JPS63170221A - Barium ferrite magnetic powder and its production - Google Patents

Barium ferrite magnetic powder and its production

Info

Publication number
JPS63170221A
JPS63170221A JP177587A JP177587A JPS63170221A JP S63170221 A JPS63170221 A JP S63170221A JP 177587 A JP177587 A JP 177587A JP 177587 A JP177587 A JP 177587A JP S63170221 A JPS63170221 A JP S63170221A
Authority
JP
Japan
Prior art keywords
magnetic powder
atom
barium ferrite
ferrite magnetic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP177587A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Takayuki Kimura
隆幸 木村
Kazuo Hashimoto
和生 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP177587A priority Critical patent/JPS63170221A/en
Publication of JPS63170221A publication Critical patent/JPS63170221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled magnetic powder which is suitable for a magnetic recording medium for high-density recording and has narrow particle size distribution, high saturation magnetization and required coercive force, by subjecting slurry wherein a specified starting raw material is dissolved in water and NaOH is added to produce ppt. to hydrothermal treatment and thereafter mixing flux with the produced ppt. and calcining the mixture and washing it. CONSTITUTION:A starting raw material consisting of the compd. of respective elements having the proportion of 3-11g atom Fe<3+> for 1g atom Ba, (x)g atom M1 (one or more kinds of metals selected from among Ni, Co, Cu, Mg, Mn and Zn) and (x)g atom M2 (one or more kinds of metals selected from among Ta, Sb, Nb, Zr and Ti) for (12-2x-y)g atom Fe<3+> and (y)g atom Fe<2+> is dissolved in water. Then slurry wherein alkali hydroxide is added to this aq. soln. so that the concn. in the soln. after mixing is regulated to >=3mol/l to produce ppt. is subjected to hydrothermal treatment at 130-270 deg.C. After washing produced fine crystalline ppt. is washed with water, 10-180wt.% flux such as NaCl is mixed therewith and the mixture is calcined at 700-950 deg.C and washed and the titled hexagonal lamellate magnetic powder shown in a formula (n=0.8-1.0, x=0.5-1.5, y=0.01-1.5) is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、六角板状のマグネトブランバイト型バリウム
フェライト磁性粉およびそのH3M方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hexagonal plate-shaped magnetoblanbite type barium ferrite magnetic powder and an H3M method thereof.

さらに詳しくは、本発明は高密度記録用の磁気記録媒体
に用いるのに適した、比表面積が20〜70nr/a、
保磁力が300〜15000eであり、飽和磁化が従来
の水熱合成法により得られるものと比較して8%以上向
上したマグネトブランバイト型バリウムフェライト磁性
粉およびその製造方法に関するものである。
More specifically, the present invention has a specific surface area of 20 to 70 nr/a, which is suitable for use in a magnetic recording medium for high-density recording.
The present invention relates to a magnetobrambite barium ferrite magnetic powder having a coercive force of 300 to 15,000 e and a saturation magnetization improved by 8% or more compared to that obtained by conventional hydrothermal synthesis, and a method for producing the same.

近年、磁気記録の高密度化の要求に伴い、バリウムフェ
ライト磁性粉を磁気記録媒体として用いる垂直磁気記録
方式の開発が進められている。
In recent years, with the demand for higher density magnetic recording, development of perpendicular magnetic recording systems using barium ferrite magnetic powder as a magnetic recording medium has been progressing.

垂直磁気記録方式に用いられるバリウムフェライト磁性
粉としては、保磁力が適当な値(300〜15000e
)で、飽和磁化ができるだけ高く、しかも各粒子の磁気
特性が均一で、また粒子が小さく均一で、粒子の凝集、
焼結などがなく、分散性のよいものが望まれている。
The barium ferrite magnetic powder used in the perpendicular magnetic recording system has a coercive force of an appropriate value (300 to 15,000e).
), the saturation magnetization is as high as possible, the magnetic properties of each particle are uniform, the particles are small and uniform, and particle aggregation,
A material that does not require sintering and has good dispersibility is desired.

特に、他の記録媒体用磁性粉と比べてバリウムフェライ
ト磁性粉は飽和磁化が低いため、できるだけ高い飽和磁
化をもつ微細粒子が望まれている。
In particular, since barium ferrite magnetic powder has a lower saturation magnetization than other magnetic powders for recording media, fine particles with as high a saturation magnetization as possible are desired.

(従来の技術) 従来、バリウムフェライト磁性粉の製造方法としては、
例えば共沈法、ガラス結晶化法、水熱合成法等種々の方
法が知られており、ガラス結晶化法については特公昭6
G−15574号公報、水熱合成法については、例えば
特開昭59−175707号公報、特公昭60−129
73号公報、特公昭60−15576号公報、特開昭6
0−137002号公報等で提案されている。   −
前記従来の方法で製造されるバリウムフェライト磁性粉
はいずれも次式Ba O−n Fe2O3で示される3
価のFe原子の一部をCo、T’i、Ni、Mn。
(Conventional technology) Conventionally, the method for producing barium ferrite magnetic powder is as follows:
For example, various methods are known, such as coprecipitation, glass crystallization, and hydrothermal synthesis.
G-15574, and regarding the hydrothermal synthesis method, for example, JP-A-59-175707, JP-A-60-129.
Publication No. 73, Japanese Patent Publication No. 60-15576, Japanese Patent Publication No. 60-15576
This method has been proposed in JP 0-137002 and the like. −
All of the barium ferrite magnetic powders produced by the conventional method have the following formula Ba O-n Fe2O3.
Some of the valent Fe atoms are Co, T'i, Ni, and Mn.

Cu、Zn、 I n、Ge、Nb等の金属元素単独、
またはそれらの組合わせを用いて、かつ置換原子の価数
の合計が置換される3価のFe原子のそれと等しくなる
ように置換したものである。
Metal elements alone such as Cu, Zn, In, Ge, Nb, etc.
Or a combination thereof is used for substitution such that the total valence of the substituted atoms is equal to that of the trivalent Fe atom to be substituted.

(発明が解決しようとする問題点) 水熱合成法により得られるバリウムフェライト磁性粉は
、一般に粒子の凝集が少なく、比較的分散性は良く、微
粒子であるが、飽和磁化が55emU10程度かそれよ
りも低いものしが得られなかった。これは、バリウムフ
ェライト磁性粉の表面積が20d/Q以上、特に超微粒
子の磁性粉では50d19以上になると粒子表面の非磁
性層の部分が無視できなくなるため、および保磁力調整
のために添加する各種金属元素のためと考えられている
(Problems to be Solved by the Invention) Barium ferrite magnetic powder obtained by hydrothermal synthesis generally has little particle aggregation, relatively good dispersibility, and fine particles, but the saturation magnetization is about 55<em>U10 or higher. I couldn't get a low rating either. This is because when the surface area of barium ferrite magnetic powder is 20d/Q or more, especially when the surface area of ultrafine particle magnetic powder is 50d19 or more, the non-magnetic layer on the particle surface cannot be ignored, and various additives are added to adjust the coercive force. It is thought that this is due to the metallic elements.

(発明の目的) 本発明の目的は、水熱合成法における前記難点を解決し
た高い飽和磁化を持つ微粒子のバリウムフェライト磁性
粉およびその製造方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a fine barium ferrite magnetic powder having high saturation magnetization and a method for producing the same, which solves the above-mentioned difficulties in hydrothermal synthesis.

(問題点を解決するための手段) 本発明は、一般式 %式%] (ただし、MlはNi、Co、C1,M9.Mnおよび
znからなる群から選ばれた一部または二種以上の金属
を示し、M2はTa、Sb、Nb、Zr、およびTトか
らなる群から選ばれた一部または二種以上の金属を示し
、n二0.8〜1.0、x=0.5へ1.5、y=0.
01〜1.5の数値である。)で表される六角板 ゛状
マグネトブランバイト型バリウムフェライト磁性粉およ
びその製造方法に関する。
(Means for Solving the Problems) The present invention is based on the general formula %] (where Ml is a part or two or more selected from the group consisting of Ni, Co, C1, M9.Mn, and zn). represents a metal, M2 represents one or more metals selected from the group consisting of Ta, Sb, Nb, Zr, and T, n20.8 to 1.0, x=0.5 to 1.5, y=0.
It is a numerical value of 01 to 1.5. This invention relates to a hexagonal plate-shaped magnetobrambite barium ferrite magnetic powder represented by ) and a method for producing the same.

本発明においては、出発原料として、バリウム1グラム
原子に対して3価の鉄3〜11グラム原子、3価の鉄1
2−2x−yグラム原子に対して、Ml 、M2がそれ
ぞれXグラム原子および2価の鉄がyグラム原子の割合
のそれぞれの元素の化合物を用い、該出発原料を水に溶
解し、これに混合後の溶液中の水酸化アルカリ濃度が3
モル/J以上となるように水酸化アルカリを加えて沈澱
物を生成させ、該沈澱物を含むスラリを130〜270
℃で水熱処理した後、生成した沈澱物に融剤を混合し、
混合物を700〜950℃で焼成し、得られた焼成物を
洗汚することにより、前記六角板状マグネトブランバイ
ト型バリウムフェライト磁性粉が得られる。
In the present invention, as starting materials, 3 to 11 gram atoms of trivalent iron and 1 gram atom of trivalent iron per 1 gram atom of barium are used.
2-2 Using a compound of each element in a ratio of X gram atoms of Ml and M2 and y gram atoms of divalent iron to x-y gram atoms, the starting materials are dissolved in water, and the starting materials are dissolved in water. The alkali hydroxide concentration in the solution after mixing is 3
Alkali hydroxide is added to form a precipitate so that the amount is mol/J or more, and the slurry containing the precipitate is
After hydrothermal treatment at ℃, a fluxing agent is mixed with the generated precipitate,
The hexagonal plate-shaped magnetobrambite barium ferrite magnetic powder is obtained by firing the mixture at 700 to 950°C and washing and staining the resulting fired product.

本発明においては、まず出発原料であるバリウム、3価
の鉄、Ml 、M2および2価の鉄のそれぞれの化合物
を水に溶解し、これに水酸化アルカリを加えて沈澱、物
を生成させる。
In the present invention, starting materials such as barium, trivalent iron, Ml, M2, and divalent iron are first dissolved in water, and alkali hydroxide is added thereto to form a precipitate.

バリウム化合物としては、TIi′i酸バリウム、塩化
バリウム、水酸化バリウム等が用いられる。バリラムの
使用量は、バリウム濃度が0.03〜0.23モル/J
の範囲になるようにするのが六角板状の形状のよい粒子
を得るうえで望ましい。
As the barium compound, barium TIi'i acid, barium chloride, barium hydroxide, etc. are used. The amount of Valiram used is that the barium concentration is 0.03 to 0.23 mol/J.
In order to obtain particles with a good hexagonal plate shape, it is desirable to keep the particle diameter within this range.

3価の鉄化合物としては、硝酸第二鉄、塩化第二鉄等が
用いられる。3価の鉄の使用量はバリウム1グラム原子
に対して3〜11グラム原子である。3価の鉄の量が少
なすぎると、マグネトブランバイト型バリウムフェライ
トの生成量が少なく、形状も六角板状でなくなる。また
3価の鉄の量が多すぎるとベマタイトが副生したり、ま
たバリウムフェライトの粒子が大きくなり、磁気特性も
劣ってくる。
As the trivalent iron compound, ferric nitrate, ferric chloride, etc. are used. The amount of trivalent iron used is 3 to 11 gram atoms per gram atom of barium. If the amount of trivalent iron is too small, the amount of magnetobrambite barium ferrite produced will be small and the shape will not be hexagonal plate-like. Furthermore, if the amount of trivalent iron is too large, bematite may be produced as a by-product, and barium ferrite particles may become large, resulting in poor magnetic properties.

Mlの化合物としては、N i、Co、CD、Mg、M
nおよびZnからなる群から選ばれた金属の塩化物、硝
酸塩等が一種または二種以上用いられる。
Compounds of Ml include Ni, Co, CD, Mg, M
One or more metal chlorides, nitrates, etc. selected from the group consisting of n and Zn are used.

M2の化合物としては、Ta、Sb、Nb、Zr、およ
びTiからなる群から選ばれた金属の塩化物、硝酸塩等
が一種または二種以上用いられる。
As the compound M2, one or more metal chlorides, nitrates, etc. selected from the group consisting of Ta, Sb, Nb, Zr, and Ti are used.

MlおよびM2の使用量は、3価の鉄12−2x−yグ
ラム原子に対して、Ml 、M2がそれぞれXグラム原
子(x=0.5〜1.5)になるようにするのが好適で
あり、Xの値によって磁気特性、主に保磁力を制御でき
る。
The amounts of Ml and M2 used are preferably such that Ml and M2 are each X gram atoms (x = 0.5 to 1.5) per 12-2x-y gram atoms of trivalent iron. The magnetic properties, mainly the coercive force, can be controlled by the value of X.

2価の鉄化合物としては、塩化第一鉄、硝酸第−鉄等が
用いられる。2価の鉄の使用量は3価の鉄12−2x−
yグラム原子に対してyグラム原子(y=o、01〜1
.5、好ましくは0.1〜1.0 >になるようにする
のが好適である。2価の鉄の添加により、マグネトブラ
ンバイト型バリウムフェライトの結晶格子が次式 %式%] で表されるようにO原子が不足した状悪となり、これに
より飽和磁化が向上するものと考えられる。
As the divalent iron compound, ferrous chloride, ferrous nitrate, etc. are used. The amount of divalent iron used is trivalent iron 12-2x-
For y gram atom, y gram atom (y=o, 01~1
.. 5, preferably 0.1 to 1.0>. It is thought that due to the addition of divalent iron, the crystal lattice of magnetoblanbite barium ferrite becomes deficient in O atoms, as expressed by the following formula %, and that this improves the saturation magnetization. .

この場合Fc(II)イオンは4配位のFe(III)
イオンと選択的に置換しているものと推察される。
In this case, the Fc(II) ion is a 4-coordinated Fe(III)
It is presumed that the ions are selectively substituted.

水酸化アルカリとしては、水酸化ナトリウム、水酸化カ
リウム等が用いられる。水酸化アルカリの使用量は水酸
化アルカリを混合した後の溶液中の水酸化アルカリ濃度
が3モル/1以上となる星が必要であり、4〜8モル/
jの範囲が好ましい。
As the alkali hydroxide, sodium hydroxide, potassium hydroxide, etc. are used. The amount of alkali hydroxide used must be such that the alkali hydroxide concentration in the solution after mixing the alkali hydroxide is 3 mol/1 or more, and 4 to 8 mol/1.
A range of j is preferred.

水酸化アルカリの量が少なすぎると粒子が大きくなった
り、粒度分布が広くなったり、またへマタイトが生成す
る。また水酸化アルカリを過度に多くするのは経済的で
ない。
If the amount of alkali hydroxide is too small, the particles become large, the particle size distribution becomes wide, and hematite is generated. Further, it is not economical to increase the amount of alkali hydroxide excessively.

前記出発原料の水溶液に水酸化アルカリを混合する方法
については、特に制限はないが、例えば出発原料の水溶
液に、直接水酸化アルカリを添加するか、あるいは水酸
化アルカリの水溶液を添加する方法がある。あるいはバ
リウム化合物を水酸化アルカリの水溶液側に加えて、こ
れと3価の鉄を含む水溶液を混合する方法がある。
There is no particular restriction on the method of mixing the alkali hydroxide into the aqueous solution of the starting material, but for example, there are methods of directly adding the alkali hydroxide or adding an aqueous solution of the alkali hydroxide to the aqueous solution of the starting material. . Alternatively, there is a method of adding a barium compound to the aqueous solution of alkali hydroxide and mixing this with an aqueous solution containing trivalent iron.

さらに、予め出発原料の水溶液あるいは水酸化アルカリ
の水溶液にSi 、Caなどの水に可溶性の化合物、例
えばケイ酸、ケイ酸ナトリウム、硝酸カルシウム、塩化
カルシウム等を若干添加することができる。これらの添
加物は粒子形状を制御するうえで好ましい。
Furthermore, a small amount of water-soluble compounds such as Si and Ca, such as silicic acid, sodium silicate, calcium nitrate, and calcium chloride, can be added in advance to the aqueous solution of the starting material or the aqueous solution of alkali hydroxide. These additives are preferred for controlling particle shape.

次に、沈澱物を含むスラリを水熱処理することにより、
バリウムフェライトの微細な結晶が生成、沈澱する。水
熱処理の温度は130〜270℃、好ましくは150〜
200℃である。温度が低すぎると結晶の生成が充分で
なく、また温度が高すぎると最終的に得られるバリウム
フェライト粉末の粒径が大きくなるので好ましくない、
水熱処理時間は普通、0.5〜20時間程度であり、水
熱処理には通常、オートクレーブが採用される。
Next, by hydrothermally treating the slurry containing the precipitate,
Fine crystals of barium ferrite are formed and precipitated. The temperature of hydrothermal treatment is 130-270℃, preferably 150-270℃
The temperature is 200°C. If the temperature is too low, crystal formation will not be sufficient, and if the temperature is too high, the particle size of the final barium ferrite powder will become large, which is undesirable.
The hydrothermal treatment time is usually about 0.5 to 20 hours, and an autoclave is usually employed for the hydrothermal treatment.

次いで、水熱処理により生成した微細な結晶の沈澱物を
水洗して、遊離のアルカリ分を除去した後、得られた沈
澱物に融剤を混合する。融剤としては、塩化ナトリウム
、塩化カリウム、塩化バリ   ゛ラム、塩化ストロン
チウムおよびフッ化ナトリウムのうち少なくとも一種が
用いられる。融剤の使用量は沈澱物(屹燥物基準)に対
して、10〜180重足%、好ましくは30〜120重
量%が適当である。融剤の禁が少なずぎると粒子の焼結
が起り、また多すぎても多くシたことによる利点はなく
、経済的でない、沈澱物と融剤の混合方法は特に制限は
なく、例えば沈澱物のスラリに融剤を加えて湿式混合し
た後、スラリを乾燥してもよく、あるいは沈澱物を乾燥
した後、融剤を加えて乾式混合してもよい。
Next, the fine crystal precipitate produced by the hydrothermal treatment is washed with water to remove free alkali, and then a flux is mixed with the obtained precipitate. As the fluxing agent, at least one selected from sodium chloride, potassium chloride, barium chloride, strontium chloride, and sodium fluoride is used. The appropriate amount of the flux to be used is 10 to 180% by weight, preferably 30 to 120% by weight, based on the precipitate (based on dried material). If the amount of flux is too small, sintering of the particles will occur, and if it is too much, there is no advantage of sintering and it is not economical. After adding a fluxing agent to the slurry and wet-mixing, the slurry may be dried, or after drying the precipitate, a fluxing agent may be added and dry-mixing.

次いで、得られた混合物を焼成することにより、バリウ
ムフェライトの結晶化が完全に行われる。
Next, the resulting mixture is fired to completely crystallize the barium ferrite.

焼成温度は700〜950℃、好ましくは800〜93
0℃である。7!&度が低すぎると結晶化が進まず、飽
和磁化が低くなる。また温度が高ずぎると粒子が大きく
なったり、焼結が起こるので好ましくない、焼成時間は
10分〜30時間程度が適当である。焼成雰囲気は特に
制限されないが、空気、窒素等が好適に使用される。
Firing temperature is 700-950℃, preferably 800-93℃
It is 0°C. 7! & If the degree is too low, crystallization will not proceed and the saturation magnetization will become low. Also, if the temperature is too high, the particles will become large or sintering will occur, which is undesirable.The firing time is preferably about 10 minutes to 30 hours. The firing atmosphere is not particularly limited, but air, nitrogen, etc. are preferably used.

得られた焼成物を洗浄後、濾過、乾燥することにより、
バリウムフェライト磁性粉が得られる。
By washing, filtering and drying the obtained baked product,
Barium ferrite magnetic powder is obtained.

洗浄は焼成物中の融剤、過剰のバリウムなどの不純物を
十分に除去できればよとのような方法で行ってもよい、
洗浄液としては水や硝酸、塩酸などの無機酸、酢酸、プ
ロピオン酸などの有機酸などを用いることができる。
Cleaning may be carried out by any method as long as impurities such as flux and excess barium in the fired product can be sufficiently removed.
As the cleaning liquid, water, inorganic acids such as nitric acid and hydrochloric acid, and organic acids such as acetic acid and propionic acid can be used.

(実施例) 実施例1 脱イオン水1300mjに、硝酸第二鉄[Fc(No3
)3 ・9H20]1239.Og、硝酸コバルト[C
0(NO3)2 ・6ト12o]64.7g、四基fヒ
チタン(T r CJ 、i ) 422 gおよび塩
化第・−鉄[Fe CM 2−41−120] 11.
7gを溶解し、別に脱イオン水1300mjに、水酸化
バリウム[Ba(OH)2・8H20] 140.2g
、カセイソーダ(NaOH)1480gを溶解し、再溶
液を混合して沈澱物を生成させた。
(Example) Example 1 Ferric nitrate [Fc (No3
)3 ・9H20]1239. Og, cobalt nitrate [C
0(NO3)2 .6to12o] 64.7 g, 422 g of tetra-f titanium (T r CJ , i ) and ferrous chloride [Fe CM 2-41-120] 11.
Separately, dissolve 7 g of barium hydroxide [Ba(OH)2.8H20] 140.2 g in 1300 mj of deionized water.
, 1480 g of caustic soda (NaOH) was dissolved, and the solutions were remixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
190℃で6時間水熱処理を行った0次いで得られた沈
澱物を十分に水洗した後、濾過、92燥し、これに融剤
としてNa C1とBa Cj2・2H20の重量比が
1:1の混合物を沈澱物に対して100重至%加えて混
合した。この混合物を空気雰囲気下で860℃で2時間
焼成した。得られた焼成物を水で十分水洗した後、濾過
、乾燥してバリウムフェライト磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was carried out at 190°C for 6 hours.Then, the resulting precipitate was thoroughly washed with water, filtered and dried at 92°C. The mixture was added to the precipitate in an amount of 100% by weight and mixed. This mixture was calcined at 860° C. for 2 hours under an air atmosphere. The obtained fired product was thoroughly washed with water, filtered and dried to obtain barium ferrite magnetic powder.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、Ba O−0,98[
Fe(l1l) 10.3COo、−ts’l’io、
75FC(II ) 0.20o17.91であり、マ
グネトブランバイト型であった。
As a result of X-ray powder diffraction spectrum and compositional analysis, the obtained barium ferrite magnetic powder was found to contain BaO-0,98[
Fe(l1l) 10.3COo, -ts'l'io,
75FC(II) 0.20o17.91, and was a magnetobrambite type.

またこのバリウムフェライト磁性粉について透過型電子
顕微鏡(TEM)で粒子形状(粒子径、粒子厚、分布)
を測定した結果(粒子100個の平均値)および振動試
料式磁力計で磁気特性を測定した結果を第1表に示す。
The barium ferrite magnetic powder was also examined using a transmission electron microscope (TEM) to determine its particle shape (particle diameter, particle thickness, and distribution).
Table 1 shows the results of measuring (average value of 100 particles) and the results of measuring magnetic properties using a vibrating sample magnetometer.

実施例2 脱イオン水1300mjに、硝酸第二鉄1185.1g
、it’i酸コバルト69.0g、四塩化チタン45.
0g、塩化第一鉄29.5gを溶解し、別に脱イオン水
1300mNに、水酸化バリウム140.2gおよびカ
セイソーダ1480gを溶解し、再溶液を混合して沈澱
物を生成させた。
Example 2 1185.1 g of ferric nitrate in 1300 mj of deionized water
, cobalt it'i acid 69.0g, titanium tetrachloride 45.
Separately, 140.2 g of barium hydroxide and 1480 g of caustic soda were dissolved in 1300 mN of deionized water, and the solutions were remixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
170℃で8時間水熱処理を行った0次いで得られた沈
澱物を十分に水洗した後、濾過、乾燥し、これに融剤と
してNa CjとDa cj2・2H20とのilf量
比で1=1の混合物を沈澱物に対して100ffI量%
加えて混合した。この混合を空気雰囲気下で890’C
で2時間焼成した。得られな焼成物を水で十分水洗した
後、濾過、乾燥してバリウムフェライト磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
After hydrothermal treatment at 170°C for 8 hours, the resulting precipitate was thoroughly washed with water, filtered and dried, and added with a flux of Na Cj and Da cj2.2H20 in an ILF amount ratio of 1=1. A mixture of 100 ffI amount % based on the precipitate
Add and mix. This mixture was heated to 890'C under an air atmosphere.
Baked for 2 hours. After thoroughly washing the obtained fired product with water, it was filtered and dried to obtain barium ferrite magnetic powder.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果。
The results of X-ray powder diffraction spectrum and composition analysis of the obtained barium ferrite magnetic powder.

Da O−0,97rFc(III) 、90Co 、
、8oTi o、8oFe(IF) 、5oO1,75
1であり、マグネトブランバイト型であった。
DaO-0,97rFc(III), 90Co,
, 8oTi o, 8oFe(IF) , 5oO1,75
1, and was of the magnetobrambite type.

またこのバリウムフェライト磁性粉について透過型電子
W4mg (T E M ) −Ca子形状(TO子f
l、粒子厚1分布)を測定した結果(粒子100個の平
均値)および振動試料式磁力計で磁気特性を測定した結
果を第1表に示す。
Furthermore, regarding this barium ferrite magnetic powder, transmission electron W4mg (T EM ) -Ca particle shape (TO particle f
Table 1 shows the results of measuring the magnetic properties (average value of 100 particles) and the magnetic properties using a vibrating sample magnetometer.

比較例1 脱イオン水1300mjに、rIFi第二鉄1263.
1g、硝酸コバルト64.7gおよび四塩化チタン42
2gを溶解し、別に脱イオン水1300m1に、水酸化
バリウム140.2gおよびカセイソーダ1480gを
溶解し、再溶液を混合して沈澱物を生成させた。
Comparative Example 1 Add 1263 mj of rIFi ferric iron to 1300 mj deionized water.
1g, cobalt nitrate 64.7g and titanium tetrachloride 42
Separately, 140.2 g of barium hydroxide and 1480 g of caustic soda were dissolved in 1300 ml of deionized water, and the solutions were mixed again to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
190℃で6時間水熱処理を行った6次いで得られた沈
澱物を十分に水洗した後、濾過、乾燥し、これに融剤と
してNa CJとBaCj2・2I]20との重量比で
1:1の混合物を沈澱物に対して100重量%加えて混
合した。この混合を空気雰囲気下で860℃で2時間焼
成した。得られた焼成物を水で十分水洗した後、濾過、
乾燥してバリウムフェライト磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was carried out at 190° C. for 6 hours.The resulting precipitate was then thoroughly washed with water, filtered and dried, and a flux of NaCJ and BaCj2.2I]20 was added in a weight ratio of 1:1. 100% by weight of the mixture was added to the precipitate and mixed. This mixture was baked at 860° C. for 2 hours under an air atmosphere. After washing the obtained baked product thoroughly with water, filtration,
After drying, barium ferrite magnetic powder was obtained.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、Ba o−0,98[
Fe(m ) 1o、5co o、7sTj 0.75
o18.O]であり、マグネトブランバイト型であった
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to be Ba o-0,98[
Fe(m) 1o, 5coo, 7sTj 0.75
o18. O] and was of the magnetobrambite type.

またこのバリウムフェライト磁性粉について透過型電子
顕微鏡(TEM)で粒子形状(粒子径、粒子厚、分布)
を測定した結果(粒子100個の平均値)および振動試
料式磁力計で磁気特性を測定した結果を第1表に示す。
The barium ferrite magnetic powder was also examined using a transmission electron microscope (TEM) to determine its particle shape (particle diameter, particle thickness, and distribution).
Table 1 shows the results of measuring (average value of 100 particles) and the results of measuring magnetic properties using a vibrating sample magnetometer.

比較例2 脱イオン水1300mNに、硝酸第二鉄1263.1g
、四塩化チタン422g、硝酸亜鉛[Zn(N O3)
2  ・6H20] 70.0gを溶解し、別に脱イオ
ン水1300mjlに、水酸化バリウム140゜2gお
よびカセイソーダ1480gを溶解し、再溶液を混合し
て沈澱物を生成させた。
Comparative Example 2 1263.1 g of ferric nitrate in 1300 mN of deionized water
, titanium tetrachloride 422g, zinc nitrate [Zn(NO3)
2.6H20], and separately, 140°2 g of barium hydroxide and 1480 g of caustic soda were dissolved in 1300 ml of deionized water, and the solutions were remixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
190℃°で6時間水熱処理を行った0次いで得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに融剤
としてNa ClとBa c j 2・2H20との重
量比で1=1の混合物を沈澱物に対して100重量%加
えて混合した。この混合を空気雰囲気下で860℃で2
時間焼成した。得られた焼成物を水で十分水洗した後、
濾過、乾燥してバリウムフェライト磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was carried out at 190°C for 6 hours.Then, the obtained precipitate was thoroughly washed with water, filtered and dried, and a flux of NaCl and Bacj 2.2H20 was added in a weight ratio of 1 100% by weight of the mixture was added to the precipitate and mixed. This mixture was heated at 860°C for 2 hours in an air atmosphere.
Baked for an hour. After washing the obtained fired product thoroughly with water,
It was filtered and dried to obtain barium ferrite magnetic powder.

得られたバリウムフェライト磁性粉は、X線粉末回折ス
ペクトルおよび組成分析の結果、Ba O・o、98 
[F e(I[[) 1o、sZn o、−tsT j
 o、y501a、o]であり、マグネトブランバイト
型であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to contain BaO.o, 98
[F e(I[[) 1o, sZno, -tsT j
o, y501a, o] and was of the magnetobrambite type.

またこのバリウムフェライト磁性粉について透過型電子
顕微鏡(TEM)で粒子形状(粒子径、粒子厚、分布)
を測定した結果(粒子100個の平均値)および振動試
料式磁力計で磁気特性を測定した結果を第1表に示す。
The barium ferrite magnetic powder was also examined using a transmission electron microscope (TEM) to determine its particle shape (particle diameter, particle thickness, and distribution).
Table 1 shows the results of measuring (average value of 100 particles) and the results of measuring magnetic properties using a vibrating sample magnetometer.

(発明の効果) 本発明によれば、一般式 %式%] からなる群から選ばれる一種または二部以上の金属を示
し、M2はTa、Sb、Nb、ZrおよびTiからなる
群から選ばれる一種または二粍以上の金属を示し、n=
0.8〜1.0、x=0.5〜1.5、y=0.01〜
1.5の数値である。)で表される六角板状マグネトブ
ランバイト型バリウムフェライト磁性粉が得られる。こ
のバリウムフェライト磁性粉は前記一般式に示すように
、従来の水スサ合成法で製造されたー蝦式13aO・n
Fe2O3で示される3価のFc原子の一部をCo、T
i、Ni、Mn、Cu、Zn。
(Effect of the invention) According to the present invention, the general formula % represents one or more metals selected from the group consisting of %, and M2 is selected from the group consisting of Ta, Sb, Nb, Zr and Ti. Indicates one or more metals, n=
0.8~1.0, x=0.5~1.5, y=0.01~
The value is 1.5. ) A hexagonal plate-shaped magnetoblanbite-type barium ferrite magnetic powder is obtained. This barium ferrite magnetic powder was manufactured by the conventional water suspension synthesis method as shown in the above general formula.
Some of the trivalent Fc atoms represented by Fe2O3 are replaced with Co, T
i, Ni, Mn, Cu, Zn.

In、Gc、Nb等の金属単独、またはそれらの組合わ
せを用いて、かつ置換原子の価数の合計が置換される3
価のFe原子のそれと等しくなるように′Ji換したバ
リウムフェライト磁性粉とは異なった組成である。
3 in which a metal such as In, Gc, Nb, etc. alone or a combination thereof is used, and the total valence of the substituent atoms is substituted.
The composition is different from that of barium ferrite magnetic powder which has been converted to 'Ji' so that it is equal to that of valent Fe atoms.

さらには、本発明で得られるマグネトプランバイト型バ
リウムフェライト磁性粉は平均粒子径が1100n以下
、粒度分布がシャープで標準偏差3Qnm以下の粉末で
あり、BET法による比表面積が3Onf10のときに
、飽和磁化は60C■u/。
Furthermore, the magnetoplumbite type barium ferrite magnetic powder obtained in the present invention is a powder with an average particle diameter of 1100 nm or less, a sharp particle size distribution, and a standard deviation of 3 Q nm or less, and has a saturated state when the specific surface area is 3 Onf10 by the BET method. Magnetization is 60C u/.

以上、50rrr/(lのときに、飽和磁化は56 e
mu/IJ以上と従来の水熱合成法により得られたもの
と比較して8%以上の高い値を示す、またこのバリウ 
Above, when 50 rrr/(l, the saturation magnetization is 56 e
mu/IJ or higher, which is 8% higher than that obtained by conventional hydrothermal synthesis.
.

ムフェライト磁性粉の板状比は2〜15の範囲である。The plate ratio of the muferrite magnetic powder is in the range of 2 to 15.

さらに保磁力についてはMl 、M2の添加量を変える
ことにより、自由に制御することができる。
Furthermore, the coercive force can be freely controlled by changing the amounts of Ml and M2 added.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 BaO・n[Fe(III)_1_2_−_2_x_−_
yM1_xM2_xFe(II)_yO_1_8_−_y
_/_2](ただし、M1はNi、Co、Cu、Mo、
MnおよびZnからなる群から選ばれた一種または二種
以上の金属を示し、M2はTa、Sb、Nb、Zrおよ
びTiからなる群から選ばれた一種または二種以上の金
属を示し、n=0.8〜1.0、x=0.5〜1.5、
y=0.01〜1.5の数値である。)で表される六角
板状マグネトプランバイト型バリウムフェライト磁性粉
(1) General formula BaO・n[Fe(III)_1_2_-_2_x_-_
yM1_xM2_xFe(II)_yO_1_8_-_y
_/_2] (However, M1 is Ni, Co, Cu, Mo,
M2 represents one or more metals selected from the group consisting of Mn and Zn, M2 represents one or more metals selected from the group consisting of Ta, Sb, Nb, Zr and Ti, and n= 0.8-1.0, x=0.5-1.5,
y=a numerical value of 0.01 to 1.5. ) Hexagonal plate-shaped magnetoplumbite-type barium ferrite magnetic powder.
(2)出発原料として、バリウム1グラム原子に対して
、3価の鉄3〜11グラム原子、3価の鉄12−2x−
yグラム原子に対して、M1、M2がそれぞれxグラム
原子および2価の鉄がyグラム原子の割合のそれぞれの
元素の化合物を用い、該出発原料を水に溶解し、これに
混合後の溶液中の水酸化アルカリ濃度が3モル/l以上
となるように水酸化アルカリを加えて沈澱物を生成させ
、該沈澱物を含むスラリを130〜270℃で水熱処理
した後、生成した沈澱物に融剤を混合し、混合物を70
0〜950℃で焼成し、得られた焼成物を洗浄すること
を特徴とする一般式 BaO・n[Fe(III)_1_2_−_2_x_−_
yM1_xM2_xFe(II)_yO_1_8_−_y
_/_2](ただし、M1はNi、Co、Cu、Mg、
MnおよびZnからなる群から選ばれた一種または二種
以上の金属を示し、M2はTa、Sb、Nb、Zr、お
よびTiからなる群から選ばれた一種または二種以上の
金属を示し、n=0.8〜1.0、x=0.5〜1.5
、y=0.01〜1.5の数値である。)で表される六
角板状マグネトプランバイト型バリウムフェライト磁性
粉の製造方法。
(2) As a starting material, for 1 gram atom of barium, 3 to 11 gram atoms of trivalent iron, 12-2x-
Using a compound of each element in a ratio of M1 and M2 to x gram atoms and y gram atoms of divalent iron to y gram atoms, the starting materials are dissolved in water, and the solution after mixing Alkali hydroxide is added to form a precipitate so that the alkali hydroxide concentration in the alkali hydroxide is 3 mol/l or more, and the slurry containing the precipitate is hydrothermally treated at 130 to 270°C. Mix the flux and reduce the mixture to 70
General formula BaO・n[Fe(III)_1_2_-_2_x_-_, which is characterized by firing at 0 to 950°C and washing the obtained fired product.
yM1_xM2_xFe(II)_yO_1_8_-_y
_/_2] (However, M1 is Ni, Co, Cu, Mg,
M2 represents one or more metals selected from the group consisting of Mn and Zn; M2 represents one or more metals selected from the group consisting of Ta, Sb, Nb, Zr, and Ti; n =0.8~1.0, x=0.5~1.5
, y=a numerical value of 0.01 to 1.5. ) A method for producing hexagonal plate-shaped magnetoplumbite-type barium ferrite magnetic powder.
JP177587A 1987-01-09 1987-01-09 Barium ferrite magnetic powder and its production Pending JPS63170221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP177587A JPS63170221A (en) 1987-01-09 1987-01-09 Barium ferrite magnetic powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP177587A JPS63170221A (en) 1987-01-09 1987-01-09 Barium ferrite magnetic powder and its production

Publications (1)

Publication Number Publication Date
JPS63170221A true JPS63170221A (en) 1988-07-14

Family

ID=11510948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP177587A Pending JPS63170221A (en) 1987-01-09 1987-01-09 Barium ferrite magnetic powder and its production

Country Status (1)

Country Link
JP (1) JPS63170221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185003A (en) * 1987-01-27 1988-07-30 Toshiba Glass Co Ltd Magnetic powder for magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136923A (en) * 1984-12-07 1986-06-24 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic body for magnetic recording and its manufacture
JPS61141625A (en) * 1984-12-14 1986-06-28 Ube Ind Ltd Production of barium ferrite powder
JPS61168532A (en) * 1984-08-23 1986-07-30 Sakai Chem Ind Co Ltd Production of fine crystal powder of barium ferrite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168532A (en) * 1984-08-23 1986-07-30 Sakai Chem Ind Co Ltd Production of fine crystal powder of barium ferrite
JPS61136923A (en) * 1984-12-07 1986-06-24 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic body for magnetic recording and its manufacture
JPS61141625A (en) * 1984-12-14 1986-06-28 Ube Ind Ltd Production of barium ferrite powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185003A (en) * 1987-01-27 1988-07-30 Toshiba Glass Co Ltd Magnetic powder for magnetic recording medium

Similar Documents

Publication Publication Date Title
DE19630756A1 (en) Process for the production of complex iron oxide powder containing iron
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPS63170221A (en) Barium ferrite magnetic powder and its production
KR960002625B1 (en) Process for producing microcrystalline barium ferrite platelets
JPS63170220A (en) Barium ferrite magnetic powder and its production
JPH0526727B2 (en)
JPH04362020A (en) Ferritic magnetic powder and its production
JPS6259531A (en) Production of barium ferrite powder
JPS62207720A (en) Preparation of barium ferrite powder
JPS63195125A (en) Barium ferrite magnetic powder and production thereof
JPS63310730A (en) Hexagonal ferrite magnetic powder and its production
JPH05319831A (en) Ferrite magnetic powder and its production
JP3638654B2 (en) Method for producing ferrite powder
JPS63307122A (en) Barium ferrite magnetic powder and production thereof
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPS63195124A (en) Barium ferrite magnetic powder and production thereof
SU1752521A1 (en) Method of manganese-zinc ferrite powder preparation
JPH013021A (en) Barium ferrite magnetic powder and its manufacturing method
JPS6256325A (en) Production of barium ferrite powder
JPH0647467B2 (en) Barium ferrite magnetic powder and method for producing the same
JPS63265829A (en) Barium ferrite magnetic powder and its production
JPS6090828A (en) Manufacture of needlelike spinel ferrite powder
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPS63310729A (en) Production of hexagonal magnetoplumbite type ferrite magnetic powder
JPH0669013A (en) Ferrite magnetic particle