に再現性がよく、振り混ぜてのち、静置すると、また元の状態の層が形成される。
一方、構造色発色体を人工的に形成する他の方法として、シリカのようなμmオーダーの球状粒子を規則的に配列させる方法がある。これらの球状粒子を自然沈降させて堆積させたり、電気泳動などにより、基板上に球状粒子を集積する方法などで形成される構造色発色体の研究が多方面で行われている(例えば、非特許文献5、6)。
It has been known for a long time that rod-like or plate-like colloidal particles in a solvent settle by gravity and self-assemble to develop a structural color (for example, Non-Patent Document 4). For example, rod-like colloidal particles such as vanadium oxide (V), tobacco mosaic virus, myosin, fibrin, and benzoperpurine aggregate in the sol state and exhibit optical anisotropy. A sol that naturally exhibits optical anisotropy is called a tacttosol, and a phenomenon caused by a group of particles in which colloidal particles of a tactsol are arranged in parallel is called a tactoid. Plate-like colloidal particles such as old iron hydroxide colloid sol and tungsten oxide sol are arranged to form a layer (layer spacing: about 200 to 400 μm), and the layers are regularly arranged in the vertical direction toward the bottom of the container. Due to this regular layer arrangement, the reflected light exhibits a red or blue structural color (interference color). This arranged layer is called a Schiller layer or a multicolored layer (iridescent layer). The formation of the layer is very reproducible. After shaking and standing, the original layer is formed again. Is done.
On the other hand, as another method for artificially forming the structural color developing body, there is a method of regularly arranging spherical particles of the order of μm such as silica. There are many researches on structural color developing bodies formed by, for example, a method in which spherical particles are naturally settled and deposited, or electrophoresis is used to accumulate spherical particles on a substrate. Patent Documents 5 and 6).

Shuichi Kinoshita, Shinya Yoshioka and Kenji Kawagoe「Mechanisms of structural color in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale」Proc. R. Soc. Lond. (2002). B269、第1417頁〜第1422頁Shuichi Kinoshita, Shinya Yoshioka and Kenji Kawagoe “Mechanisms of structural color in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale” Proc. R. Soc. Lond. (2002). B269, pp. 1417 to 1422 木下修一、吉岡伸也「昆虫、特にモルフォチョウの構造色」繊維と工業 (Seni to Kogyo)Vol.59(2003)第35頁〜第39頁Shuichi Kinoshita, Shinya Yoshioka “Structural colors of insects, especially morpho butterflies” Textile and Industrial (Seni to Kogyo) Vol. 59 (2003) pp. 35-39 Keiichiro Watanabe、Takayuki Hoshino、Kazuhiro Kanda、Yuichi Haruyama、 Shinji Matsui「Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure」 Jpn. J. Appl. Phys. (2005)、Vol.44、第L48頁〜第L50頁Keiichiro Watanabe, Takayuki Hoshino, Kazuhiro Kanda, Yuichi Haruyama, Shinji Matsui “Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure” Jpn. J. Appl. Phys. (2005), Vol. 44, pp. L48-L50 H. Zocher「 Die optischen Methoden zur Untersuchung der Anisotropie in Kolloiden」Z. Anorg. Allg. Chem. 147, 91 (1925).H. Zocher “Die optischen Methoden zur Untersuchung der Anisotropie in Kolloiden” Z. Anorg. Allg. Chem. 147, 91 (1925). 吉永 耕二、小林 恒定、辛川 弘行、「単分散な高分子電解質−修飾コロイダルシリカの調製と表面ゼータ電位の制御」高分子論文集(Koubunshi Ronbunsyu)、Vol.57、No.4(2000)、第244頁〜第250頁Koji Yoshinaga, Tsuneo Kobayashi, Hiroyuki Karakawa, “Preparation of Monodispersed Polyelectrolyte-Modified Colloidal Silica and Control of Surface Zeta Potential” Polymer Papers (Koubunshi Ronbunsyu), Vol. 57, no. 4 (2000), pp. 244-250 Hiroshi Fudouzi, Younan Xia,「Photonic Papers and Inks: Color Writing with Colorless Materials」, Advanced Materials,(2003)、Vol.15、No.11、June 5、第892頁〜第896頁Hiroshi Fudouzi, Younan Xia, “Photonic Papers and Inks: Color Writing with Colorless Materials”, Advanced Materials, (2003), Vol. 15, no. 11, June 5, pp. 892 to 896

このようにナノテクノジーの発展により微細な構造が造られるようになって、構造色発色体の応用研究・開発は急速に進んできた。
しかしながら、構造色発色体として現在、主として使用されているものは、非特許文献5、6等で開示されているシリカなどからなる球状粒子であるが、このシリカ等の球状粒子の自己集合化によって形成されたコロイド結晶薄膜(構造色発色体)は、その基体への固定化に長時間を必要とし、量産性に問題がある。また、単一粒径のシリカ球状粒子は、高価なものが多く、形成されるコロイド結晶薄膜(構造色発色体)は高コストである。
一方で、安価な水酸化鉄(III)コロイドの自己組織化によって形成される構造色発色体は、ゾル状態でのみ安定であり、構造色を呈した状態で、乾燥させてゾル中から取り出すことは極めて困難である。
このように、色素や顔料などの化学的発色剤を対象物に塗布し乾燥するだけの極めて簡便な操作で発色させることができる色素色(化学的発色)に対し、このような簡便な操作で安定した耐久性のある構造発色を可能にする構造色発色体は未だに開発されていないのが実情である。
In this way, with the development of nanotechnology, a fine structure has been created, and applied research and development of structural color developing bodies has progressed rapidly.
However, what is mainly used as a structural color developing body at present is a spherical particle made of silica or the like disclosed in Non-Patent Documents 5 and 6, etc., but by self-assembly of the spherical particles such as silica. The formed colloidal crystal thin film (structural color chromophore) requires a long time to be immobilized on the substrate, and has a problem in mass productivity. Further, many spherical silica particles having a single particle diameter are expensive, and the formed colloidal crystal thin film (structural color developing body) is expensive.
On the other hand, the structural color body formed by the self-organization of inexpensive iron hydroxide (III) colloid is stable only in the sol state, and is taken out from the sol by drying in the state of the structural color. Is extremely difficult.
In this way, in contrast to dye colors (chemical coloring) that can be developed with a very simple operation by simply applying a chemical coloring agent such as a dye or pigment to an object and drying it, In fact, a structural color developing body that enables stable and durable structural color development has not yet been developed.

かかる状況下、本発明の目的は、塗布・乾燥などの簡便な操作で形成することが可能であり、かつ、機械強度、化学的安定性および熱的強度の高い構造色発色体を提供することにある。   Under such circumstances, an object of the present invention is to provide a structural color developing body that can be formed by a simple operation such as coating and drying, and has high mechanical strength, chemical stability, and thermal strength. It is in.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、水酸化鉄(III)コロイドとハロゲン化鉛との混合物を含む混合溶媒の蒸発する過程で自己組織化して形成される薄膜状の構造物発色体が鮮明な構造色を呈し、かつ、この構造物発色体が機械的強度、化学的安定性および熱的強度に極めて優れていることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have formed a thin film formed by self-organization in the course of evaporation of a mixed solvent containing a mixture of iron (III) hydroxide colloid and lead halide. As a result, the present inventors have found that the structural colored body exhibits a clear structural color and that the structural colored body is extremely excellent in mechanical strength, chemical stability, and thermal strength.

すなわち、本発明は、下記の発明に係るものである。
<1> 水酸化鉄(III)コロイドを含む溶液(A)と、ハロゲン化鉛を含む溶液(B)と混合して混合溶液を形成し、次いで該混合溶液から溶媒を除去することにより得られてなる構造色発色体。
<2> 前記混合溶液に含まれる水酸化鉄(III)とハロゲン化鉛のモル比が、1.0〜25の範囲である請求項1記載の構造色発色体。
<3> 溶液(A)の溶媒が水であり、かつ、溶液(B)の溶媒が、エタノールである前記<1>または<2>に記載の構造色発色体。
<4> 前記混合溶液の溶媒の除去を、温度20〜35℃、かつ、相対湿度40〜80%の条件で溶媒を蒸発させて、乾燥させることで行う前記<3>記載の構造色発色体。
<5> ハロゲン化鉛が、ヨウ化鉛(II)である前記<1>から<4>のいずれかに記載の構造色発色体。
<6> 前記溶液(A)を、予め、孔径または保留粒子径0.2〜5μmのフィルターまたはろ紙でろ過した後に前記溶液(B)と混合する前記<1>から<5>のいずれかに記載の構造色発色体。
<7> 水酸化鉄(III)コロイドを含む溶液(A)と、ハロゲン化鉛を含む溶液(B)と混合して混合溶液を形成する工程と、該混合溶液から溶媒を蒸発させて、乾燥させる工程とを含む構造色発色体の製造方法。
<8> 前記混合溶液の溶媒の除去を、温度20〜35℃、かつ、相対湿度40〜80%の条件で溶媒を蒸発させて、乾燥させることで行う前記<7>記載の構造色発色体の製造方法。
<9> ハロゲン化鉛が、ヨウ化鉛(II)である前記<7>または<8>に記載の構造色発色体の製造方法。
That is, the present invention relates to the following invention.
<1> It is obtained by mixing a solution (A) containing iron (III) hydroxide colloid and a solution (B) containing lead halide to form a mixed solution, and then removing the solvent from the mixed solution. A structural color developer.
<2> The structural color developer according to claim 1, wherein the molar ratio of iron (III) hydroxide and lead halide contained in the mixed solution is in the range of 1.0 to 25.
<3> The structural color developing body according to <1> or <2>, wherein the solvent of the solution (A) is water and the solvent of the solution (B) is ethanol.
<4> The structural color developing body according to <3>, wherein the solvent of the mixed solution is removed by evaporating and drying the solvent under conditions of a temperature of 20 to 35 ° C. and a relative humidity of 40 to 80%. .
<5> The structural color body according to any one of <1> to <4>, wherein the lead halide is lead (II) iodide.
<6> The solution (A) is previously filtered through a filter or filter paper having a pore size or a retained particle size of 0.2 to 5 μm, and then mixed with the solution (B). The structural color developing body described.
<7> A step of mixing a solution (A) containing iron (III) hydroxide colloid and a solution (B) containing lead halide to form a mixed solution, evaporating the solvent from the mixed solution, and drying A process for producing a structural color developing body.
<8> The structural color developing body according to <7>, wherein the solvent of the mixed solution is removed by evaporating and drying the solvent under conditions of a temperature of 20 to 35 ° C. and a relative humidity of 40 to 80%. Manufacturing method.
<9> The method for producing a structural color body according to <7> or <8>, wherein the lead halide is lead (II) iodide.

本発明の構造色発色体は、機械的強度、化学的安定性および熱的強度に極めて優れており、構造発色を長期にわたって維持することができる。また、本発明の構造色発色体の原料化合物は安価であるため、製造コストを低く抑えることができる。   The structural color developing material of the present invention is extremely excellent in mechanical strength, chemical stability and thermal strength, and can maintain the structural color development for a long time. Moreover, since the raw material compound of the structural color developing body of the present invention is inexpensive, the manufacturing cost can be kept low.

実施例2の構造色発色体(青色)の写真である。2 is a photograph of a structural color developing body (blue) in Example 2. 実施例6の構造色発色体(緑色)の写真である。6 is a photograph of a structural color developing body (green) of Example 6. 実施例7の構造色発色体(赤色)の写真である。6 is a photograph of a structural color developing body (red) in Example 7. 実施例8の構造色発色体(金色)の写真である。6 is a photograph of a structural color developing body (gold color) of Example 8.

以下、本発明につき詳細に説明する。
本発明は、水酸化鉄(III)コロイドを含む溶液(A)と、ハロゲン化鉛を含む溶液(B)と混合して形成した混合溶液から、次いで該混合溶液から溶媒を除去することにより得られてなる構造色発色体に係るものである。
Hereinafter, the present invention will be described in detail.
The present invention is obtained by removing a solvent from a mixed solution formed by mixing a solution (A) containing iron (III) hydroxide colloid and a solution (B) containing lead halide, and then from the mixed solution. The structural color developing body thus obtained.

本発明の構造色発色体の特徴は、水酸化鉄(III)コロイドを含む溶液(A)と、ハロゲン化鉛を含む溶液(B)とを混合し、溶媒を蒸発させて、乾燥するなどにより、混合溶液の溶媒を除去するという簡単な操作によって、機械的強度や化学的安定性および熱的強度に極めて優れており、様々な色彩(青色、緑色、赤色、金色または、それらの中間色からなる単色の構造色)を呈する薄膜状の構造色発色体を形成できることにある。
このような簡単な操作によって顕著な構造色を発色する構造色発色体を形成できる理由については、現段階では完全に明らかでないが、混合液の溶媒(好適にはアルコールと水の混合溶媒)が徐々に蒸発する過程で、水酸化鉄(III)コロイドが自己組織化して、規則性のある構造体が形成され、その構造体の安定性の向上にハロゲン化鉛が寄与している、と推測される。
なお、構造色発色体が美麗に構造色を発色するためには、前記混合溶液に含まれる水酸化鉄(III)とハロゲン化鉛のモル比が、1.0〜25の範囲であることが好ましく、2.5〜10の範囲であることが特に好ましい。
The structural color developing material of the present invention is characterized by mixing a solution (A) containing iron (III) hydroxide colloid and a solution (B) containing lead halide, evaporating the solvent, and drying. It is excellent in mechanical strength, chemical stability and thermal strength by a simple operation of removing the solvent of the mixed solution, and consists of various colors (blue, green, red, gold, or their intermediate colors) It is to be able to form a thin-film structural color developing body exhibiting a single structural color).
Although it is not completely clear at this stage that the structural color developing body capable of developing a remarkable structural color can be formed by such a simple operation, the solvent of the mixed solution (preferably a mixed solvent of alcohol and water) is used. In the process of evaporating gradually, the iron hydroxide (III) colloid self-assembles to form a regular structure, and it is assumed that lead halide contributes to improving the stability of the structure. Is done.
In addition, in order for the structural color developing body to color the structural color beautifully, the molar ratio of iron (III) hydroxide and lead halide contained in the mixed solution is in the range of 1.0 to 25. A range of 2.5 to 10 is particularly preferable.

水酸化鉄(III)コロイドを含む溶液(A)において、溶液(A)の溶媒としては、水酸化鉄(III)コロイドが分散できる溶媒であればよく、具体的には、水、メタノールやエタノールなどの低級アルコール類を挙げることができ、これらは1種類または2種類以上を混合して使用してもよい。
特に、水酸化鉄(III)コロイドの安定性の観点からは、溶液(A)の溶媒は、水を含むことが好ましく、特には水であることが好ましい。
In the solution (A) containing the iron (III) hydroxide colloid, the solvent of the solution (A) may be any solvent that can disperse the iron (III) hydroxide colloid, and specifically, water, methanol, or ethanol. The lower alcohols such as can be mentioned, and these may be used alone or in combination of two or more.
In particular, from the viewpoint of the stability of the iron (III) hydroxide colloid, the solvent of the solution (A) preferably contains water, and particularly preferably water.

溶液(A)の水酸化鉄(III)コロイドの濃度は、Fe原子換算濃度で、1×10-4〜2×10-3mol/Lの範囲であることが好ましく、5×10-4〜1×10-3mol/Lであることが特に好ましい。
濃度が1×10-4mol/L未満の場合は、構造色の発色が不明瞭になるという問題があり、逆に2×10-3mol/Lを超える場合には、後述する溶媒除去を行う際に水酸化鉄(III)コロイドの配列が乱れ、構造発色を呈しにくくなるという問題がある。
The concentration of the iron (III) hydroxide colloid in the solution (A) is preferably in the range of 1 × 10 −4 to 2 × 10 −3 mol / L in terms of Fe atom, and 5 × 10 −4 to It is particularly preferably 1 × 10 −3 mol / L.
When the concentration is less than 1 × 10 −4 mol / L, there is a problem that the color of the structural color becomes unclear. On the contrary, when the concentration exceeds 2 × 10 −3 mol / L, the solvent removal described later is performed. When performing, there is a problem that the arrangement of the iron (III) hydroxide colloid is disturbed and it becomes difficult to exhibit structural coloring.

溶液(A)において、水酸化鉄(III)コロイド粒子を形成する方法は、特に限定されないが、塩化鉄(III)の加水分解反応を利用する場合には、沸騰した水に塩化鉄(III)の水溶液を添加することで、以下の反応式(1)により、水酸化鉄(III)のコロイドが形成される。

FeCl+3HO → Fe(OH)+3HCl (1)
The method for forming the iron (III) hydroxide colloidal particles in the solution (A) is not particularly limited. However, when the hydrolysis reaction of iron (III) chloride is used, iron (III) chloride is added to boiling water. By adding this aqueous solution, a colloid of iron (III) hydroxide is formed according to the following reaction formula (1).

FeCl 3 + 3H 2 O → Fe (OH) 3 + 3HCl (1)

水酸化鉄(III)コロイド粒子は脱水縮合により、4配位の鉄(Fe)原子が2箇所で酸素(O)原子を介して共有結合することによって成長する無機高分子化合物であり、重合度が増すにつれて細長くなる板状構造の多核錯体と考えられている。通常のコロイド粒子の大きさは0.001〜0.1μmであるが、塩化鉄(III)の加水分解反応で調製した水酸化鉄(III)コロイド粒子には、重合度の大きな粒子が含まれており、これが構造色発色の妨げとなるので、フィルターやろ紙などでこれを除去することが好ましい。孔径または保留粒子径が0.2〜5μmのフィルターまたはろ紙でろ過したものから構造色が発現するが、輝度の高い良好な構造色発色体を再現性よく得るためには、特に保留粒子径が5μmのろ紙でろ過することが好ましい。ろ紙としては、アドバンテック東洋 定性ろ紙(No.2)を好適な具体例として挙げることができる。
なお、孔径が0.2μmのフィルターでろ過した水酸化鉄(III)コロイドゾルからはモルフォ蝶の翅の色に極めてよく似ている美麗な青色構造色を発現させることができる。フィルターとしては、0.2μm Supor Syringe Filters(Pall PharmAssure HP1002, LOT.NO. 21441 2010-07)を好適な具体例として挙げることができる。
Iron (III) hydroxide colloidal particles are inorganic polymer compounds that grow by dehydration condensation by covalently bonding tetracoordinate iron (Fe) atoms at two locations via oxygen (O) atoms. It is considered to be a multinuclear complex with a plate-like structure that becomes elongated as the number of the particles increases. The size of ordinary colloidal particles is 0.001 to 0.1 μm, but iron (III) hydroxide colloidal particles prepared by iron (III) chloride hydrolysis reaction include particles with a high degree of polymerization. Since this hinders structural color development, it is preferable to remove this with a filter or filter paper. A structural color is expressed from a filter or filter paper having a pore diameter or a retained particle diameter of 0.2 to 5 μm. In order to obtain a good structural color developing body having high brightness with good reproducibility, the retained particle diameter is particularly large. It is preferable to filter with 5 μm filter paper. As a filter paper, Advantech Toyo qualitative filter paper (No. 2) can be mentioned as a suitable specific example.
A beautiful blue structure color very similar to the color of Morpho butterfly wings can be expressed from an iron (III) hydroxide colloidal sol filtered with a 0.2 μm pore size filter. As a filter, 0.2 μm Supor Syringe Filters (Pall Pharm Assure HP1002, LOT.NO. 21441 2010-07) can be mentioned as a preferred specific example.

ハロゲン化鉛を含む溶液(B)の溶質であるハロゲン化鉛としては、具体的には、フッ化鉛(II)、塩化鉛(II)、臭化鉛(II)、ヨウ化鉛(II)を挙げることができ、これらは1種類または2種類以上を混合して使用してもよい。この中でも、安定性の高い構造色発色体を得ることができる点で、ヨウ化鉛(II)を含むことが好ましく、ヨウ化鉛(II)のみであることが特に好ましい。   Specific examples of the lead halide as the solute of the solution (B) containing lead halide include lead (II) fluoride, lead (II) chloride, lead (II) bromide, and lead (II) iodide. These may be used alone or in combination of two or more. Among these, lead (II) iodide is preferably contained, and only lead (II) iodide is particularly preferred in that a highly stable structural color developing body can be obtained.

溶液(B)の溶媒としては、ハロゲン化鉛が溶解でき、かつ、溶液(A)の溶媒と相溶性のある溶媒であればよく、具体的には水;メタノール、エタノール、n−プロパノール、イソプロパノールなどの低級アルコール類を挙げることができ、これらは1種類または2種類以上を混合して使用してもよい。この中でも、人体に対する安全性の観点からはエタノールが特に好適であり、エタノールのみであることが特に好ましい。   The solvent of the solution (B) may be any solvent that can dissolve lead halide and is compatible with the solvent of the solution (A). Specifically, water; methanol, ethanol, n-propanol, isopropanol The lower alcohols such as can be mentioned, and these may be used alone or in combination of two or more. Among these, ethanol is particularly preferable from the viewpoint of safety to the human body, and only ethanol is particularly preferable.

溶液(B)におけるハロゲン化鉛の好適な濃度は、混合する溶液(A)の水酸化鉄(III)コロイドの濃度に依存する。具体的には、Pb原子換算濃度で、1×10-5〜2×10-4mol/Lの範囲であることが好ましく、5×10-5〜1×10-4mol/Lであることが特に好ましい。
ハロゲン化鉛の濃度が1×10-5mol/L未満の場合は、ハロゲン化鉛による水酸化鉄(III)コロイド粒子から安定化効果が小さくなり、2×10-4mol/Lを超える場合には、逆にハロゲン化鉛の存在により、水酸化鉄(III)コロイド粒子の自己組織化が阻害されるため、それぞれ安定した構造色発色体を得ることが困難になる。
なお、溶液(B)には、本発明の目的を損なわない範囲で、ハロゲン化鉛以外の成分を含んでもよい。
The suitable concentration of lead halide in the solution (B) depends on the concentration of the iron (III) hydroxide colloid in the solution (A) to be mixed. Specifically, the Pb atom equivalent concentration is preferably in the range of 1 × 10 −5 to 2 × 10 −4 mol / L, and preferably 5 × 10 −5 to 1 × 10 −4 mol / L. Is particularly preferred.
When the concentration of lead halide is less than 1 × 10 −5 mol / L, the stabilizing effect is reduced from the iron (III) hydroxide colloid particles by lead halide, and the concentration exceeds 2 × 10 −4 mol / L. On the other hand, the presence of lead halide inhibits the self-organization of iron (III) hydroxide colloidal particles, making it difficult to obtain a stable structural color developer.
The solution (B) may contain components other than lead halide as long as the object of the present invention is not impaired.

本発明の構造色発色体を製造する方法として、溶液(A)の溶媒に水、溶液(B)の溶質にヨウ化鉛(II)、溶媒にエタノールを使用した場合を例に具体的に説明する。   As a method for producing the structural color developing material of the present invention, a case where water is used as the solvent of the solution (A), lead (II) iodide is used as the solute of the solution (B), and ethanol is used as the solvent will be specifically described. To do.

溶液(A)として、所定量の沸騰した純水に所定量の塩化鉄を添加して、所定時間攪拌することにより、上記反応式(1)により、水酸化鉄(III)の水溶液を形成することができる。得られた水酸化鉄(III)の水溶液(溶液(A))は、必要に応じて、ろ過やイオン交換などの手段によって精製して使用することもできる。
なお、上述のように特に薄膜状の構造色発色体を得る観点からは、水酸化鉄(III)の好適な濃度は、Fe原子換算濃度で、5×10-4〜1×10-3mol/Lである。
As a solution (A), a predetermined amount of iron chloride is added to a predetermined amount of boiling pure water and stirred for a predetermined time to form an aqueous solution of iron (III) hydroxide according to the above reaction formula (1). be able to. The obtained aqueous solution of iron (III) hydroxide (solution (A)) can be purified and used by means such as filtration or ion exchange, if necessary.
As described above, from the viewpoint of obtaining a thin film-like structural color developing body, a suitable concentration of iron (III) hydroxide is 5 × 10 −4 to 1 × 10 −3 mol in terms of Fe atom. / L.

溶液(B)の溶質として、使用するヨウ化鉛(II)は、従来公知の方法で製造することができ、例えば、酸化鉛(I)をヨウ化メチルの存在下加熱する方法や、酢酸鉛(II)水溶液とヨウ化カリウム水溶液とを混合して沈殿させる方法などが挙げられる。
また、構造色発色体を再現性よく製造することができるため、ヨウ化鉛(II)を再結晶して使用することが好ましい。
溶液(B)の溶媒として使用されるエタノールは、水との相溶性が高く、そのヨウ化鉛(II)の飽和濃度が約8.0×10-5mol/Lであり、薄膜状の構造色発色体の形成に適した希薄なヨウ化鉛(II)溶液を得ることができるため好適である。
As a solute of the solution (B), lead (II) iodide to be used can be produced by a conventionally known method. For example, lead oxide (I) is heated in the presence of methyl iodide, lead acetate, (II) A method in which an aqueous solution and an aqueous potassium iodide solution are mixed and precipitated.
In addition, since the structural color developing body can be produced with good reproducibility, it is preferable to recrystallize and use lead (II) iodide.
Ethanol used as a solvent for the solution (B) has a high compatibility with water, and its lead (II) iodide has a saturated concentration of about 8.0 × 10 −5 mol / L, and has a thin-film structure. This is preferable because a dilute lead (II) iodide solution suitable for forming a color developing body can be obtained.

溶液(A)と溶液(B)との混合割合は、目的及び用途に合わせて適宜決定すればよく、それぞれの溶液の水酸化鉄(III)あるいはヨウ化鉛(II)の濃度によって任意であるが、溶液を迅速に均一混合できるという観点からは、溶液(A)と溶液(B)との体積比で3:7から7:3が好ましい。
溶液(A)と溶液(B)とを混合する方法としては特に制限はなく、混合する温度も特に制限はないが、溶解したハロゲン化鉛が析出しない条件が選択され、通常、20〜40℃である。
なお、溶媒を蒸発除去させる工程において、溶液(A)と溶液(B)以外にも、必要に応じて、それぞれの溶媒であるエタノールや水をさらに添加すると、形成される構造色発色体が呈する色彩を変化させることができる。
The mixing ratio of the solution (A) and the solution (B) may be appropriately determined according to the purpose and application, and is arbitrary depending on the concentration of iron hydroxide (III) or lead (II) iodide in each solution. However, from the viewpoint that the solution can be rapidly and uniformly mixed, the volume ratio of the solution (A) to the solution (B) is preferably 3: 7 to 7: 3.
The method for mixing the solution (A) and the solution (B) is not particularly limited, and the mixing temperature is not particularly limited, but the conditions under which the dissolved lead halide does not precipitate are selected. It is.
In addition, in the step of evaporating and removing the solvent, in addition to the solution (A) and the solution (B), if necessary, ethanol or water, which are the respective solvents, is further added, and a structural color developing body is formed. The color can be changed.

溶液(A)と溶液(B)を混合して得られた混合溶液から、溶媒を蒸発除去することで本発明の構造色発色体を得ることができる。溶媒を蒸発除去し、乾燥させる方法としては、自然乾燥、加熱乾燥、減圧乾燥などのいずれの方法を用いてもよいが、均一性の高い構造を有する構造色発色体を得るためには、急激な溶媒の蒸発は好ましくないため、自然乾燥が好ましい。好適な乾燥条件としては、温度20〜35℃(より好適には、25〜32℃)であり、かつ、相対湿度40〜80%(より好適には、55〜70%)を挙げることができる。   The structural color developing body of the present invention can be obtained by evaporating and removing the solvent from the mixed solution obtained by mixing the solution (A) and the solution (B). As a method of evaporating and removing the solvent and drying, any method such as natural drying, heat drying, and vacuum drying may be used. However, in order to obtain a structural color developing body having a highly uniform structure, rapid Since natural evaporation of the solvent is not preferred, natural drying is preferred. Suitable drying conditions include a temperature of 20 to 35 ° C. (more preferably 25 to 32 ° C.) and a relative humidity of 40 to 80% (more preferably 55 to 70%). .

本発明の構造色発色体は、それ自体を自立膜として使用することもできるが、溶液(A)と溶液(B)を混合して得られた混合溶液を各種の基材に塗布し、基材表面に形成される場合が多い。
基材としては、特に限定はなく、基材表面の性質(親水性あるいは疎水性、凹凸など)に応じて、使用する溶媒を適宜選択することで、ガラスをはじめとした無機系基材、プラスチックをはじめとした有機系基材のいずれにも使用できる。
本発明の構造色発色体は、特にその意匠性の観点からは、透明ガラスや陶磁器へ好適に使用することができ、また、加熱工程を必要としないことから樹脂からなる基材へも好適に使用することができる。
また、基材への塗布方法は特に限定されず、従来公知の塗布方法で行うことができる。すなわち、刷毛塗り塗装、バーコーター塗装、スポンジ塗装、スプレー塗装などが挙げられる。
The structural color developing body of the present invention can itself be used as a self-supporting film, but a mixed solution obtained by mixing the solution (A) and the solution (B) is applied to various substrates, and the substrate It is often formed on the material surface.
The substrate is not particularly limited, and an inorganic substrate such as glass or plastic can be selected by appropriately selecting a solvent to be used according to the properties of the substrate surface (hydrophilic or hydrophobic, unevenness, etc.). It can be used for any organic base material such as.
The structural color developing body of the present invention can be suitably used for transparent glass and ceramics, particularly from the viewpoint of its design properties, and is also suitable for a substrate made of resin because it does not require a heating step. Can be used.
Moreover, the coating method to a base material is not specifically limited, It can carry out by a conventionally well-known coating method. That is, brush coating, bar coater coating, sponge coating, spray coating, and the like.

基材へ塗布した構造色発色体の硬化時間は、溶液(A)と溶液(B)のそれぞれの溶質濃度やその混合割合、塗布量及び溶媒の蒸発方法などで変化するが、通常、1時間から1日程度で溶媒の蒸発除去(乾燥)を行うことで、十分な硬度を有する構造色発色体を得ることができる。   The curing time of the structural color body applied to the substrate varies depending on the solute concentration of each of the solution (A) and the solution (B), the mixing ratio thereof, the coating amount, the solvent evaporation method, etc. The structural color developing body having sufficient hardness can be obtained by evaporating and removing (drying) the solvent in about 1 day.

本発明の構造色発色体は、空気中において各種照明下で長期間(数ヶ月以上)放置しても、その構造色の輝きは損なわれることはない。また、本構造発色薄膜は水に全く溶解せず、塩酸、硝酸などの酸性溶液、水酸化ナトリウム、水酸化カリウムなどのアルカリ性溶液、ベンゼン、トルエンなどをはじめとする有機溶媒に対して高い耐久性を有し、これらの溶液(溶媒)中に浸漬してもほとんど変化することはない。   Even if the structural color developing body of the present invention is left in the air under various illuminations for a long period (several months or more), the brightness of the structural color is not impaired. In addition, this structural coloring thin film does not dissolve in water at all, and has high durability against acidic solutions such as hydrochloric acid and nitric acid, alkaline solutions such as sodium hydroxide and potassium hydroxide, and organic solvents such as benzene and toluene. Even if immersed in these solutions (solvents), there is almost no change.

本発明の構造色発色体は、青色、緑色、赤色、金色または、その中間色からなる単色の構造色を呈する。構造色発色体の構造色は、原料組成や構造色発色体の厚みなどに依存する。構造色発色体の厚みは任意に調節することができるが、欠陥のない連続膜とするためには1〜20μmにすることが望ましい。 The structural color developing body of the present invention exhibits a single structural color consisting of blue, green, red, gold, or an intermediate color thereof. The structural color of the structural color developing body depends on the raw material composition, the thickness of the structural color developing body, and the like. Although the thickness of the structural color developing body can be arbitrarily adjusted, it is preferably 1 to 20 μm in order to obtain a continuous film having no defects.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

使用した試薬及び評価装置を以下に示す。
塩化鉄(III)六水和物(関東化学(株)試薬特級、99.0%)
ヨウ化カリウム(関東化学(株)試薬特級、99.5%)
フッ化カリウム二水和物(関東化学(株)試薬一級、98.0%)
塩化カリウム(関東化学(株)試薬特級、99.5%)
臭化カリウム(関東化学(株)試薬特級、99.0%)
酢酸鉛(II)三水和物(関東化学(株)試薬特級、99.5%)
エタノール(関東化学(株)試薬特級、99.5%)
メタノール(関東化学(株)試薬特級、99.8%)
The reagents and evaluation equipment used are shown below.
Iron (III) chloride hexahydrate (Kanto Chemical Co., Ltd. reagent special grade, 99.0%)
Potassium iodide (Kanto Chemical Co., Ltd. reagent grade, 99.5%)
Potassium fluoride dihydrate (Kanto Chemical Co., Ltd. reagent grade, 98.0%)
Potassium chloride (Kanto Chemical Co., Ltd. reagent special grade, 99.5%)
Potassium bromide (Kanto Chemical Co., Ltd. reagent special grade, 99.0%)
Lead (II) acetate trihydrate (Kanto Chemical Co., Ltd. reagent grade, 99.5%)
Ethanol (Kanto Chemical Co., Ltd. reagent grade, 99.5%)
Methanol (Kanto Chemical Co., Ltd. reagent grade, 99.8%)

「水酸化鉄(III)コロイドを含む溶液(A)の作製」
ビーカーに約1000mLの純水をとり、沸騰させながら新しく作った20重量%塩化鉄(III)水溶液50mLをガラス棒でかき混ぜながら加えて、水酸化鉄(III)コロイドを含む水溶液(以下、溶液(A))を作製した。
得られた溶液(A)の水酸化鉄(III)コロイド水溶液の濃度は8.0×10-4mol/Lであった。
さらに得られた溶液(A)を、以下のろ紙1、ろ紙2、ろ紙3、ろ紙(フィルター)4でろ過して得た溶液をそれぞれ溶液(A1)、溶液(A2)、溶液(A3)、溶液(A4)とした。

ろ紙1: No.2ろ紙(保留粒子径:5μm アドバンテック東洋 定性ろ紙)
ろ紙2: No.131ろ紙(保留粒子径:3μm アドバンテック東洋 定性ろ紙)
ろ紙3: ガラス繊維ろ紙GS−25(保留粒子径:0.6μm アドバンテック東洋 分析ろ紙)
ろ紙(フィルター)4: シリンジフィルター(孔径:0.2μm Pall PharmAssure
HP1002, LOT.NO. 21441 2010-07)
“Preparation of solution (A) containing iron (III) hydroxide colloid”
About 1000 mL of pure water is taken into a beaker, and 50 mL of a newly prepared 20 wt% aqueous solution of iron (III) chloride is added to the beaker while stirring with a glass rod, and an aqueous solution containing iron (III) hydroxide colloid (hereinafter referred to as solution ( A)) was prepared.
The concentration of the aqueous solution of iron (III) colloid in the obtained solution (A) was 8.0 × 10 −4 mol / L.
Further, the obtained solution (A) was filtered through the following filter paper 1, filter paper 2, filter paper 3, and filter paper (filter) 4 to obtain solutions (A1), solution (A2), solution (A3), It was set as the solution (A4).

Filter paper 1: No. 2 filter paper (retained particle size: 5μm Advantech Toyo qualitative filter paper)
Filter paper 2: No. 131 filter paper (retained particle size: 3μm Advantech Toyo qualitative filter paper)
Filter paper 3: Glass fiber filter paper GS-25 (Retained particle size: 0.6 μm Advantech Toyo Analytical filter paper)
Filter paper (filter) 4: Syringe filter (pore size: 0.2 μm) Pall PharmAssure
(HP1002, LOT.NO. 21441 2010-07)

「ハロゲン化鉛を含む溶液(B1)の作製(飽和ヨウ化鉛(II)エタノール溶液)」
200mLビーカーに純水50mLを入れ、これに酢酸鉛(II)6.0gを加えてガラス棒でよくかき混ぜて溶解させ、酢酸鉛(II)溶液を作製した。
100mLビーカーに純水50mLを入れ、これにヨウ化カリウム6.0gを加えてガラス棒でよくかき混ぜて溶解させ、ヨウ化カリウム溶液を作製した。
このヨウ化カリウム溶液と酢酸鉛(II)溶液とを混合すると生じる黄色沈殿を吸引ろ過装置でろ過し、ろ紙上の粉末を純水で洗浄した。得られた粉末を再結晶により精製を行ってヨウ化鉛(II)を作製した。
得られたヨウ化鉛(II)粉末約2gをエタノール(関東化学(株)試薬特級、99.5%)300mLに入れ、マグネチックスターラーで2日間撹拌し、6時間静置後、ろ紙(アドバンテック東洋 定性ろ紙、No.2)でろ過することで、ヨウ化鉛(II)がエタノール溶媒に飽和溶解した溶液(B1)を得た。
溶液(B1)の色は、淡黄色であり、溶液(B1)の一定量を完全に蒸発させた時の重量変化からヨウ化鉛(II)の溶解量を測定した結果、その濃度が8.0×10-5mol/Lであることが判明した。
“Preparation of solution (B1) containing lead halide (saturated lead (II) iodide ethanol solution)”
In a 200 mL beaker, 50 mL of pure water was added, 6.0 g of lead (II) acetate was added thereto, and the mixture was thoroughly stirred with a glass rod to dissolve it, thereby preparing a lead (II) acetate solution.
Into a 100 mL beaker, 50 mL of pure water was added, 6.0 g of potassium iodide was added thereto, and the mixture was thoroughly stirred with a glass rod to dissolve, thereby preparing a potassium iodide solution.
The yellow precipitate produced when this potassium iodide solution and lead (II) acetate solution were mixed was filtered with a suction filtration device, and the powder on the filter paper was washed with pure water. The obtained powder was purified by recrystallization to produce lead (II) iodide.
About 2 g of the obtained lead (II) iodide powder was placed in 300 mL of ethanol (Kanto Chemical Co., Ltd. reagent grade, 99.5%), stirred for 2 days with a magnetic stirrer, allowed to stand for 6 hours, and then filtered (Advantech). By filtering through Toyo qualitative filter paper, No. 2), a solution (B1) in which lead (II) iodide was saturatedly dissolved in an ethanol solvent was obtained.
The color of the solution (B1) is light yellow. As a result of measuring the amount of lead (II) iodide dissolved from the change in weight when a certain amount of the solution (B1) was completely evaporated, the concentration was 8. It was found to be 0 × 10 −5 mol / L.

「ハロゲン化鉛を含む溶液(B2)の作製(飽和フッ化鉛(II)エタノール溶液)」
ヨウ化カリウム6.0gの代わりにフッ化カリウム2.14gを使用した以外は上記
ヨウ化鉛(II)と同様の操作を行い、フッ化鉛(II)がエタノール溶媒に飽和溶解した溶液(B2)を得た。
溶液(B2)の色は、無色であり、溶液(B2)の一定量を完全に蒸発させた時の重量変化からフッ化鉛(II)の溶解量を測定した結果、その濃度が2.78×10-3mol/Lであることが判明した。
“Preparation of solution containing lead halide (B2) (saturated lead fluoride (II) ethanol solution)”
A solution (B2) in which lead fluoride (II) was saturatedly dissolved in an ethanol solvent was carried out in the same manner as lead (II) iodide, except that 2.14 g of potassium fluoride was used instead of 6.0 g of potassium iodide. )
The color of the solution (B2) is colorless. As a result of measuring the amount of lead (II) dissolved from the change in weight when a certain amount of the solution (B2) is completely evaporated, the concentration is 2.78. It was found to be × 10 −3 mol / L.

「ハロゲン化鉛を含む溶液(B3)の作製(飽和塩化鉛(II)エタノール溶液)」
ヨウ化カリウム6.0gの代わりに塩化カリウム2.75gを使用した以外は上記ヨウ化鉛(II)と同様の操作を行い、塩化鉛(II)がエタノール溶媒に飽和溶解した溶液(B3)を得た。
溶液(B3)の色は、無色であり、溶液(B3)の一定量を完全に蒸発させた時の重量変化から塩化鉛(II)の溶解量を測定した結果、その濃度が4.67×10-5mol/Lであることが判明した。
“Preparation of solution containing lead halide (B3) (saturated lead (II) chloride ethanol solution)”
Except for using 2.75 g of potassium chloride instead of 6.0 g of potassium iodide, the same operation as the above lead (II) iodide was performed, and a solution (B3) in which lead (II) chloride was dissolved in an ethanol solvent in a saturated manner was obtained. Obtained.
The color of the solution (B3) is colorless. As a result of measuring the amount of lead (II) dissolved from the change in weight when a certain amount of the solution (B3) was completely evaporated, the concentration was 4.67 ×. It was found to be 10 −5 mol / L.

「ハロゲン化鉛を含む溶液(B4)の作製(飽和臭化鉛(II)エタノール溶液)」
ヨウ化カリウム6.0gの代わりに臭化カリウム4.39gを使用した以外は上記ヨウ化鉛(II)と同様の操作を行い、臭化鉛(II)がエタノール溶媒に飽和溶解した溶液(B4)を得た。
溶液(B4)の色は、無色であり、溶液(B4)の一定量を完全に蒸発させた時の重量変化から臭化鉛(II)の溶解量を測定した結果、その濃度が9.73×10-4mol/Lであることが判明した。
“Preparation of solution containing lead halide (B4) (saturated lead (II) bromide ethanol solution)”
A solution (B4) in which lead bromide (II) was saturatedly dissolved in an ethanol solvent was carried out in the same manner as lead (II) iodide, except that 4.39 g of potassium bromide was used instead of 6.0 g of potassium iodide. )
The color of the solution (B4) is colorless. As a result of measuring the amount of lead (II) bromide dissolved from the change in weight when a certain amount of the solution (B4) was completely evaporated, the concentration was 9.73. It was found to be × 10 −4 mol / L.

(実施例1)
室温28℃、相対湿度55%の環境下で、50mLビーカー(IWAKIガラス(株)製)に溶液(A)をスポイトで1滴(1滴は約0.05mL)滴下し、次にエタノール4滴を滴下して、よく振り混ぜて混合し、ビーカー底面に均一に塗布する。約5分後、最後に、溶液(B1)を4滴加えてよく混合し、約1日間静置することでビーカー底部に実施例1の構造色発色体を形成した。実施例1の構造色発色体は、青色の構造色を呈していた。
Example 1
In an environment with a room temperature of 28 ° C. and a relative humidity of 55%, drop 1 drop (1 drop is about 0.05 mL) of solution (A) into a 50 mL beaker (manufactured by IWAKI Glass Co., Ltd.), then 4 drops of ethanol. Is dripped, shaken and mixed well, and evenly applied to the bottom of the beaker. About 5 minutes later, finally, 4 drops of the solution (B1) was added and mixed well, and the mixture was allowed to stand for about 1 day to form the structural color developer of Example 1 on the bottom of the beaker. The structural color body of Example 1 exhibited a blue structural color.

(実施例2)
溶液(A)の代わりに溶液(A1)を使用した以外は実施例1と同様にして、実施例2の構造色発色体を形成した。実施例2の構造色発色体は、特に美麗な青色の構造色を呈していた(図1)。
(Example 2)
The structural color body of Example 2 was formed in the same manner as in Example 1 except that the solution (A1) was used instead of the solution (A). The structural color developer of Example 2 exhibited a particularly beautiful blue structural color (FIG. 1).

(実施例3)
溶液(A)の代わりに溶液(A2)を使用した以外は実施例1と同様にして、実施例3の構造色発色体を形成した。実施例3の構造色発色体は、不鮮明ながら青色の構造色を呈していた。
(Example 3)
The structural color body of Example 3 was formed in the same manner as in Example 1 except that the solution (A2) was used instead of the solution (A). The structural color developing material of Example 3 was blue but exhibited a blue structural color.

(実施例4)
溶液(A)の代わりに溶液(A3)を使用した以外は実施例1と同様にして、実施例4の構造色発色体を形成した。実施例4の構造色発色体は、不鮮明ながら青色の構造色を呈していた。
Example 4
The structural color body of Example 4 was formed in the same manner as in Example 1 except that the solution (A3) was used instead of the solution (A). The structural color developing body of Example 4 was blue but exhibited a blue structural color.

(実施例5)
溶液(A)の代わりに溶液(A4)を使用した以外は実施例1と同様にして、実施例4の構造色発色体を形成した。実施例4の構造色発色体は、モルフォ蝶の翅の色に極めてよく似た高輝度の美麗な青色構造色を呈していた。
(Example 5)
The structural color body of Example 4 was formed in the same manner as in Example 1 except that the solution (A4) was used instead of the solution (A). The structural color developing body of Example 4 exhibited a beautiful blue structural color with high luminance very similar to the color of the morpho butterfly wing.

(実施例6)
室温28℃、相対湿度55%の環境下で、50mLビーカー(IWAKIガラス(株)製)に溶液(A1)をスポイトで3滴(1滴は約0.05mL)滴下し、溶液(B1)を3滴加えてよく混合し、約1日間静置するとビーカー底部に実施例6の構造色発色体を形成した。実施例6の構造色発色体は、美麗な緑色の構造色を呈していた(図2)。
(Example 6)
In an environment with a room temperature of 28 ° C. and a relative humidity of 55%, drop 3 drops of the solution (A1) into a 50 mL beaker (manufactured by IWAKI Glass Co., Ltd.) with a dropper (1 drop is about 0.05 mL) and add the solution (B1). When 3 drops were added and mixed well, and the mixture was allowed to stand for about 1 day, the structural color developer of Example 6 was formed at the bottom of the beaker. The structural color developer of Example 6 exhibited a beautiful green structural color (FIG. 2).

(実施例7)
室温28℃、相対湿度55%の環境下で、50mLビーカー(IWAKIガラス(株)製)に溶液(A1)をスポイトで2滴(1滴は約0.05mL)を滴下し、さらにエタノール1滴を滴下して、よく振り混ぜて混合し、最後に、溶液(B1)を3滴加えてよく混合し、約1日間静置するとビーカー底部に実施例7の構造色発色体を形成した。実施例7の構造色発色体は、美麗な赤色の構造色を呈していた(図3)。
(Example 7)
In an environment with a room temperature of 28 ° C. and a relative humidity of 55%, drop 2 drops (1 drop is about 0.05 mL) of the solution (A1) into a 50 mL beaker (manufactured by IWAKI Glass Co., Ltd.), and 1 drop of ethanol. Was added dropwise and shaken and mixed. Finally, 3 drops of the solution (B1) was added and mixed well. When the mixture was allowed to stand for about 1 day, the structural color developer of Example 7 was formed at the bottom of the beaker. The structural color developing body of Example 7 exhibited a beautiful red structural color (FIG. 3).

(実施例8)
エタノールの代わりに同量の水を使用した以外は実施例7と同様にして、実施例8の構造色発色体を形成した。実施例8の構造色発色体は、特に美麗な金色の構造色を呈していた(図4)。
(Example 8)
The structural color developer of Example 8 was formed in the same manner as in Example 7 except that the same amount of water was used instead of ethanol. The structural color body of Example 8 exhibited a particularly beautiful golden structural color (FIG. 4).

(実施例9)
ヨウ化鉛の代わりに同量のフッ化鉛を含む溶液(B2)使用した以外は実施例2と同様にして、実施例9の構造色発色体を形成した。実施例9の構造色発色体は、青色の構造色を呈していた実施例2と比較するとその色彩は鮮明ではなかった。
Example 9
The structural color body of Example 9 was formed in the same manner as Example 2 except that the solution (B2) containing the same amount of lead fluoride was used instead of lead iodide. The structural color developer of Example 9 was not clear in color compared to Example 2 which had a blue structural color.

(実施例10)
ヨウ化鉛の代わりに同量のフッ化鉛を含む溶液(B2)使用した以外は実施例6と同様にして、実施例10の構造色発色体を形成した。実施例10の構造色発色体は、緑色の構造色を呈していた実施例6と比較するとその色彩は鮮明ではなかった。
(Example 10)
A structural color body of Example 10 was formed in the same manner as in Example 6 except that the solution (B2) containing the same amount of lead fluoride was used instead of lead iodide. The structural color developing body of Example 10 was not clear in color compared to Example 6 which exhibited a green structural color.

(実施例11)
ヨウ化鉛の代わりに同量のフッ化鉛を含む溶液(B2)使用した以外は実施例7と同様にして、実施例11の構造色発色体を形成した。実施例11の構造色発色体は、緑色の構造色を呈していた実施例7と比較するとその色彩は鮮明ではなかった。
(Example 11)
A structural color body of Example 11 was formed in the same manner as Example 7 except that the solution (B2) containing the same amount of lead fluoride was used instead of lead iodide. The structural color developer of Example 11 was not clear in color compared to Example 7 which exhibited a green structural color.

(実施例12)
ヨウ化鉛の代わりに同量のフッ化鉛を含む溶液(B2)使用した以外は実施例8と同様にして、実施例11の構造色発色体を形成した。実施例11の構造色発色体は、緑色の構造色を呈していた実施例8と比較するとその色彩は鮮明ではなかった。
(Example 12)
The structural color body of Example 11 was formed in the same manner as Example 8 except that the solution (B2) containing the same amount of lead fluoride was used instead of lead iodide. The structural color developer of Example 11 was not clear in color compared to Example 8 which exhibited a green structural color.

(実施例13)
ヨウ化鉛の代わりに同量の塩化鉛を含む溶液(B3)使用した以外は実施例2と同様にして、実施例9の構造色発色体を形成した。実施例13の構造色発色体は、青色の構造色を呈していた実施例2と比較するとその色彩は鮮明ではなかった。
(Example 13)
A structural color body of Example 9 was formed in the same manner as in Example 2 except that the solution (B3) containing the same amount of lead chloride was used instead of lead iodide. The structural color developer of Example 13 was not clear in color compared to Example 2 which had a blue structural color.

(実施例14)
ヨウ化鉛の代わりに同量の塩化鉛を含む溶液(B3)使用した以外は実施例6と同様にして、実施例14の構造色発色体を形成した。実施例14の構造色発色体は、緑色の構造色を呈していた実施例6と比較するとその色彩は鮮明ではなかった。
(Example 14)
The structural color body of Example 14 was formed in the same manner as in Example 6 except that the solution (B3) containing the same amount of lead chloride was used instead of lead iodide. The structural color developer of Example 14 was not vivid in color compared to Example 6 which exhibited a green structural color.

(実施例15)
ヨウ化鉛の代わりに同量の塩化鉛を含む溶液(B3)使用した以外は実施例7と同様にして、実施例15の構造色発色体を形成した。実施例15の構造色発色体は、緑色の構造色を呈していた実施例7と比較するとその色彩は鮮明ではなかった。
(Example 15)
The structural color body of Example 15 was formed in the same manner as Example 7 except that the solution (B3) containing the same amount of lead chloride was used instead of lead iodide. The structural color developer of Example 15 was not clear in color as compared to Example 7 which exhibited a green structural color.

(実施例16)
ヨウ化鉛の代わりに同量の塩化鉛を含む溶液(B3)使用した以外は実施例8と同様にして、実施例16の構造色発色体を形成した。実施例16の構造色発色体は、緑色の構造色を呈していた実施例8と比較するとその色彩は鮮明ではなかった。
(Example 16)
The structural color body of Example 16 was formed in the same manner as in Example 8 except that the solution (B3) containing the same amount of lead chloride was used instead of lead iodide. The structural color developing body of Example 16 was not clear in color compared to Example 8 which exhibited a green structural color.

(実施例17)
ヨウ化鉛の代わりに同量の臭化鉛を含む溶液(B4)使用した以外は実施例2と同様にして、実施例17の構造色発色体を形成した。実施例17の構造色発色体は、青色の構造色を呈していた実施例2と比較するとその色彩は鮮明ではなかった。
(Example 17)
The structural color body of Example 17 was formed in the same manner as in Example 2 except that the solution (B4) containing the same amount of lead bromide was used instead of lead iodide. The structural color developer of Example 17 was not vivid in color compared to Example 2 which had a blue structural color.

(実施例18)
ヨウ化鉛の代わりに同量の臭化鉛を含む溶液(B4)使用した以外は実施例6と同様にして、実施例18の構造色発色体を形成した。実施例18の構造色発色体は、緑色の構造色を呈していた実施例6と比較するとその色彩は鮮明ではなかった。
(Example 18)
The structural color body of Example 18 was formed in the same manner as in Example 6 except that the solution (B4) containing the same amount of lead bromide was used instead of lead iodide. The structural color developer of Example 18 was not clear in color compared to Example 6 which had a green structural color.

(実施例19)
ヨウ化鉛の代わりに同量の臭化鉛を含む溶液(B4)使用した以外は実施例7と同様にして、実施例19の構造色発色体を形成した。実施例19の構造色発色体は、緑色の構造色を呈していた実施例7と比較するとその色彩は鮮明ではなかった。
(Example 19)
The structural color body of Example 19 was formed in the same manner as in Example 7 except that the solution (B4) containing the same amount of lead bromide was used instead of lead iodide. The structural color developer of Example 19 was not clear in color as compared to Example 7 which exhibited a green structural color.

(実施例20)
ヨウ化鉛の代わりに同量の臭化鉛を含む溶液(B4)使用した以外は実施例8と同様にして、実施例20の構造色発色体を形成した。実施例20の構造色発色体は、緑色の構造色を呈していた実施例8と比較するとその色彩は鮮明ではなかった。
(Example 20)
The structural color body of Example 20 was formed in the same manner as in Example 8 except that the solution (B4) containing the same amount of lead bromide was used instead of lead iodide. The structural color developer of Example 20 was not vivid in color compared to Example 8 which had a green structural color.

(比較例1)
ハロゲン化鉛の代わりに同量の酢酸鉛を使用した以外は実施例2と同様の工程で構造色発色体の作製を試みたが、ビーカー底部に形成された薄膜は、構造色を呈さなかった。
(Comparative Example 1)
An attempt was made to produce a structural color body in the same process as in Example 2 except that the same amount of lead acetate was used instead of lead halide, but the thin film formed on the bottom of the beaker did not exhibit a structural color. .

(比較例2)
ハロゲン化鉛の代わりに同量の酢酸鉛を使用した以外は実施例6と同様の工程で構造色発色体の作製を試みたが、ビーカー底部に形成された薄膜は、構造色を呈さなかった。
(Comparative Example 2)
An attempt was made to produce a structural color body in the same process as in Example 6 except that the same amount of lead acetate was used instead of lead halide, but the thin film formed on the bottom of the beaker did not exhibit a structural color. .

(比較例3)
ハロゲン化鉛の代わりに同量の酢酸鉛を使用した以外は実施例7と同様の工程で構造色発色体の作製を試みたが、ビーカー底部に形成された薄膜は、構造色を呈さなかった。
(Comparative Example 3)
An attempt was made to produce a structural color body in the same process as in Example 7 except that the same amount of lead acetate was used instead of lead halide, but the thin film formed on the bottom of the beaker did not exhibit a structural color. .

(比較例4)
ハロゲン化鉛の代わりに同量の酢酸鉛を使用した以外は実施例8と同様の工程で構造色発色体の作製を試みたが、ビーカー底部に形成された薄膜は、構造色を呈さなかった。
(Comparative Example 4)
An attempt was made to produce a structural color body in the same process as in Example 8 except that the same amount of lead acetate was used instead of lead halide, but the thin film formed on the bottom of the beaker did not exhibit a structural color. .

(実施例21)
構造色発色体の作製容器を50mLビーカーから100mLビーカー(IWAKIガラス(株)製)に替えて同様の実験を行った。なお、50mLと100mLビーカーの底面の直径は、それぞれ4.0cmと5.0cmなので、ビーカー底面の面積比は1:1.56である。
薄膜(構造色発色体)の膜厚を50mLビーカーと100mLビーカーとで等しくするため、100mLビーカーの場合は滴下する液量を50mLビーカーの場合の約1.6倍量を使用した以外は実施例2、実施例6、実施例7、実施例8と同様の工程で構造色発色体の作製を試みたところ、それぞれ青、緑、赤、金の美麗な構造色を呈する構造色発色体が得られた。
(Example 21)
A similar experiment was performed by changing the preparation container of the structural color developing body from a 50 mL beaker to a 100 mL beaker (manufactured by IWAKI Glass Co., Ltd.). In addition, since the diameter of the bottom face of a 50 mL and 100 mL beaker is 4.0 cm and 5.0 cm, respectively, the area ratio of a beaker bottom face is 1: 1.56.
In order to make the film thickness of the thin film (structural color developing body) equal in the 50 mL beaker and the 100 mL beaker, in the case of the 100 mL beaker, the amount of liquid dropped is about 1.6 times that in the case of the 50 mL beaker. 2. An attempt was made to produce a structural color developing body in the same steps as in Example 6, Example 7, and Example 8. As a result, structural color developing bodies having beautiful structural colors of blue, green, red, and gold were obtained. It was.

(実施例22)
薄膜(構造色発色体)の作製面をガラスから陶磁器に替えた以外は実施例2、実施例6、実施例7、実施例8と同様の工程で構造色発色体の作製を試みたところ、それぞれ青、緑、赤、金の美麗な構造色を呈する構造色発色体が得られた。
その表面に構造色発色体を形成した陶器をガスバーナーの炎の最高温度部分(約1800℃)で1時間加熱した後に、表面の観察を行ったが、構造色発色体にはまったく変化が確認されなかった。
さらに、この構造色発色体を形成した陶器を液体窒素(−196℃)中に浸漬し、8時間後に引き上げて、表面の観察を行ったが、構造色発色体にはまったく変化が確認されなかった。
(Example 22)
An attempt was made to produce a structural color body in the same steps as in Example 2, Example 6, Example 7, and Example 8 except that the production surface of the thin film (structural color body) was changed from glass to ceramic. Structural color development bodies having beautiful structural colors of blue, green, red, and gold, respectively, were obtained.
The surface of the earthenware with a structural color developer on the surface was heated for 1 hour at the highest temperature of the flame of the gas burner (about 1800 ° C), and then the surface was observed. Was not.
Furthermore, the ceramics on which this structural color developing body was formed were immersed in liquid nitrogen (-196 ° C.), pulled up after 8 hours, and the surface was observed, but no change was confirmed in the structural color developing body. It was.

本発明によれば、従来は玉虫の甲殻、モルフォ蝶の翅、鳥の羽などでしか見ることができなかった美しい構造色を呈する構造色発色体を容易に製造することができる。また、本発明の構造色発色体の原料化合物は安価であるため、製造コストを極めて低く抑えることができる。さらに、本発明で得られた構造色発色体を塗料、インク、絵の具、繊維、化粧品、プラスチックに用いることにより、様々な構造色を発色するそれらの製品の製造が可能であるため、工業的にきわめて有望である。   According to the present invention, it is possible to easily produce a structural color developing body that exhibits a beautiful structural color that could only be seen with an iridescent shell, a morpho butterfly wing, or a bird wing. Moreover, since the raw material compound for the structural color developing body of the present invention is inexpensive, the manufacturing cost can be kept extremely low. Furthermore, by using the structural color developing material obtained in the present invention for paints, inks, paints, fibers, cosmetics, and plastics, it is possible to produce those products that develop various structural colors. Very promising.

Claims (9)

水酸化鉄(III)コロイドを含む溶液(A)と、ハロゲン化鉛を含む溶液(B)と混合して混合溶液を形成し、次いで該混合溶液から溶媒を除去することにより得られてなることを特徴とする構造色発色体。   It is obtained by mixing a solution (A) containing iron (III) hydroxide colloid and a solution (B) containing lead halide to form a mixed solution, and then removing the solvent from the mixed solution A structural color developer characterized by 前記混合溶液に含まれる水酸化鉄(III)とハロゲン化鉛のモル比が、1.0〜25の範囲である請求項1記載の構造色発色体。   The structural color developing body according to claim 1, wherein the molar ratio of iron (III) hydroxide and lead halide contained in the mixed solution is in the range of 1.0 to 25. 溶液(A)の溶媒が水であり、かつ、溶液(B)の溶媒が、エタノールである請求項1または2に記載の構造色発色体。   The structural color developing body according to claim 1 or 2, wherein the solvent of the solution (A) is water and the solvent of the solution (B) is ethanol. 前記混合溶液の溶媒の除去を、温度20〜35℃、かつ、相対湿度40〜80%の条件で溶媒を蒸発させて、乾燥させることで行うことを特徴とする請求項3記載の構造色発色体。   4. The structural color development according to claim 3, wherein the solvent of the mixed solution is removed by evaporating the solvent at a temperature of 20 to 35 [deg.] C. and a relative humidity of 40 to 80%, followed by drying. body. ハロゲン化鉛が、ヨウ化鉛(II)である請求項1から4のいずれかに記載の構造色発色体。   The structural color developing body according to any one of claims 1 to 4, wherein the lead halide is lead (II) iodide. 前記溶液(A)を、予め、孔径または保留粒子径0.2〜5μmのフィルターまたはろ紙でろ過した後に前記溶液(B)と混合する請求項1から5のいずれかに記載の構造色発色体。   The structural color developing body according to any one of claims 1 to 5, wherein the solution (A) is mixed with the solution (B) after being previously filtered through a filter or filter paper having a pore size or a retained particle size of 0.2 to 5 µm. . 水酸化鉄(III)コロイドを含む水溶液(A)と、ハロゲン化鉛を含むエタノール溶液(B)と混合して混合溶液を形成する工程と、該混合溶液から溶媒を蒸発させて、乾燥させる工程とを含むことを特徴とする構造色発色体の製造方法。   A step of mixing an aqueous solution (A) containing iron (III) hydroxide colloid with an ethanol solution (B) containing lead halide to form a mixed solution, and a step of evaporating the solvent from the mixed solution and drying it. And a method for producing a structural color developing body. 前記混合溶液の溶媒の除去を、温度20〜35℃、かつ、相対湿度40〜80%の条件で溶媒を蒸発させて、乾燥させることで行うことを特徴とする請求項7記載の構造色発色体の製造方法。   8. The structural color development according to claim 7, wherein the solvent of the mixed solution is removed by evaporating and drying the solvent under conditions of a temperature of 20 to 35 ° C. and a relative humidity of 40 to 80%. Body manufacturing method. ハロゲン化鉛が、ヨウ化鉛(II)である請求項7または8に記載の構造色発色体の製造方法。   The method for producing a structural color developing body according to claim 7 or 8, wherein the lead halide is lead (II) iodide.
JP2009012395A 2009-01-22 2009-01-22 Structural color developing body and method for producing the same Expired - Fee Related JP4628474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012395A JP4628474B2 (en) 2009-01-22 2009-01-22 Structural color developing body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012395A JP4628474B2 (en) 2009-01-22 2009-01-22 Structural color developing body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010168250A JP2010168250A (en) 2010-08-05
JP4628474B2 true JP4628474B2 (en) 2011-02-09

Family

ID=42700751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012395A Expired - Fee Related JP4628474B2 (en) 2009-01-22 2009-01-22 Structural color developing body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4628474B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084154B2 (en) * 2018-02-19 2022-06-14 株式会社ミマキエンジニアリング How to manufacture ceramic products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219720A (en) * 1985-03-25 1986-09-30 Central Glass Co Ltd Production of particulate magnet plumbite-type ferrite
JP2005194595A (en) * 2004-01-08 2005-07-21 Niigata Tlo:Kk Method of producing structural coloring body utilizing surface ruggedness, and structural coloring body utilizing surface ruggedness
JP2007225935A (en) * 2006-02-23 2007-09-06 Institute Of Physical & Chemical Research Display device and method for manufacturing the same
JP2008058652A (en) * 2006-08-31 2008-03-13 Fuji Xerox Co Ltd Optical element and optical device
JP2009069344A (en) * 2007-09-12 2009-04-02 Toppan Printing Co Ltd Forgery prevention layered product, forgery prevention transfer foil, forgery prevention seal, forgery prevention medium, manufacturing method of them and manufacturing equipment of forgery prevention layered product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219720A (en) * 1985-03-25 1986-09-30 Central Glass Co Ltd Production of particulate magnet plumbite-type ferrite
JP2005194595A (en) * 2004-01-08 2005-07-21 Niigata Tlo:Kk Method of producing structural coloring body utilizing surface ruggedness, and structural coloring body utilizing surface ruggedness
JP2007225935A (en) * 2006-02-23 2007-09-06 Institute Of Physical & Chemical Research Display device and method for manufacturing the same
JP2008058652A (en) * 2006-08-31 2008-03-13 Fuji Xerox Co Ltd Optical element and optical device
JP2009069344A (en) * 2007-09-12 2009-04-02 Toppan Printing Co Ltd Forgery prevention layered product, forgery prevention transfer foil, forgery prevention seal, forgery prevention medium, manufacturing method of them and manufacturing equipment of forgery prevention layered product

Also Published As

Publication number Publication date
JP2010168250A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
Li et al. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition
US5006248A (en) Metal oxide porous ceramic membranes with small pore sizes
CN110272641B (en) Preparation method of high-dispersity pearlescent pigment, pearlescent pigment and application of pearlescent pigment
JP3761189B2 (en) Composite oxide sol, method for producing the same, and substrate
RU2560403C2 (en) Inorganic mesoporous materials with chiral nematic structures and method of application thereof
US5104539A (en) Metal oxide porous ceramic membranes with small pore sizes
TW567223B (en) Particles with opalescent effect
Zhang et al. Butterfly effects: novel functional materials inspired from the wings scales
US7648765B2 (en) Dispersion of carbon nanoparticles and core-shell type carbon nanoparticles, and method of preparing the same
WO2006015530A1 (en) Pigment having angle dependence of the interference colors and its production process
JP2003533579A (en) Facial material
CN110461482A (en) Device for the method for isotropic structure color printing and for detecting the target substance in gas phase
KR20070044053A (en) Titanium-containing silica sol and process for producing the same, antifouling film and base material with ink-receptive layer, and method for reproducing recording base material
CN108608690B (en) One kind is added lustre to laminated film and its application
CN105038338B (en) Transparent hydrophobic spray and its preparation method and application
CN101429049A (en) Method for self-assembly growth of three-dimensional ordered polyporous material
EP0425252B1 (en) Metal oxide porous ceramic membranes with small pore sizes
CN103288358A (en) Super-hydrophilic, self-cleaning and mist-proof anti-reflection coating and preparation method thereof
ES2382610T3 (en) Plastic photochromic object
CN1202006C (en) Kinds of materials with multiple constituents of big bores oxide media and its preparing method
US5169576A (en) Method of making metal oxide ceramic membranes with small pore sizes
JP4628474B2 (en) Structural color developing body and method for producing the same
US9725571B2 (en) Method of making nanoporous structures
JP2011519379A (en) enamel
Yang et al. Precise preparation of highly monodisperse ZrO 2@ SiO 2 core–shell nanoparticles with adjustable refractive indices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101004

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees