JPS63310729A - Production of hexagonal magnetoplumbite type ferrite magnetic powder - Google Patents

Production of hexagonal magnetoplumbite type ferrite magnetic powder

Info

Publication number
JPS63310729A
JPS63310729A JP14520587A JP14520587A JPS63310729A JP S63310729 A JPS63310729 A JP S63310729A JP 14520587 A JP14520587 A JP 14520587A JP 14520587 A JP14520587 A JP 14520587A JP S63310729 A JPS63310729 A JP S63310729A
Authority
JP
Japan
Prior art keywords
precipitate
magnetic powder
ferrite magnetic
alkali hydroxide
hematite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14520587A
Other languages
Japanese (ja)
Other versions
JPH0649578B2 (en
Inventor
Kyoji Odan
恭二 大段
Takayuki Kimura
隆幸 木村
Hiroshi Miura
洋 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14520587A priority Critical patent/JPH0649578B2/en
Publication of JPS63310729A publication Critical patent/JPS63310729A/en
Publication of JPH0649578B2 publication Critical patent/JPH0649578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title fine ferrite magnetic powder having a sharp particle diameter distribution and appropriate for a magnetic recording medium for high-density recording by using hematite having a specified specific surface as the raw iron material for producing ferrite magnetic powder. CONSTITUTION:(A) Hematite having 50-250m<2>/g specific surface, (B) >=1 kind among the compds. of Ba, Sr, and Pb (e.g., barium hydroxide), (C) >=1 kind among the compds. of Ni, Co, Zn, and Cu, and (D) an Sn compd. are prepared as the starting materials. An alkali hydroxide is added to an aq. soln. contg. the starting materials so that the alkali hydroxide concn. in the soln. after mixing is controlled to >=1mol./l, and a precipitate is formed. The slurry contg. the precipitate is hydrothermally treated at 130-300 deg.C, then a flux is mixed into the formed precipitate, the precipitate is calcined at 700-950 deg.C, the calcined material is washed, and hexagonal magneto-plumbite type ferrite magnetic powder is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、六方晶マグネト1ランバイト型フエライト磁
性粉の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing hexagonal magneto-1-lambite ferrite magnetic powder.

さらに詳しくは、本発明は高密度記録用の磁気記録媒体
に用いるのに適した、比表面積が20〜70d/CJ、
保磁力が200〜15000eであり、微粒子で粒子径
分布のシャープなマグネトプランバイト型フェライト磁
性粉の製造方法に関するものである。
More specifically, the present invention is suitable for use in magnetic recording media for high-density recording, and has a specific surface area of 20 to 70 d/CJ,
The present invention relates to a method for producing magnetoplumbite-type ferrite magnetic powder having a coercive force of 200 to 15,000 e, fine particles, and a sharp particle size distribution.

近年、磁気記録の高密度化の要求に伴い、フェライト磁
性粉を磁気記録媒体として用いる垂直磁気記録方式の開
発が進められている。
In recent years, with the demand for higher density magnetic recording, development of perpendicular magnetic recording systems using ferrite magnetic powder as a magnetic recording medium has been progressing.

垂直磁気記録方式に用いられるフェライト磁性粉として
は、保磁力が適当な値(200〜15000e)であり
、微粒子で粒子径分布のシャープなものが望まれている
As the ferrite magnetic powder used in the perpendicular magnetic recording system, it is desired that the coercive force is an appropriate value (200 to 15,000 e), the particles are fine, and the particle size distribution is sharp.

(従来の技術およびその問題点) 従来、フェライト磁性粉の製造方法としては、例えば共
沈法、ガラス結晶化法、水熱合成法等種々の方法が知ら
れており、ガラス結晶化法については特公昭60−15
574号公報、水熱合成法については、例えば特開昭5
9−175707号公報、特公昭60−12973号公
報、特公昭60−15576−号公報、特開昭60−1
37002号公報等で提案されている。
(Prior art and its problems) Conventionally, various methods have been known for producing ferrite magnetic powder, such as coprecipitation, glass crystallization, and hydrothermal synthesis. Special Public Service 1986-15
Regarding the hydrothermal synthesis method, see Japanese Patent Application Laid-open No. 574, for example.
9-175707, JP 60-12973, JP 60-15576, JP 60-1
This is proposed in Publication No. 37002 and the like.

前記合成法においては、置換元素として′「iを使用し
ているが、Tiは粒子の微小化および粒子径分布のシャ
ープ化には必ずしも有効ではなかった。
In the above synthesis method, 'i' is used as a substituent element, but Ti is not necessarily effective in making particles finer and sharpening the particle size distribution.

これに対し、特開昭60−122726号公報、特開昭
61−219720号公報等には、置換元素としてTi
のかわりにSnを添加して微小化を試みている。しかし
ながら、鉄原料としてFe3O4、オキシ水酸化鉄、水
酸化鉄等を用いているため、水熱処理あるいは熱処理に
よるフェライト化の際に、Feの原子価変化や脱水反応
を伴うため、粒子径の分布を必ずしもシャープにするこ
とができなかった。
On the other hand, in JP-A-60-122726, JP-A-61-219720, etc., Ti is used as a substitution element.
Instead, attempts are being made to miniaturize the metal by adding Sn. However, since Fe3O4, iron oxyhydroxide, iron hydroxide, etc. are used as iron raw materials, valence change of Fe and dehydration reaction occur during ferrite formation by hydrothermal treatment or heat treatment, so the particle size distribution is It wasn't always possible to make it sharp.

(発明の目的) 本発明の目的は、前記間通点を解決し、微粒子で、粒子
径分布がシャープな高密度記録用の磁気記録媒体に用い
るのに適した六方晶マグネトプランバイト型フェライト
磁性粉の製造方法を提供することにある。
(Object of the Invention) The object of the present invention is to solve the above-mentioned problem and create a hexagonal magnetoplumbite-type ferrite magnetic material with fine particles and a sharp particle size distribution suitable for use in a magnetic recording medium for high-density recording. The purpose is to provide a method for producing powder.

(問題点を解決するための手段) 本発明者等は、鋭意検討の結果、フェライト磁性粉を製
造するための鉄原料として、比表面積50〜2!50r
d/gのヘマタイトを用いることにより、微粒子で、粒
子径分布がシャープな六方晶マグネトプランバイト型フ
ェライト磁性扮が得られることを見出した。
(Means for Solving the Problems) As a result of intensive studies, the present inventors have found that as an iron raw material for producing ferrite magnetic powder,
It has been found that by using hematite of d/g, a hexagonal magnetoplumbite-type ferrite magnetic material with fine particles and a sharp particle size distribution can be obtained.

すなわち、本発明は出発原料として、比表面績50〜2
50rrr/gのヘマタイトとBa、Sr、Pbの化合
物のうちの少なくとも一種以上とNi、Co。
That is, the present invention uses starting materials with a specific surface performance of 50 to 2.
50rrr/g of hematite, at least one of Ba, Sr, and Pb compounds, and Ni and Co.

z n、 c uの化合物のうちの少なくとも一種以」
−とsn化合物とを用い、該出発原料を含む水溶液に、
混合後の溶液中の水酸化アルカリ濃度が1モル/ρ以上
となるように水酸化アルカリを加えて沈澱物を生成させ
、該沈澱物を含むスラリを130〜300℃で水熱処理
した後、生成した沈澱物に融剤を混合し、混合物を70
0〜950℃で焼成し、得られた焼成物を洗浄すること
を特徴とする六方晶マグネ1〜ブランバイト型フエライ
ト磁性粉の製造方法に関する。
At least one of the compounds of zn, cuu"
- and an sn compound to an aqueous solution containing the starting material,
Alkali hydroxide is added to form a precipitate so that the alkali hydroxide concentration in the mixed solution is 1 mol/ρ or more, and the slurry containing the precipitate is hydrothermally treated at 130 to 300°C, and then the precipitate is formed. A flux was mixed with the precipitate, and the mixture was heated to 70%
The present invention relates to a method for producing hexagonal magnet 1 to brambite type ferrite magnetic powder, which is characterized by firing at 0 to 950°C and washing the fired product.

本発明においては、まず、出発原料の比表面積50〜2
50d/gのヘマタイト、Ba、Sr、Pbの化合物の
うちの少なくとも一種以上、Ni、Co。
In the present invention, first, the specific surface area of the starting material is 50 to 2.
50d/g of hematite, at least one of Ba, Sr, and Pb compounds, Ni, and Co.

Zn、Cuの化合物のうちの少なくとも一種以上および
Sn化合物を水に溶解または懸濁させ、これに水酸化ア
ルカリを加えて沈澱物を生成させる。
At least one of Zn and Cu compounds and a Sn compound are dissolved or suspended in water, and alkali hydroxide is added to form a precipitate.

出発原料であるヘマタイトの比表面績が50イ/gより
小さいと得られる磁性粉の粒子径が大きくなり、また2
50rrr/gより大きいと粒子径分布が広くなる。し
たがって、このような磁性粉を使用した記録媒体はノイ
ズレベルが高くなったり、記録密度が低くなるので好ま
しくない、ヘマタイトの使用量は、濃度が1〜10重量
%が好ましい。
If the specific surface roughness of hematite, which is a starting material, is smaller than 50 i/g, the particle size of the magnetic powder obtained becomes large;
If it is larger than 50rrr/g, the particle size distribution will be wide. Therefore, a recording medium using such magnetic powder is undesirable because the noise level becomes high and the recording density becomes low. The amount of hematite used is preferably 1 to 10% by weight.

濃度が1重量%より少ないと、マグネトプランバイト型
フェライトの生成量が少なく、結晶性も悪くなる。また
10重量%よりも多いとフェライトの粒子が大きくなり
、磁気特性も劣ってくるので好ましくない。
If the concentration is less than 1% by weight, the amount of magnetoplumbite ferrite produced will be small and the crystallinity will be poor. Moreover, if it exceeds 10% by weight, the ferrite particles become large and the magnetic properties deteriorate, which is not preferable.

Ba、Sr、Pbの化合物としては、それらの硝酸塩、
塩化物、水酸化物等のうちの少なくとも一稚以−Eが用
いられる。これらの化合物の使用量は、濃度が0.03
〜0.50モル/pの範囲になるようにするのが六方晶
の結晶性のよい粒子を得るうえで望ましい。
Compounds of Ba, Sr, and Pb include their nitrates,
At least one of the chlorides, hydroxides, etc. is used. The amount of these compounds used is at a concentration of 0.03
In order to obtain hexagonal particles with good crystallinity, it is desirable that the content be in the range of 0.50 mol/p.

Ni、Co、Zn、Cuの化合物としては、それらの塩
化物、硝酸塩等の少なくとも一種以上が用いられる。
As the compounds of Ni, Co, Zn, and Cu, at least one of their chlorides, nitrates, etc. is used.

Snの化合物としては、塩化スズ、硝酸スズ、スズ酸ソ
ーダ等が用いられる。
As the Sn compound, tin chloride, tin nitrate, sodium stannate, etc. are used.

これらの置換元素の添加量としては、六方晶フェライト
1分子に対して0.1〜25グラム原子の範囲が望まし
い、添加量が前記範囲を外れると、保磁力が高すぎたり
、磁化容易軸がC軸からずれたりするので好ましくない
The addition amount of these substitution elements is preferably in the range of 0.1 to 25 gram atoms per molecule of hexagonal ferrite.If the addition amount is out of the above range, the coercive force may be too high or the axis of easy magnetization may change. This is not preferable because it may deviate from the C-axis.

水酸化アルカリとしては、水酸化ナトリウム、水酸化カ
リウム等が用いられる。水酸化アルカリの使用量は水酸
化アルカリを混合した後の溶液中の水酸化アルカリに;
度が1モル/l以上となる量が必要であり、2〜8モル
/、Qの範囲が好ましい。
As the alkali hydroxide, sodium hydroxide, potassium hydroxide, etc. are used. The amount of alkali hydroxide used is the alkali hydroxide in the solution after mixing the alkali hydroxide;
The amount is required so that the degree is 1 mol/l or more, and the range of 2 to 8 mol/l is preferable.

水酸化アルカリの量が少なずぎると粒子が大きくなった
り、粒子径分布が広くなったりする。また水酸化アルカ
リを過度に多くするのは経済的でない。
If the amount of alkali hydroxide is too small, the particles will become large or the particle size distribution will become wide. Further, it is not economical to increase the amount of alkali hydroxide excessively.

前記出発原料の水溶液に水酸化アルカリを混合する方法
については、特に制限はないが、例えば出発原料の水溶
液に、直接水酸化アルカリを添加するか、あるいは水酸
化アルカリの水溶液を添加する方法がある。
There is no particular restriction on the method of mixing the alkali hydroxide into the aqueous solution of the starting material, but for example, there are methods of directly adding the alkali hydroxide or adding an aqueous solution of the alkali hydroxide to the aqueous solution of the starting material. .

さらに、予め出発原料の水溶液あるいは水酸化アルカリ
の水溶液にSi、Caなどの水に可溶性の化合物、例え
ばケイ酸、ケイ酸ナトリウム、硝酸カルシウム、塩化カ
ルシウム等を若干添加することができる。これらの添加
物は粒子形状を制御するうえで好ましい。
Furthermore, a small amount of water-soluble compounds such as Si and Ca, such as silicic acid, sodium silicate, calcium nitrate, and calcium chloride, can be added in advance to the aqueous solution of the starting material or the aqueous solution of alkali hydroxide. These additives are preferred for controlling particle shape.

次に、沈澱物を含むスラリを水熱処理することにより、
六方晶フェライトの微細な結晶が生成、沈澱する。水熱
処理の温度は130〜300℃、好ましくは140〜2
80℃である。温度が低すぎると結晶の生成が充分でな
く、また温度が高すぎると最終的に得られる六方晶フェ
ライト粉末の粒子径が大きくなるので好ましくない、水
熱処理時間は普通、0.5〜20時間程度であり、水熱
処理には通常、オートクレーブが採用される。
Next, by hydrothermally treating the slurry containing the precipitate,
Fine crystals of hexagonal ferrite are formed and precipitated. The temperature of hydrothermal treatment is 130-300℃, preferably 140-2
The temperature is 80°C. If the temperature is too low, crystal formation will not be sufficient, and if the temperature is too high, the particle size of the final hexagonal ferrite powder will become large, which is undesirable.The hydrothermal treatment time is usually 0.5 to 20 hours. An autoclave is usually used for hydrothermal treatment.

次いで、水熱処理により生成した微細な結晶の沈澱物を
水洗して、遊雑のアルカリ分を除去した後、得られた沈
澱物に融剤を混合する。融剤としては、塩化ナトリウム
、塩化カリウム、塩化バリウム、塩化ストロンチウムお
よびフッ化ナトリウムのうち少なくとも一種が用いられ
る。融剤の使用量は沈澱物(乾燥物基準)に対して、1
0〜180重量%、好ましくは30〜120重量%が適
当である。融剤の量が少なすぎると粒子の焼結が起り、
また多すぎても多くしたことによる利点はなく、経済的
でない、沈澱物と融剤の混合方法は特に制限はなく、例
えば沈澱物のスラリに融剤を加えて湿式混合した後、ス
ラリを乾燥してもよく、あるいは沈澱物を乾燥した後、
融剤を加えて乾式混合してもよい。
Next, the fine crystal precipitate produced by the hydrothermal treatment is washed with water to remove stray alkaline components, and then a flux is mixed with the obtained precipitate. As the flux, at least one of sodium chloride, potassium chloride, barium chloride, strontium chloride, and sodium fluoride is used. The amount of flux used is 1 for the precipitate (dry basis).
0 to 180% by weight, preferably 30 to 120% by weight is suitable. If the amount of flux is too small, sintering of the particles will occur,
Also, even if the amount is too large, there is no advantage and it is not economical. There are no particular restrictions on the method of mixing the precipitate and the flux. For example, after adding the flux to the slurry of the precipitate and wet mixing, the slurry is dried. or after drying the precipitate,
A flux may be added and dry mixed.

次いで、得られた混合物を焼成することにより、六方晶
フェライトの結晶化が完全に行われる。焼成温度は70
0〜950℃、好ましくは800〜930℃である。温
度が低すぎると結晶化が進まず、飽和磁化が低くなる。
Next, by firing the obtained mixture, the hexagonal ferrite is completely crystallized. Firing temperature is 70
The temperature is 0 to 950°C, preferably 800 to 930°C. If the temperature is too low, crystallization will not proceed and the saturation magnetization will become low.

また温度が高すぎると粒子が大きくなったり、焼結が起
こるので好ましくない、焼成時間は10分〜30時間程
度が適当である。焼成雰囲気は特に制限されないが、−
・般に空気雰囲気が便利である。
Further, if the temperature is too high, the particles will become large or sintering will occur, which is not preferable.The firing time is preferably about 10 minutes to 30 hours. The firing atmosphere is not particularly limited, but -
・Air atmosphere is generally convenient.

得られた焼成物を洗浄後、濾過、乾燥することにより、
六方晶フェライト磁性粉が得られる。洗浄は焼成物中の
融剤、過剰のバリウムなどの不純物を十分に除去できれ
ばよとのような方法で行ってもよい。洗浄液としては水
や硝酸、塩酸などの無機酸、酢酸、プロピオン酸などの
有機酸などを用いることができる。
By washing, filtering and drying the obtained baked product,
Hexagonal ferrite magnetic powder is obtained. The cleaning may be carried out by any method as long as impurities such as flux and excess barium in the fired product can be sufficiently removed. As the cleaning liquid, water, inorganic acids such as nitric acid and hydrochloric acid, and organic acids such as acetic acid and propionic acid can be used.

(実施例) 実施例1 脱イオン水1300rrJに、塩1ヒコバルト[Co 
CN2・6H2010,24モル、塩化第2スズ[Sn
 C’J)4] 0.24モルを溶解し、これに比表面
G’tlO’zr?/gのヘマタイト1.56モルを加
え、強く撹拌した。別に脱イオン水1300mNに、水
酸化バリウム[B a(O)■2.8)(20] 0.
45モル、カセイソーダ(NaOH)27モルを溶解し
、両溶液を混合して沈澱物を生成させた。
(Example) Example 1 In 1300 rrJ of deionized water, 1 hcobalt [Co
CN2.6H2010, 24 mol, stannic chloride [Sn
C'J)4] 0.24 mol and the specific surface G'tlO'zr? 1.56 mol/g of hematite was added and stirred vigorously. Separately, add barium hydroxide [Ba(O) 2.8) (20] 0.0 to 1300 mN of deionized water.
45 mol and 27 mol of caustic soda (NaOH) were dissolved, and both solutions were mixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
145℃で8時間水熱処理を行った0次いで得られた沈
澱物を十分に水洗した後、−過、乾燥し、これに融剤と
してNa (llとBa CJ 2・2H20の重量比
が1:1の混合物を沈澱物に対して100重量%加えて
混合した。この混合物を空気雰囲気下で860℃で2時
間焼成した。得られた焼成物を水で十分水洗した後、濾
過、乾燥してバリウムフェライト磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was carried out at 145°C for 8 hours.The resulting precipitate was then thoroughly washed with water, filtered and dried, and added with Na as a flux at a weight ratio of 1:1 and BaCJ2.2H20. 1 was added in an amount of 100% by weight based on the precipitate and mixed. This mixture was fired at 860°C for 2 hours in an air atmosphere. The resulting fired product was thoroughly washed with water, filtered, and dried. Barium ferrite magnetic powder was obtained.

得られたバリウムフェライト磁性粉は2、X線粉末回折
スペクトルの結果、六方晶マグネトプランバイト型であ
った。
The obtained barium ferrite magnetic powder 2 was of the hexagonal magnetoplumbite type as a result of the X-ray powder diffraction spectrum.

またこのバリウムフェライト磁性粉について振動試料式
磁力計で磁気特性を測定した結果および透過型電子顕微
鏡により粒子形状を観察した結果を第1表に示す。
Furthermore, Table 1 shows the results of measuring the magnetic properties of this barium ferrite magnetic powder using a vibrating sample magnetometer and the results of observing the particle shape using a transmission electron microscope.

実施例2 実施例1の塩化コバルトにかえて塩化ニッケル[N i
 CJ2・6H20]0.24モルを用いたほかは実施
例1と同様にし゛Cバリウムフェライト磁性1分を得た
Example 2 Nickel chloride [N i
A barium ferrite magnetic material (CJ2.6H20) was obtained in the same manner as in Example 1 except that 0.24 mol of CJ2.6H20 was used.

このバリウムフェライト磁性粉について実施例1と同様
にして磁気特性を測定した結果および粒子形状を観察し
た結果を第1表に示す。
Table 1 shows the results of measuring the magnetic properties of this barium ferrite magnetic powder in the same manner as in Example 1 and observing the particle shape.

比較例1 実施例1の比表面積105rrr/gのヘマタイトにか
えて比表面積15rrr/gのヘマタイトを用いたほか
は実施例1と同様にしてバリウムフェライト磁性粉を得
た。
Comparative Example 1 Barium ferrite magnetic powder was obtained in the same manner as in Example 1 except that hematite with a specific surface area of 15 rrr/g was used instead of hematite with a specific surface area of 105 rrr/g in Example 1.

このバリウムフェライト磁性粉について実施例1と同様
にして磁気特性な測定した結果および粒子形状を観察し
た結果を第1表に示す。
Table 1 shows the results of measuring the magnetic properties and observing the particle shape of this barium ferrite magnetic powder in the same manner as in Example 1.

比較例2 実施例1の比表面Wt105rrr/gのヘマタイトに
かえて比表面積92rr?/gのゲーサイトを用いたほ
かは実施例1と同様にしてバリウムフェライト磁性粉を
1:)な。
Comparative Example 2 Instead of hematite having a specific surface Wt of 105 rrr/g in Example 1, a specific surface Wt of 92 rr? Barium ferrite magnetic powder was prepared in the same manner as in Example 1 except that goethite of 1:) was used.

このバリウムフェライト磁性粉について実施例1と同様
にして磁気特性を測定した結果および粒子形状を観察し
た結果を第1表に示す。
Table 1 shows the results of measuring the magnetic properties of this barium ferrite magnetic powder in the same manner as in Example 1 and observing the particle shape.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] 出発原料として、比表面積50〜250m^2/gのヘ
マタイトとBa、Sr、Pbの化合物のうちの少なくと
も一種以上とNi、Co、Zn、Cuの化合物のうちの
少なくとも一種以上とSn化合物とを用い、該出発原料
を含む水溶液に、混合後の溶液中の水酸化アルカリ濃度
が1モル/l以上となるように水酸化アルカリを加えて
沈澱物を生成させ、該沈澱物を含むスラリを130〜3
00℃で水熱処理した後、生成した沈澱物に融剤を混合
し、混合物を700〜950℃で焼成し、得られた焼成
物を洗浄することを特徴とする六方晶マグネトプランバ
イト型フェライト磁性粉の製造方法。
As starting materials, hematite with a specific surface area of 50 to 250 m^2/g, at least one of Ba, Sr, and Pb compounds, at least one of Ni, Co, Zn, and Cu compounds, and a Sn compound. Alkali hydroxide is added to the aqueous solution containing the starting materials so that the alkali hydroxide concentration in the solution after mixing is 1 mol/l or more to form a precipitate, and the slurry containing the precipitate is ~3
Hexagonal magnetoplumbite type ferrite magnetism characterized in that after hydrothermal treatment at 00°C, a flux is mixed with the generated precipitate, the mixture is fired at 700 to 950°C, and the obtained fired product is washed. How to make powder.
JP14520587A 1987-06-12 1987-06-12 Method for producing hexagonal magnetoplumbite ferrite magnetic powder Expired - Lifetime JPH0649578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14520587A JPH0649578B2 (en) 1987-06-12 1987-06-12 Method for producing hexagonal magnetoplumbite ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14520587A JPH0649578B2 (en) 1987-06-12 1987-06-12 Method for producing hexagonal magnetoplumbite ferrite magnetic powder

Publications (2)

Publication Number Publication Date
JPS63310729A true JPS63310729A (en) 1988-12-19
JPH0649578B2 JPH0649578B2 (en) 1994-06-29

Family

ID=15379831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14520587A Expired - Lifetime JPH0649578B2 (en) 1987-06-12 1987-06-12 Method for producing hexagonal magnetoplumbite ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JPH0649578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media

Also Published As

Publication number Publication date
JPH0649578B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP5142354B2 (en) ε-Fe2O3 crystal manufacturing method
KR900000428B1 (en) Process for producing plate barium ferrite particles or magnetics recording
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPS63310729A (en) Production of hexagonal magnetoplumbite type ferrite magnetic powder
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPH0526727B2 (en)
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JPS63310730A (en) Hexagonal ferrite magnetic powder and its production
JPS62207720A (en) Preparation of barium ferrite powder
JPS62252324A (en) Production of fine barium ferrite powder
JPH06104576B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH01282129A (en) Barium ferrite magnetic powder and its production
JPS61295237A (en) Production of barium ferrite powder
JPS63265829A (en) Barium ferrite magnetic powder and its production
JPS63195125A (en) Barium ferrite magnetic powder and production thereof
JPH0649579B2 (en) Method for producing barium ferrite magnetic powder
JPH0647468B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH0647467B2 (en) Barium ferrite magnetic powder and method for producing the same
JPS63170221A (en) Barium ferrite magnetic powder and its production
JPH04362020A (en) Ferritic magnetic powder and its production
JPH0692256B2 (en) Method for manufacturing barium ferrite powder
JPS63170220A (en) Barium ferrite magnetic powder and its production
JPS61295236A (en) Production of particular magnet plumbite-type ferrite
JPS63225533A (en) Production of barium ferrite powder