JPS63307122A - Barium ferrite magnetic powder and production thereof - Google Patents

Barium ferrite magnetic powder and production thereof

Info

Publication number
JPS63307122A
JPS63307122A JP13984987A JP13984987A JPS63307122A JP S63307122 A JPS63307122 A JP S63307122A JP 13984987 A JP13984987 A JP 13984987A JP 13984987 A JP13984987 A JP 13984987A JP S63307122 A JPS63307122 A JP S63307122A
Authority
JP
Japan
Prior art keywords
gram atoms
magnetic powder
barium ferrite
ferrite magnetic
gram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13984987A
Other languages
Japanese (ja)
Other versions
JPH06104576B2 (en
Inventor
Kyoji Odan
恭二 大段
Takayuki Kimura
隆幸 木村
Hiroshi Miura
洋 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62139849A priority Critical patent/JPH06104576B2/en
Publication of JPS63307122A publication Critical patent/JPS63307122A/en
Publication of JPH06104576B2 publication Critical patent/JPH06104576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0063Mixed oxides or hydroxides containing zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce temperature change of coercive force and sharpen an anisotropic magnetic field distribution, by alkalifying an aqueous solution containing compounds of Ba, Fe, Sn and Zn in a specific proportion, hydrothermally treating and firing the resultant slurry under specific condition. CONSTITUTION:A starting raw material containing 1-12 gram atoms Fe based on 1 gram atom Ba and x gram atoms M (Co or Co and Ni), y gram atoms Sn and z gram atoms Zn based on (12-x-y-z) gram atoms Fe is prepared. An alkali hydroxide is added to an aqueous solution containing the starting raw material to adjust >=3mol./l alkali concentration and form precipitates. A slurry containing the precipitates is then hydrothermally treated at 130-300 deg.C and a flux is mixed with the formed precipitates. The obtained mixture is subsequently fired at 700-950 deg.C temperature. Thereby the aimed hexagonal magnetoplumbite type Ba ferrite magnetic powder expressed by the formula (n is 0.8-1.2; x is 0.1-1.5; y is 0.1-1.5; z is 0.1-1.5 and y<x+z) is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、六方晶マグネトプランバイl−型バリウムフ
ェライト磁性粉およびその製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hexagonal magnetoplumbyl-type barium ferrite magnetic powder and a method for producing the same.

さらに詳しくは、本発明は高密度記録用の磁気記録媒体
に用いるのに適した、比表面積が20〜70rrIl/
g、保磁力が200〜15000e、飽和磁化が60 
emu/g程度かそれ以上であり、保磁力の温度変化が
小さく、かつ異方性磁界分布がシャープなマグネト1ラ
ンバイI−型バリウムフエライト磁性粉およびその製造
方法に関するものである。
More specifically, the present invention is suitable for use in magnetic recording media for high-density recording, and has a specific surface area of 20 to 70 rrIl/
g, coercive force 200-15000e, saturation magnetization 60
The present invention relates to a magneto-1 runby I-type barium ferrite magnetic powder having a magnetic field strength of about emu/g or more, a small temperature change in coercive force, and a sharp anisotropic magnetic field distribution, and a method for producing the same.

近年、磁気記録の高密度化の要求に伴い、バリウムフェ
ライト磁性粉を磁気記録媒体として用いる垂直磁気記録
方式の開発が進められている。
In recent years, with the demand for higher density magnetic recording, development of perpendicular magnetic recording systems using barium ferrite magnetic powder as a magnetic recording medium has been progressing.

垂直磁気記録方式に用いられるバリウムフェライI・磁
性粉としては、保磁力が適当な値(200〜15000
e)で、飽和磁化ができるだけ高く、保磁力の温度変化
が小さく、しかも異方性磁界分布がシャープなものが望
まれている。
The barium ferrite I magnetic powder used in the perpendicular magnetic recording system has a coercive force of an appropriate value (200 to 15,000
For e), it is desired that the saturation magnetization is as high as possible, the coercive force changes little with temperature, and the anisotropic magnetic field distribution is sharp.

(従来の技術およびその問題点) 従来、バリウムフェライト磁性粉の製造方法としては、
例えば共沈法、ガラス結晶化法、水熱合成法等種々の方
法が知られており、ガラス結晶化法については特公昭G
o−15574号公報、水熱合成法については、例えば
特開昭59−175707号公報、特公昭60−129
73号公報、特公昭60−15576号公報、特開昭6
0−137002号公報等で提案されている。
(Conventional technology and its problems) Conventionally, as a method for producing barium ferrite magnetic powder,
For example, various methods are known, such as coprecipitation, glass crystallization, and hydrothermal synthesis.
Regarding the hydrothermal synthesis method, see Japanese Patent Application Laid-Open No. 59-175707, Japanese Patent Publication No. 60-129.
Publication No. 73, Japanese Patent Publication No. 60-15576, Japanese Patent Publication No. 60-15576
This method has been proposed in JP 0-137002 and the like.

ところで、バリウムフェライト磁性粉を磁気記録媒体と
して使用するためには、保磁力が温度変化に対して安定
であること、および異方性磁界分布がシャープであるこ
とが必要である。しかしながら、前記いずれの方法にお
いても得られるバリウムフェライト磁性粉は保磁力の温
度変化が大きいという欠点があった。
By the way, in order to use barium ferrite magnetic powder as a magnetic recording medium, it is necessary that the coercive force be stable against temperature changes and that the anisotropic magnetic field distribution be sharp. However, the barium ferrite magnetic powder obtained by any of the above methods has a drawback in that the coercive force varies greatly with temperature.

一方、保磁力の温度変化を小さくする方法として、特開
昭62−51026号公報には、snを添加することが
記載されているが、Snを添加することにより、飽和磁
化が低下してしまい、さらに異方性磁界分布が広くなる
という問題があった。
On the other hand, as a method for reducing the temperature change in coercive force, Japanese Patent Application Laid-Open No. 62-51026 describes adding Sn, but adding Sn reduces the saturation magnetization. Furthermore, there was a problem that the anisotropic magnetic field distribution became wider.

(発明の目的) 本発明の目的は、前記問題点を解決し、微粒子で比表面
積が20〜70r&/(+、保磁力が200〜1500
0e、飽和磁化が608mLI/(]程度かそれ以上で
あり、保磁力の温度変化が小さく、しかも異方性磁界分
布がシャープであり、高密度記録用の磁気記録媒体に用
いるのに適したバリウムフェライト磁性粉およびその製
造方法を提供することにある。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems, and to obtain particles with a specific surface area of 20 to 70r&/(+) and a coercive force of 200 to 1500.
Barium is suitable for use in magnetic recording media for high-density recording because it has a saturation magnetization of about 608 mLI/() or more, a small temperature change in coercive force, and a sharp anisotropic magnetic field distribution. An object of the present invention is to provide a ferrite magnetic powder and a method for producing the same.

(問題点を解決するための手段) 本発明者等は、鋭意検討の結果、バリウムフェライト磁
性粉のFQ原子の一部をCo −3n −Znという特
定の組合わせて置換することにより、保磁力の温度変化
が小さく、かつ飽和磁化が高くしかも異方性磁界分布が
シャープなものが得られることを見出した。
(Means for Solving the Problem) As a result of intensive studies, the present inventors have found that by replacing some of the FQ atoms of barium ferrite magnetic powder with a specific combination of Co-3n-Zn, the coercive force can be increased. We have found that it is possible to obtain a material with a small temperature change, a high saturation magnetization, and a sharp anisotropic magnetic field distribution.

すなわち、本発明は、一般式 %式%)) (ただし、MはCOまたは、COおよびNiを示し、n
 = 0.8〜1.2.0.1 < x < 1.5、
o、1<y〈1.5.0.1 < z < 1.5であ
り、かつy (x −+−zである。)で表される六方
晶マグネトプランバイI〜型バリウムフェライト磁性粉
およびその製造方法に関する。
That is, the present invention is based on the general formula %) (where M represents CO or CO and Ni, and n
= 0.8~1.2.0.1 < x < 1.5,
Hexagonal magnetopranby I~ type barium ferrite magnetic powder, where o, 1<y<1.5.0.1<z<1.5, and y (x −+−z) and its manufacturing method.

本発明においては、出発原料として、バリウム1グラノ
λ原子に対して鉄1−12グラム原子、鉄1.2−x−
y−zグラム原子に対して、MがXグラム原子、錫がX
グラム原子および亜鉛がZグラム原子の割合のそれぞれ
の元素の化合物を用い、該出発原料を水に溶解し、これ
に混合後の溶液中の水酸化アルカリ濃度が3モル/j以
トとなるように水酸化アルカリを加えて沈澱物を生成さ
せ、該沈澱物を含むスラリを130〜300℃で水熱処
理した後、生成した沈澱物に融剤を混合し、混合物を7
00〜950℃で焼成し、得られた焼成物を洗浄するこ
とにより、前記六方晶マグネト1ランバイ1〜型バリウ
ムフエライト磁性粉が得られる。
In the present invention, the starting materials used are 1-12 gram atoms of iron per 1 grano λ atom of barium, and 1.2-x-
For y-z gram atom, M is X gram atom and tin is X
Using a compound of each element in which gram atom and zinc have a ratio of Z gram atom, the starting materials are dissolved in water, and the alkali hydroxide concentration in the solution after mixing is 3 mol/j or more. After adding an alkali hydroxide to form a precipitate and hydrothermally treating the slurry containing the precipitate at 130 to 300°C, a fluxing agent is mixed with the formed precipitate, and the mixture is heated to 70°C.
By firing at 00 to 950°C and washing the fired product, the hexagonal magneto 1 runby 1~ type barium ferrite magnetic powder is obtained.

本発明においては、まず出発原料であるバリウム、鉄、
M、錫および亜鉛のそれぞれの化合物を水に溶解し、こ
れに水酸化アルカリを加えて沈澱物を生成させる。
In the present invention, the starting materials barium, iron,
Each compound of M, tin and zinc is dissolved in water, and alkali hydroxide is added thereto to form a precipitate.

バリウム化合物としては、硝酸バリウム、塩化バリウム
、水酸化バリウム等が用いられる。バリウムの使用量は
、バリウム濃度が0.03〜0.50モル10の範囲に
なるようにするのが六方晶の結晶性のよい粒子を得るう
えで望ましい。
As the barium compound, barium nitrate, barium chloride, barium hydroxide, etc. are used. The amount of barium used is preferably such that the barium concentration is in the range of 0.03 to 0.50 mol 10 in order to obtain hexagonal particles with good crystallinity.

鉄化合物としては、硝酸第二鉄、塩化第二鉄等が用いら
れる。鉄の使用量はバリウム1グラム原子に対して1〜
12グラム原子である。鉄の量が少なすぎると、マグネ
トブランバイト型バリウムフェライトの生成量が少なく
、結晶性も悪くなる。
As the iron compound, ferric nitrate, ferric chloride, etc. are used. The amount of iron used is 1 to 1 gram atom of barium.
It is a 12 gram atom. If the amount of iron is too small, the amount of magnetobrambite barium ferrite produced will be small and the crystallinity will be poor.

また鉄の量が多すぎるとヘマタイトが副生したり、また
バリウムフェライトの粒子が大きくなり、磁気特性も劣
ってくる。
Furthermore, if the amount of iron is too large, hematite may be produced as a by-product, and barium ferrite particles may become large, resulting in poor magnetic properties.

Mの化合物としては、COまたは、COおよびNiの塩
化物、硝酸塩等が用いられる。
As the compound M, CO or a chloride or nitrate of CO and Ni is used.

錫の化合物としては、塩化錫、硝酸外、錫酸ソーダ等が
用いられる。
As the tin compound, tin chloride, nitric acid, sodium stannate, etc. are used.

亜鉛の化合物としては、塩化亜鉛、硝酸亜鉛等が用いら
れる。
As the zinc compound, zinc chloride, zinc nitrate, etc. are used.

M、m、亜鉛の使用量は鉄12−x−y−zグラム原子
に対して、MがXグラム原子、錫がyグラム原子、亜鉛
が2グラム原子であり、0.1<x<1.5,0.1<
y<1.5.0.1 < z < 1.5であり、かつ
y < x + zである。x、y、zが前記範囲を外
れると、保磁力の温度変化が°小さく、かつ飽和磁化が
高くしかも異方性磁界分布がシャープなものが得られな
い。
The amount of M, m, and zinc used is 12-xy-z gram atoms of iron, M is X gram atoms, tin is y gram atoms, and zinc is 2 gram atoms, and 0.1<x<1 .5,0.1<
y<1.5.0.1<z<1.5 and y<x+z. If x, y, and z are outside the above ranges, it will not be possible to obtain a material in which the temperature change in coercive force is small, the saturation magnetization is high, and the anisotropic magnetic field distribution is sharp.

水酸化アルカリとしては、水酸化ナトリウム、水酸化カ
リウム等が用いられる。水酸化アルカリの使用量は水酸
化アルカリを混合した後の溶液中の水酸化アルカリ濃度
が3モル/1以上となる量が必要であり、4〜8モル/
IJの範囲が好ましい。
As the alkali hydroxide, sodium hydroxide, potassium hydroxide, etc. are used. The amount of alkali hydroxide used must be such that the alkali hydroxide concentration in the solution after mixing the alkali hydroxide is 3 mol/1 or more, and 4 to 8 mol/1.
A range of IJ is preferred.

水酸化アルカリの量が少なすぎると粒子が大きくなった
り、粒度分布が広くなったり、またへマタイトが生成す
る。また水酸化アルカリを過度に多くするのは経済的で
ない。
If the amount of alkali hydroxide is too small, the particles become large, the particle size distribution becomes wide, and hematite is generated. Further, it is not economical to increase the amount of alkali hydroxide excessively.

前記出発原料の水溶液に水酸化アルカリを混合する方法
については、特に制限はないが、例えば出発原料の水溶
液に、直接水酸化アルカリを添加するか、あるいは水酸
化アルカリの水溶液を添加する方法がある。あるいはバ
リウム化合物を水酸化アルカリの水溶液側に加えて、こ
れと鉄を含む水溶液を混合する方法がある。
There is no particular restriction on the method of mixing the alkali hydroxide into the aqueous solution of the starting material, but for example, there are methods of directly adding the alkali hydroxide or adding an aqueous solution of the alkali hydroxide to the aqueous solution of the starting material. . Alternatively, there is a method of adding a barium compound to the aqueous solution of alkali hydroxide and mixing this with an aqueous solution containing iron.

さらに、予め出発原料の水溶液あるいは水酸化アルカリ
の水溶液にSi 、Caなどの水に可溶性の化合物、例
えばケイ酸、ケイ酸ナトリウム、硝酸カルシウム、塩化
カルシウム等を若干添加することができる。これらの添
加物は粒子形状を制御するうえで好ましい。
Furthermore, a small amount of water-soluble compounds such as Si and Ca, such as silicic acid, sodium silicate, calcium nitrate, and calcium chloride, can be added in advance to the aqueous solution of the starting material or the aqueous solution of alkali hydroxide. These additives are preferred for controlling particle shape.

次に、沈澱物を含むスラリを水熱処理することにより、
バリウムフェライトの微細な結晶が生成、沈澱する。水
熱処理の温度は130〜300℃、好ましくは140〜
280℃である。温度が低すぎると結晶の生成が充分で
なく、また温度が高すぎると最終的に得られるバリウム
フェライト粉末の粒径が大きくなるので好ましくない。
Next, by hydrothermally treating the slurry containing the precipitate,
Fine crystals of barium ferrite are formed and precipitated. The temperature of hydrothermal treatment is 130-300℃, preferably 140-300℃
The temperature is 280°C. If the temperature is too low, crystal formation will not be sufficient, and if the temperature is too high, the particle size of the final barium ferrite powder will become large, which is not preferable.

水熱処理時間は普通、0.5〜20時間程度であり、水
熱処理には通常、オートクレーブが採用される。
The hydrothermal treatment time is usually about 0.5 to 20 hours, and an autoclave is usually employed for the hydrothermal treatment.

次いで、水熱処理により生成した微細な結晶の沈澱物を
水洗して、遊離のアルカリ分を除去した後、得られた沈
澱物に融剤を混合する。融剤としては、塩化ナトリウム
、塩化カリウム、塩化バリウム、塩化ストロンチウムお
よびフッ化ナトリウムのうち少なくとも一種が用いられ
る。融剤の使用量は沈澱物(乾燥物基準)に対して、1
0〜180重量%、好ましくは30〜120重量%が適
当である。融剤の量が少なすぎると粒子の焼結が起り、
また多すぎても多くしたことによる利点はなく、経済的
でない。沈澱物と融剤の混合方法は特に制限はなく、例
えば沈澱物のスラリに融剤を加えて湿式混合した後、ス
ラリを乾燥してもよく、あるいは沈澱物を乾燥した後、
融剤を加えて乾式混合してもよい。
Next, the fine crystal precipitate produced by the hydrothermal treatment is washed with water to remove free alkali, and then a flux is mixed with the obtained precipitate. As the flux, at least one of sodium chloride, potassium chloride, barium chloride, strontium chloride, and sodium fluoride is used. The amount of flux used is 1 for the precipitate (dry basis).
0 to 180% by weight, preferably 30 to 120% by weight is suitable. If the amount of flux is too small, sintering of the particles will occur,
Furthermore, if there is too much, there is no advantage to increasing it, and it is not economical. There is no particular restriction on the method of mixing the precipitate and the flux; for example, after adding the flux to the precipitate slurry and wet-mixing, the slurry may be dried, or after drying the precipitate,
Dry mixing may be performed by adding a fluxing agent.

次いで、得られた混合物を焼成することにより、バリウ
ムフェライトの結晶化が完全に行われる。
Next, the resulting mixture is fired to completely crystallize the barium ferrite.

焼成温度は700〜・950℃、好ましくは800〜9
30℃である。温度が低すぎると結晶化が進まず、飽和
磁化が低くなる。また温度が高すぎると粒子が大きくな
ったり、焼結が起こるので好ましくない。焼成時間は1
0分〜30時間程度が適当である。焼成雰囲気は特に制
限されないが、一般に空気雰囲気が便利である。
Firing temperature is 700-950℃, preferably 800-950℃
The temperature is 30°C. If the temperature is too low, crystallization will not proceed and the saturation magnetization will become low. Furthermore, if the temperature is too high, the particles become large and sintering occurs, which is not preferable. Baking time is 1
Approximately 0 minutes to 30 hours is appropriate. The firing atmosphere is not particularly limited, but an air atmosphere is generally convenient.

得られた焼成物を洗浄後、濾過、乾燥することにより、
バリウムフェライト磁性粉が得られる。
By washing, filtering and drying the obtained baked product,
Barium ferrite magnetic powder is obtained.

洗浄は焼成物中の融剤、過剰のバリウムなどの不純物を
十分に除去できればよどのような方法で行ってもよい。
The cleaning may be carried out by any method as long as impurities such as flux and excess barium in the fired product can be sufficiently removed.

洗浄液としては水や硝酸、塩酸などの無機酸、酢酸、プ
ロピオン酸などの有機酸などを用いることができる。
As the cleaning liquid, water, inorganic acids such as nitric acid and hydrochloric acid, and organic acids such as acetic acid and propionic acid can be used.

(実施例) 実施例1 脱イオン水1300m、llに、硝酸第二鉄[Fe(N
o )  −9H20] 1,287.6g、硝酸コバ
ルl−[C0(No3)2 ・6)(20] 71.3
g、塩化錫[Sn CfJ4] 48.0 gおよび硝
酸亜鉛[Zn(NO3)2・6H20] 18.2gを
溶解し、別に脱イオン水1300mJに、水酸化バリウ
ム[Ba(OH)2・8FI20]96.7g、カセイ
ソーダ(NaOH)1480gを溶解し、再溶液を混合
して沈澱物を生成させた。
(Example) Example 1 Ferric nitrate [Fe(N
o) -9H20] 1,287.6g, cobal nitrate l-[C0(No3)2 ・6)(20] 71.3
g, 48.0 g of tin chloride [Sn CfJ4] and 18.2 g of zinc nitrate [Zn(NO3)2.6H20] were dissolved, and separately, barium hydroxide [Ba(OH)2.8FI20] was dissolved in 1300 mJ of deionized water. 96.7g and 1480g of caustic soda (NaOH) were dissolved, and the solutions were remixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
145℃で8時間水熱処理を行った。次いで得られた沈
澱物を十分に水洗した後、濾過、乾燥し、これに融剤と
してNa Cl+とBaCl2・2H20の重量比が1
:1の混合物を沈澱物に対して100重量%加えて混合
した。この混合物を空気雰囲気下で860℃で2時間焼
成した。得られた焼成物を水で十分水洗した後、濾過、
乾燥してバリウムフェライト磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was performed at 145°C for 8 hours. Next, the obtained precipitate was thoroughly washed with water, filtered and dried, and a flux of NaCl+ and BaCl2.2H20 in a weight ratio of 1 was added to the precipitate.
:100% by weight of the mixture was added to the precipitate and mixed. This mixture was calcined at 860° C. for 2 hours under an air atmosphere. After washing the obtained baked product thoroughly with water, filtration,
After drying, barium ferrite magnetic powder was obtained.

得られたバリウムフェライ1〜磁性粉は、X線粉末回折
スペクトルおよび組成分析の結果、n a o °(F
810.4600.8800.6”00.2017.8
)であり、マグネトブランバイト型であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the barium ferrite 1 to magnetic powder obtained had n a o ° (F
810.4600.8800.6”00.2017.8
), and was of the magnetobrambite type.

またこのバリウムフェライト磁性粉について振動試料式
磁力計で磁気特性を測定した結果を第1表に示す。なお
、保磁力の温度変化は20℃〜150℃で測定し、異方
性磁界分布は半値幅で表した。
Table 1 shows the results of measuring the magnetic properties of this barium ferrite magnetic powder using a vibrating sample magnetometer. Note that the temperature change in coercive force was measured at 20° C. to 150° C., and the anisotropic magnetic field distribution was expressed in terms of half-width.

実施例2 脱イオン水1300m、llに、硝酸第二鉄1287.
6g、硝酸コバルト71.3g、塩化錫32.0gおよ
び硝酸亜鉛36.5gを溶解し、別に脱イオン水130
0mjに、水酸化バリウム96.7g、カセイソーダ1
480gを溶解し、再溶液を混合して沈澱物を生成させ
た。
Example 2 To 1300 ml of deionized water, add 1287 ml of ferric nitrate.
Dissolve 6 g of cobalt nitrate, 71.3 g of cobalt nitrate, 32.0 g of tin chloride and 36.5 g of zinc nitrate, and separately add 130 g of deionized water.
0mj, barium hydroxide 96.7g, caustic soda 1
480 g was dissolved and remixed to form a precipitate.

次いで、実施例1と同様にしてバリウムフェライ1〜磁
性粉を得た。
Next, barium ferrite 1 to magnetic powder were obtained in the same manner as in Example 1.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、B80’ (Folo
、4600.8 8’0.4700.4°17.6)で
あり、マグネト1ランバイI〜型であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to be B80' (Folo
, 4600.8 8' 0.4700.4° 17.6), and was of the magneto 1 runby type I~.

またこのバリウムフェライト磁性粉について実施例1と
同様にして磁気特性を測定した結果を第1表に示す。
Furthermore, the magnetic properties of this barium ferrite magnetic powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 脱イオン水1300rr+llに、硝酸第二鉄1287
.6g、硝酸コバルト53.5g、硝酸ニッケル[N 
i (N O3)2 ・6H20] 17.8g、塩化
錫32.0gおよび硝酸亜鉛36.5gを溶解し、別に
脱イオン水1300mJ)に、水酸化バリウム96.7
g、カセイソーダ1480gを溶解し、再溶液を混合し
て沈澱物を生成させた。
Example 3 Ferric nitrate 1287 to 1300rr+ll of deionized water
.. 6g, cobalt nitrate 53.5g, nickel nitrate [N
i (N O3)2 ・6H20], 32.0 g of tin chloride and 36.5 g of zinc nitrate were dissolved, and 96.7 g of barium hydroxide was dissolved separately in 1300 mJ of deionized water).
g, and 1480 g of caustic soda were dissolved, and the solutions were remixed to form a precipitate.

次いで、実施例1と同様にしてバリウムフェライト磁性
粉を得た。
Next, barium ferrite magnetic powder was obtained in the same manner as in Example 1.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、BaOo(Folo、
4 C00,6N’0.28n0.4”0.4017.
6)であり、マグネトプランバイ1〜型であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to be BaOo (Folo,
4 C00,6N'0.28n0.4"0.4017.
6) and were magnetopranby types 1 to 1.

またこのバリウムフェライト磁性粉について実施例1と
同様にして磁気特性を測定した結果を第1表に示す。
Furthermore, the magnetic properties of this barium ferrite magnetic powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例1 脱イオン水1300mJ)に、硝酸第二鉄1287.6
g、硝酸コバルト71.3gおよび四塩化チタン46.
3gを溶解し、別に脱イオン水1300mgに、水酸化
バリウム96.7gおよびカセイソーダ1480gを溶
解し、再溶液を混合して沈澱物を生成させた。
Comparative Example 1 Ferric nitrate (1287.6 mJ) in deionized water (1300 mJ)
g, cobalt nitrate 71.3 g and titanium tetrachloride 46.g.
Separately, 96.7 g of barium hydroxide and 1480 g of caustic soda were dissolved in 1300 mg of deionized water, and the solutions were mixed again to form a precipitate.

次いで、実施例1と同様にしてバリウムフェライト磁性
粉を得た。
Next, barium ferrite magnetic powder was obtained in the same manner as in Example 1.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、BaOo(F’ el
o、 4q Oo、、 s”l” j o、 a°18
)であり、マグネトブランバイト型であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to be BaOo (F' el
o, 4q Oo,, s”l” j o, a°18
), and was of the magnetobrambite type.

またこのバリウムフェライト磁性粉について実施例1と
同様にして磁気特性を測定した結果を第1表に示す。
Furthermore, the magnetic properties of this barium ferrite magnetic powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例2 脱イオン水1300m、Oに、硝酸第二鉄1287.6
g、硝酸コバルト71.3gおよび塩化錫73゜0gを
溶解し、別に脱イオン水1300mJに、水酸化バリウ
ム96.7gおよびカセイソーダ1480gを溶解し、
両温液を混合して沈澱物を生成させた。
Comparative Example 2 1300 m of deionized water, O, 1287.6 ferric nitrate
g, 71.3 g of cobalt nitrate and 73.0 g of tin chloride were dissolved, and separately, 96.7 g of barium hydroxide and 1480 g of caustic soda were dissolved in 1300 mJ of deionized water.
Both hot liquids were mixed to form a precipitate.

次いで、実施例1と同様にしてバリウムフェライト磁性
粉を得た。
Next, barium ferrite magnetic powder was obtained in the same manner as in Example 1.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、B a O、(F e
lo、 4 COo、 aS no、 ao 1s )
であり、マグネトブランバイト型であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to contain B a O, (F e
lo, 4 COo, aS no, ao 1s)
It was a magnetobrambite type.

またこのバリウムフェライト磁性粉について実施例1と
同様にして磁気特性を測定した結果を第1表に示す。
Furthermore, the magnetic properties of this barium ferrite magnetic powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

(発明の効果) 本発明によれば、一般式 %式%)) (ただし、MはCoまたは、COおよびNiを示し、n
=0.8〜1.2.0.1 < x < 1.5.0.
1<y<1.5.0.1 < 7. < 1.5であり
、かつy<x+zである。)で表される六方晶マグネト
ブランバイト型バリウムフェライト磁性粉が得られる。
(Effects of the Invention) According to the present invention, the general formula %)) (where M represents Co or CO and Ni, and n
=0.8~1.2.0.1 < x < 1.5.0.
1<y<1.5.0.1<7. <1.5 and y<x+z. ) A hexagonal magnetoblanbite type barium ferrite magnetic powder is obtained.

このバリウムフェライト磁性粉は従来のものと比較して
、飽和磁化が60 emu/a程度かそれ以上で、保磁
力の温度変化が小さく、かつ異方性磁界分布がシャープ
であり、磁気記録媒体に用いるのに適している。
Compared to conventional powders, this barium ferrite magnetic powder has a saturation magnetization of about 60 emu/a or more, a small temperature change in coercive force, and a sharp anisotropic magnetic field distribution, making it suitable for magnetic recording media. suitable for use.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 BaO・n(Fe_1_2_−_x_−_y_−_zM
_xSn_yZn_zO_1_8_−_(_x_−_y
_+_Z_)_/_2)(ただし、MはCoまたは、C
oおよびNiを示し、n=0.8〜1.2、0.1<x
<1.5、0.1<y<1.5、0.1<z<1.5で
あり、かつy<x+zである。)で表される六方晶マグ
ネトプランバイト型バリウムフェライト磁性粉。
(1) General formula BaO・n(Fe_1_2_-_x_-_y_-_zM
_xSn_yZn_zO_1_8_-_(_x_-_y
_+_Z_)_/_2)(However, M is Co or C
o and Ni, n=0.8-1.2, 0.1<x
<1.5, 0.1<y<1.5, 0.1<z<1.5, and y<x+z. ) Hexagonal magnetoplumbite type barium ferrite magnetic powder.
(2)出発原料として、バリウム1グラム原子に対して
鉄が1〜12グラム原子、鉄12−x−y−zグラム原
子に対して、Mがxグラム原子、錫がyグラム原子およ
び亜鉛がzグラム原子の割合のそれぞれの元素の化合物
を用い、該出発原料を水に溶解し、これに混合後の溶液
中の水酸化アルカリ濃度が3モル/l以上となるように
水酸化アルカリを加えて沈澱物を生成させ、該沈澱物を
含むスラリを130〜300℃で水熱処理した後、生成
した沈澱物に融剤を混合し、混合物を700〜950℃
で焼成し、得られた焼成物を洗浄することを特徴とする
一般式 BaO・n(Fe_1_2_−_x_−_y_−_zM
_xSn_yZn_zO_1_8_−_(_x_−_y
_+_z_)_/_2)(ただし、MはCoまたは、C
oおよびNiを示し、n=0.8〜1.2、0.1<x
<1.5、0.1<y<1.5、0.1<z<1.5で
あり、かつy<x+zである。)で表される六方晶マグ
ネトプランバイト型バリウムフェライト磁性粉の製造方
法。
(2) As starting materials, 1 to 12 gram atoms of iron per 1 gram atom of barium, x gram atoms of M, y gram atoms of tin, and y gram atoms of tin for 12-x-y-z gram atoms of iron. Using a compound of each element in a proportion of z gram atoms, the starting materials are dissolved in water, and alkali hydroxide is added to this so that the alkali hydroxide concentration in the solution after mixing is 3 mol/l or more. After a slurry containing the precipitate is hydrothermally treated at 130 to 300°C, a flux is mixed with the generated precipitate, and the mixture is heated to 700 to 950°C.
General formula BaO・n(Fe_1_2_-_x_-_y_-_zM
_xSn_yZn_zO_1_8_-_(_x_-_y
_+_z_)_/_2)(However, M is Co or C
o and Ni, n=0.8-1.2, 0.1<x
<1.5, 0.1<y<1.5, 0.1<z<1.5, and y<x+z. ) A method for producing hexagonal magnetoplumbite type barium ferrite magnetic powder.
JP62139849A 1987-06-05 1987-06-05 Barium ferrite magnetic powder and method for producing the same Expired - Lifetime JPH06104576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139849A JPH06104576B2 (en) 1987-06-05 1987-06-05 Barium ferrite magnetic powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139849A JPH06104576B2 (en) 1987-06-05 1987-06-05 Barium ferrite magnetic powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63307122A true JPS63307122A (en) 1988-12-14
JPH06104576B2 JPH06104576B2 (en) 1994-12-21

Family

ID=15254960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139849A Expired - Lifetime JPH06104576B2 (en) 1987-06-05 1987-06-05 Barium ferrite magnetic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JPH06104576B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442104A (en) * 1987-08-08 1989-02-14 Toshiba Corp Magnetic powder for magnetic recording
JPH04214605A (en) * 1990-10-11 1992-08-05 Toshiba Corp Magnetic powder for magnetic recording use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219720A (en) * 1985-03-25 1986-09-30 Central Glass Co Ltd Production of particulate magnet plumbite-type ferrite
JPS63193505A (en) * 1987-02-06 1988-08-10 Toshiba Corp Magnetic powder for high density magnetic recording and magnetic recording medium using the powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219720A (en) * 1985-03-25 1986-09-30 Central Glass Co Ltd Production of particulate magnet plumbite-type ferrite
JPS63193505A (en) * 1987-02-06 1988-08-10 Toshiba Corp Magnetic powder for high density magnetic recording and magnetic recording medium using the powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442104A (en) * 1987-08-08 1989-02-14 Toshiba Corp Magnetic powder for magnetic recording
JPH04214605A (en) * 1990-10-11 1992-08-05 Toshiba Corp Magnetic powder for magnetic recording use

Also Published As

Publication number Publication date
JPH06104576B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JPS63307122A (en) Barium ferrite magnetic powder and production thereof
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPS61141625A (en) Production of barium ferrite powder
JPS6259531A (en) Production of barium ferrite powder
JPS62252324A (en) Production of fine barium ferrite powder
JP6957077B2 (en) Layered double hydroxide crystal, anion adsorbent and method for producing the layered double hydroxide crystal
JPS63310730A (en) Hexagonal ferrite magnetic powder and its production
JPS63265829A (en) Barium ferrite magnetic powder and its production
JPS63195125A (en) Barium ferrite magnetic powder and production thereof
JP2577945B2 (en) Barium ferrite magnetic powder and method for producing the same
JPS63265830A (en) Barium ferrite magnetic powder and its production
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPS63170221A (en) Barium ferrite magnetic powder and its production
JPH0649578B2 (en) Method for producing hexagonal magnetoplumbite ferrite magnetic powder
JPH0723223B2 (en) Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording
SU1752521A1 (en) Method of manganese-zinc ferrite powder preparation
JPS63162531A (en) Production of barium ferrite powder
JPS63170220A (en) Barium ferrite magnetic powder and its production
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH01305825A (en) Production of magnetoplumbite ferrite magnet powder
JPS6242856B2 (en)
JPS63310731A (en) Production of barium ferrite magnetic powder
JPS63195124A (en) Barium ferrite magnetic powder and production thereof
JPH01133942A (en) Production of ferromagnetic fine powder for magnetic recording
JPS6256325A (en) Production of barium ferrite powder