JPS61174118A - Magnetic powder for vertical magnetic recording and its production - Google Patents

Magnetic powder for vertical magnetic recording and its production

Info

Publication number
JPS61174118A
JPS61174118A JP60014088A JP1408885A JPS61174118A JP S61174118 A JPS61174118 A JP S61174118A JP 60014088 A JP60014088 A JP 60014088A JP 1408885 A JP1408885 A JP 1408885A JP S61174118 A JPS61174118 A JP S61174118A
Authority
JP
Japan
Prior art keywords
salt
magnetic powder
magnetic
magnetic recording
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60014088A
Other languages
Japanese (ja)
Inventor
Shigeo Hirai
茂雄 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60014088A priority Critical patent/JPS61174118A/en
Publication of JPS61174118A publication Critical patent/JPS61174118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To produce the titled magnetic poser high in the saturation magnetizing quantity and low in the coercive force by regulating an aq. soln. of ferric salt, Ba salt, Co salt and Sn salt to the specified pH with alkali to deposit a coprecipitated material of hydroxide, washing, separating, heating and calcining it. CONSTITUTION:The following aq. soln. is regulated to >=7pH with alkali wherein ferric salt, at least one kind selected from Ba salt, Sr salt and Pb salt, at least one kind selected from Co salt and Ni salt, and Sn salt are dissolved and the coprecipitated material of a hydroxide is deposited. Then after washing this coprecipitated material with water and separating it, about 50-120pts.wt. flux such as NaCl per 100pts.wt. coprecipitated material is added and the mixture is heated and calcined at about 850-1,300 deg.C. Thereby the following hexagonal platy particulate magnetic powder of the vertical magnetic recording is obtained wherein <=25% Fe atom in a magnetoplumbite type structure shown in AO.nFe2 O3 [A is one kind of atom selected from Ba, Sr, Pb, and (n) is integer.] is substituted with Co or Ni and Sn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気テープその他の磁気記録媒体の磁気記録
素子として用いられるマグネトプランバイト型磁性粉と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoplumbite-type magnetic powder used as a magnetic recording element for magnetic tapes and other magnetic recording media, and a method for producing the same.

〔従来の技術〕[Conventional technology]

一般に磁気記録媒体はポリエステルフィルムなどのベー
ス上に磁気記録素子としての磁性粉とこれを結着するバ
インダを含む磁性層を設けたものである。そして上記磁
性粉として従来よりT−Fe203、Fe3O4、Co
金含有r−Fe20s、金属Feなどの針状粒子からな
る磁性粉が汎用されており、これらは磁性層形成時に上
記ベース面に沿って配向させることにより磁性層面と平
行な方向の磁化成分を記録再生に利用するものである。
In general, a magnetic recording medium is one in which a magnetic layer containing magnetic powder as a magnetic recording element and a binder to bind the powder is provided on a base such as a polyester film. The above-mentioned magnetic powder has conventionally been T-Fe203, Fe3O4, Co
Magnetic powders consisting of acicular particles such as gold-containing r-Fe20s and metallic Fe are commonly used, and these can be oriented along the base surface during magnetic layer formation to record magnetization components in the direction parallel to the magnetic layer surface. It is used for playback.

ところが、近年においては磁気記録の高密度化に伴って
磁性層面に対して垂直方向の磁化成分を記録再生に利用
できるBa、Sr%Pbフェライトなどのマグネトプラ
ンバイト型磁性粉が使用されつつある。
However, in recent years, with the increase in the density of magnetic recording, magnetoplumbite-type magnetic powders such as Ba and Sr%Pb ferrites, which can utilize the magnetization component perpendicular to the magnetic layer surface for recording and reproduction, are being used.

上記マグネトプランバイト型磁性粉は、AO−nF e
203 (ただしAはBa%Sr%Pbより選ばれる少
なくとも一種の原子、nは整数、一般には4〜′7)で
示される構造の六角板状の粒子からなり、粒子板面に対
して垂直方向に磁化容易軸を有するたべ磁性層形成時に
粒子板面方向がベース面に沿うように配向させることに
より、磁性層面に対して垂直方向の磁化成分を記録再生
に利用でき、高密度磁気記録に適している。
The above magnetoplumbite type magnetic powder is AO-nF e
203 (where A is at least one type of atom selected from Ba%Sr%Pb, n is an integer, generally 4 to '7), and consists of hexagonal plate-shaped particles with a structure shown in the vertical direction to the particle plate surface. By orienting the grain plate surface direction along the base surface when forming a magnetic layer with an easy axis of magnetization, the magnetization component perpendicular to the magnetic layer surface can be used for recording and reproduction, making it suitable for high-density magnetic recording. ing.

このようなマグネトプランバイト型磁性粉を得る一手段
として、構成金属の冬場を含む水溶液とアルカリとの反
応によりアルカリ性領域下で水酸化物共沈物を析出させ
、これを該アルカリ性領域下でオートクレーブ中におい
て280〜550℃程度で水熱反応させる方法が知られ
る(特開昭59−161002号公報および特開昭56
−149328号公報)。しかしながら、この方法では
磁性粉の飽和磁化量(σS)を高くできず、より一層の
高密度記録化には対処しにくいという欠点がある。これ
は上記水熱反応時に圧力は高いが加熱温度が低く、粒子
成長が抑制されることにより飽和磁化量(σS)が増大
しないことに起因すると推定される。
One way to obtain such a magnetoplumbite-type magnetic powder is to precipitate a hydroxide coprecipitate in an alkaline region by reacting an aqueous solution containing the constituent metals with an alkali, and then autoclave the precipitate in an alkaline region. A method is known in which a hydrothermal reaction is carried out at about 280 to 550°C in
-149328). However, this method has the drawback that it is not possible to increase the saturation magnetization (σS) of the magnetic powder, making it difficult to cope with higher density recording. This is presumed to be due to the fact that during the hydrothermal reaction, the pressure is high but the heating temperature is low, and particle growth is suppressed so that the saturation magnetization (σS) does not increase.

また、飽和磁化量(σS)の高い磁石用の磁性粉を得る
手段として、上記方法における水酸化物共沈物を融剤と
ともに800℃以上の高温で加熱焼成する方法も知られ
る(特開昭55−145303号公報)。ところが、こ
の方法では磁性粉の飽和磁化量(σS)を5 Oemu
/y以上と高くできる反面、該磁性粉の保磁力(He)
が2,000エルステッド(Oe)以上と大きくなり、
これを用いた磁気記録媒体の保磁力(He )も大きく
なり過ぎて通常の磁気ヘッドでは記録時に飽和するため
、実用上で問題がある。
In addition, as a means of obtaining magnetic powder for magnets with a high saturation magnetization (σS), there is also known a method of heating and firing the hydroxide coprecipitate in the above method together with a flux at a high temperature of 800°C or higher (Japanese Patent Application Laid-Open No. 55-145303). However, in this method, the saturation magnetization (σS) of the magnetic powder is reduced to 5 Oemu
On the other hand, the coercive force (He) of the magnetic powder can be as high as /y or more.
becomes larger than 2,000 oersteds (Oe),
The coercive force (He 2 ) of a magnetic recording medium using this material also becomes too large, and a normal magnetic head is saturated during recording, which poses a practical problem.

一方、このようなマグネトプランバイト型磁性粉の保磁
力(He )を低くする手段として、前記構造式におけ
るFe原子の一部をCoまたはNiで置換する方法や、
CoまたはNiとTiとで同様に置換する方法が知られ
る(文献不詳)。
On the other hand, as a means of lowering the coercive force (He) of such magnetoplumbite-type magnetic powder, a method of substituting a part of Fe atoms in the above structural formula with Co or Ni,
A similar method of substituting Co or Ni with Ti is known (document unknown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記の如<CoまたはNiで置換した場
合、磁性粉の磁化容易軸が粒子板面方向に変化するため
、垂直磁気記録用としてのマグネトプランバイト型磁性
粉としての本来の特徴が失われるという問題がある。ま
た前記の如<CoまたはNiとTiとで置換した磁性粉
では、磁化容易軸が粒子板面方向と垂直方向との2成分
となり、かつ六角板状粒子とともに不定形粒子が混在し
易く、やはり前記本来の特徴が損なわれるという問題が
ある。
However, when replacing with Co or Ni as described above, the axis of easy magnetization of the magnetic powder changes in the direction of the particle plate surface, so the original characteristics of the magnetoplumbite type magnetic powder for perpendicular magnetic recording are lost. There is a problem. In addition, in the magnetic powder substituted with Co or Ni and Ti as described above, the axis of easy magnetization becomes two components, one in the direction of the particle plate surface and the other in the perpendicular direction, and irregularly shaped particles are likely to be mixed together with the hexagonal plate-like particles. There is a problem that the original characteristics mentioned above are lost.

そこでこの発明は、実質的に磁化容易軸が粒子板面に対
して垂直方向のみであり、しかも高い飽和磁化量(σS
)と、これを用いた磁気記録媒体を通常の磁気ヘッドに
よる記録に適した低い保磁力(He)とを備えたマグネ
トプランバイト型構造の垂直磁気記録用磁性粉、ならび
にその製造方法を提供することを目的としている。
Therefore, in this invention, the axis of easy magnetization is substantially only in the direction perpendicular to the particle plate surface, and the amount of saturation magnetization (σS
) and a magnetic powder for perpendicular magnetic recording having a magnetoplumbite structure, which has a low coercive force (He) suitable for recording a magnetic recording medium using the same with an ordinary magnetic head, and a method for producing the same. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明者は、上記目的において鋭意検討を重ねた結果
、前記構造式におけるFe原子の一部をCoまたはNi
とSnとによって置換したマグネトプランバイト型磁性
粉では、磁化容易軸が実質的に粒子板面に対して垂直方
向のみとなり、しかも高い飽和磁化量(σS)と磁気記
録媒体を通常の磁気ヘッドによる記録に適した低い保磁
力(Hc)を具備させ得ることを見い出し、この発明を
なすに至った。
As a result of extensive studies for the above purpose, the inventor has determined that some of the Fe atoms in the above structural formula can be replaced with Co or Ni.
In the magnetoplumbite-type magnetic powder substituted with Sn and Sn, the axis of easy magnetization is essentially only in the direction perpendicular to the particle plate surface, and moreover, it has a high saturation magnetization (σS) and a magnetic recording medium cannot be used with a normal magnetic head. The present inventors have discovered that it is possible to provide a low coercive force (Hc) suitable for recording, and have accomplished this invention.

すなわちこの発明は、AO・nFe203(ただし、A
はBa、Sr、Pbより選ばれる少なくとも一種の原子
、nは整ゆで示されるマグネトプランバイト型構造にお
ける上記Fe原子の25原子%以下がCoまたはNiと
Snとで置換された六角板状粒子からなる垂直磁気記録
用磁性粉、ならびにa)第二鉄塩と、b)バリウム塩、
ストロンチウム塩、鉛塩から選ばれる少なくとも1種の
塩と、C)コバルト塩、ニッケル塩から選ばれる少なく
とも1種の塩と、d)錫塩とを溶解した水溶液にアルカ
リを作用させ、PH7以上にて水酸化物共沈物を析出さ
せ、この水酸化物共沈物を水洗2分離したのち、融剤と
ともに高温下で加熱焼成することを特徴とする垂直磁気
記録用磁性粉の製造方法に係る。
In other words, this invention uses AO・nFe203 (however, A
is at least one kind of atom selected from Ba, Sr, and Pb, and n is a well-formed hexagonal plate-like particle in which 25 atomic percent or less of the Fe atoms in the magnetoplumbite structure are replaced with Co or Ni and Sn magnetic powder for perpendicular magnetic recording, as well as a) ferric salt, b) barium salt,
An alkali is applied to an aqueous solution containing at least one salt selected from strontium salts and lead salts, C) at least one salt selected from cobalt salts and nickel salts, and d) tin salt, and the pH is adjusted to 7 or more. A method for producing magnetic powder for perpendicular magnetic recording, which comprises precipitating a hydroxide coprecipitate, washing the hydroxide coprecipitate with water and separating it into two parts, and then heating and baking it together with a flux at a high temperature. .

〔発明の構成・作用〕[Structure and operation of the invention]

この発明に係る垂直磁気記録用磁性粉は、前記の如くA
O−nFe203(ただし、AはBa、 S r、 P
bより選ばれる少なくとも一種の原子、nは整数、一般
には4〜7)で示されるマグネトプランバイト型溝造に
おける上記Fe原子の25原子%以下がCoまたはNi
とSnとで置換された六角板状粒子からなるものである
。そしてこのような磁性粉は、上記置換成分としてSn
が存在することにより、磁化容易軸方向が、Coまたは
Niのみを置換成分とした場合のように粒子板面方向に
変化せず、実質的に本来の粒子板面に対して垂直方向の
みとなり、しかも2,000エルステッド(Oe)以下
の低い保磁力(Hc )を備えるとともに、上記置換成
分の置換程度および成分比率により50 emu/y以
上の高い飽和磁化量(σS)を具備させることも可能で
ある。
The magnetic powder for perpendicular magnetic recording according to the present invention can be used as described above.
OnFe203 (A is Ba, Sr, P
At least 25 at % or less of the Fe atoms in the magnetoplumbite groove structure are Co or Ni, where at least one atom selected from b, n is an integer, generally 4 to 7)
and Sn. Such magnetic powder contains Sn as the above-mentioned replacement component.
Due to the existence of Furthermore, it is possible to have a low coercive force (Hc) of 2,000 Oe or less, and a high saturation magnetization (σS) of 50 emu/y or more depending on the degree of substitution and component ratio of the above-mentioned substitution components. be.

ここで前記従来の如く置換成分としてCoまたはNiと
ともにTiを用いた場合に磁化容易軸が粒子板面方向と
垂直方向の2成分に分かれるのに対し、Snを用いるこ
とによって上記垂直方向のみとなる理由は、明確ではな
いが、次のように推定される。すなわち、TiおよびS
nはともに磁化容易軸の垂直方向成分増大に作用するが
、酸化物であるTiO2の融点が〜1840℃であるの
に対してSnO,の融点が〜1630℃と低いため、磁
性粉合成時の加熱焼成時にSnの方がより均一に粒子内
に拡散して規則性のある結晶構造を造り易いことに起因
すると考えられる。また、この点はTiを用いた場合に
不定形粒子が混成する要因でもあると想定される。
Here, when Ti is used together with Co or Ni as a replacement component as in the conventional case, the axis of easy magnetization is divided into two components, one in the direction of the grain plate surface and the other in the perpendicular direction, but by using Sn, it becomes only in the perpendicular direction. Although the reason is not clear, it is presumed as follows. That is, Ti and S
Both n acts to increase the perpendicular component of the axis of easy magnetization, but since the melting point of TiO2, which is an oxide, is ~1840°C, the melting point of SnO is as low as ~1630°C, so it is difficult to use when synthesizing magnetic powder. This is thought to be due to the fact that Sn diffuses more uniformly into the particles during heating and baking, making it easier to create a regular crystal structure. Moreover, this point is also assumed to be a factor in the mixture of irregularly shaped particles when Ti is used.

なお、上記Fe原子に対するCoまたはNiとSnとの
置換量が多すぎると飽和磁化量(σS)の著しい低下を
招くため、上記の如く25原子%以・下、とくに好適に
は20原子%以下とすべきである。またこの置換量が少
なすぎると保磁力を充分に低くできないため、好ましく
は12原子%以上とするのがよい。
Note that if the amount of substitution of Co or Ni and Sn for the Fe atom is too large, it will cause a significant decrease in the saturation magnetization (σS). Should be. Furthermore, if the amount of substitution is too small, the coercive force cannot be lowered sufficiently, so it is preferably 12 atom % or more.

一方、CoまたはNiとSnとの使用割合は、(C。On the other hand, the usage ratio of Co or Ni and Sn is (C.

またはNi)/Snの原子比が4=1〜1:2の範囲と
なるようにするのがよ(、上記比よりもCoまたはNi
量が少ないと保磁力(Hc )の低下作用が充分に現わ
れず、逆に上記比よりもCoまたはNiが多いと磁化容
易軸の粒子板面方向の成分が多(なって好ましくない。
Or, it is better to set the atomic ratio of Ni)/Sn to be in the range of 4=1 to 1:2.
If the amount is too small, the effect of lowering the coercive force (Hc) will not be sufficiently exhibited, and conversely, if the amount of Co or Ni is greater than the above ratio, the component of the easy axis of magnetization in the direction of the grain plate surface will be large (which is not preferable).

なお、CoとNiはそれぞれ単独で用いる以外に併用し
ても差し支えなく、併用の場合に前記置換量および原子
比が両者の合計量を基準とすることは言うまでもない。
Incidentally, Co and Ni may be used in combination in addition to being used alone, and it goes without saying that when they are used in combination, the above-mentioned substitution amount and atomic ratio are based on the total amount of both.

さらに上記磁性粉の平均粒子径(板面方向の最長)は、
磁気記録媒体用としての磁気特性上から0.5〜0.0
2/”程度が望ましい。
Furthermore, the average particle diameter (longest in the direction of the plate surface) of the above magnetic powder is
0.5 to 0.0 in terms of magnetic properties for magnetic recording media
Approximately 2/” is desirable.

このような垂直磁気記録用磁性粉を得る方法は種々ある
が、上記のように好ましい微粒子状のものを得る具体的
方法は次の通りである。
Although there are various methods for obtaining such magnetic powder for perpendicular magnetic recording, a specific method for obtaining the preferable fine particles as described above is as follows.

すなわち、まずa)第二鉄塩と、 b)バリウム塩、ス
トロンチウム塩、鉛塩から選ばれる少なくとも1種の塩
と%C)コバルト塩、ニッケル塩から選ばれる少なくと
も1種の塩と、d)錫塩とを溶解した水溶液にアルカリ
を作用させ、PH7以上、とくに好ましくはPH10以
上にて水酸化物共沈物を析出させる。この時、上記a 
−dの各基としては塩化物、硫酸塩、硝酸塩などの水溶
性塩が好適に使用され、またアルカリとしてはNaOH
またはKOH水溶液、NH3水などが用いられる。なお
a〜dの各基の使用モル比を最終的に得られる磁性粉の
原子比が所要値となるように設定すべきことはもちろん
である。
That is, first, a) a ferric salt; b) at least one salt selected from barium salts, strontium salts, and lead salts; and d) at least one salt selected from cobalt salts and nickel salts. An alkali is applied to an aqueous solution containing a tin salt, and a hydroxide coprecipitate is precipitated at a pH of 7 or higher, particularly preferably at a pH of 10 or higher. At this time, the above a
As each group of -d, water-soluble salts such as chloride, sulfate, and nitrate are preferably used, and as the alkali, NaOH
Alternatively, KOH aqueous solution, NH3 water, etc. are used. It goes without saying that the molar ratio of each of the groups a to d should be set so that the atomic ratio of the finally obtained magnetic powder becomes a required value.

次に、上記水酸化物共沈物をその懸濁液より水洗2分離
したのち、融剤とともに高温下通常800℃以上、とく
に好ましくは850〜1,300℃で加熱焼成する。こ
の場合、上記水酸化物共沈物を粉末状の融剤に混合して
焼成に供することも可能であるが、上記水酸化物共沈物
が微粒子状であるため均一混合するのに困難を伴う。こ
のため好ましくは、上記懸濁液から分離後の水酸化物共
沈物を融剤の水溶液中に分散混合し、濾過、乾燥するこ
とにより、水酸化物共沈物の粒子表面に融剤が被着した
状態として、これを焼成に供することが推奨される。
Next, the hydroxide coprecipitate is separated from the suspension by washing with water for two minutes, and then heated and calcined together with a flux at a high temperature of usually 800°C or higher, particularly preferably 850 to 1,300°C. In this case, it is also possible to mix the hydroxide coprecipitate with a powdered flux and provide it for firing, but since the hydroxide coprecipitate is in the form of fine particles, it is difficult to mix it uniformly. Accompany. For this reason, preferably, the hydroxide coprecipitate separated from the suspension is dispersed and mixed in an aqueous solution of a flux, filtered, and dried, so that the flux is applied to the particle surface of the hydroxide coprecipitate. It is recommended that the deposited state be subjected to firing.

上記融剤としては、ナトリウム、カリウム、リチウム、
カルシウムの塩化物、臭化物、沃化物およびフッ化物、
ナトリウム、カリウム、リチウムの硫酸塩などから選ば
れる少なくとも一種を好適に使用できる。また、このよ
うな融剤は前記水酸化物共沈物100重量部に対して5
0〜120重量部程度の範囲で用いるのがよい。
The above fluxing agents include sodium, potassium, lithium,
Calcium chloride, bromide, iodide and fluoride,
At least one selected from sodium, potassium, lithium sulfates, etc. can be suitably used. Further, such a fluxing agent is used in an amount of 5 parts by weight per 100 parts by weight of the hydroxide coprecipitate.
It is preferable to use it in a range of about 0 to 120 parts by weight.

このような加熱焼成により、融解した融剤中で微粒子状
の水酸化物共沈物が前記のマグネトプランバイト型構造
に変化するとともにある程度の粒子成長が行われ、50
emu/7程度ないしそれ以上の高い飽和磁化量(σS
)と通常の磁気ヘッドによる記録に適した2、000エ
ルステッド(Oe)以下の低い保磁力(Hc )を備え
た平均粒子径0.5〜0.02.l’lであるこの発明
の垂直磁気記録用磁性粉が得られる。なお、この加熱焼
成温度が低すぎると上記のような粒子成長が充分になさ
れず、飽和磁化量(σS)が低下するため、既述の如く
通常8006C以上、好適には850〜1,300℃程
度とするのがよい。また加熱焼成時間は通常2〜5時間
程度である。
By such heating and calcination, the fine particulate hydroxide coprecipitate in the melted flux changes to the above-mentioned magnetoplumbite type structure, and grain growth occurs to a certain extent.
A high saturation magnetization amount (σS
) and an average particle diameter of 0.5 to 0.02. The magnetic powder for perpendicular magnetic recording of the present invention, which is l'l, is obtained. Note that if this heating and firing temperature is too low, the above-mentioned grain growth will not be sufficient and the saturation magnetization (σS) will decrease. It is better to set it as a degree. Further, the heating and baking time is usually about 2 to 5 hours.

この発明の垂直磁気記録用磁性粉を用いて磁気テープな
どの磁気記録媒体を作製する手段としては、従来のこの
種磁性粉を用いる方法に準じて行えばよい。たとえば、
上記磁性粉とバインダおよび必要に応じて種々の添加剤
とを含む磁性塗料を調製し、この磁性塗料をポリエステ
ルフィルムなどのベース上に塗布し、磁性粉粒子の板面
方向がベース面に沿う方向すなわち磁化容易軸がベース
面に対して垂直となる方向に磁場配向し、乾燥させて磁
性層を形成し、カレンダー加工などの所要の表面処理を
行えばよい。
A means for producing a magnetic recording medium such as a magnetic tape using the magnetic powder for perpendicular magnetic recording of the present invention may be carried out in accordance with a conventional method using this kind of magnetic powder. for example,
A magnetic paint containing the above magnetic powder, a binder, and various additives as necessary is prepared, and this magnetic paint is applied onto a base such as a polyester film so that the plate surface direction of the magnetic powder particles is in the direction along the base surface. That is, the magnetic layer may be oriented in a magnetic field in a direction in which the axis of easy magnetization is perpendicular to the base surface, dried to form a magnetic layer, and required surface treatment such as calendering may be performed.

上記バインダとしては、塩化ビニル−酢酸ビニル系共重
合体、繊維素系樹脂、ポリビニルブチラール、ポリウレ
タン、インシアネート化合物などがある。また上記添加
剤としては、分散剤、潤滑剤、研磨剤、帯電防止剤、充
填剤、着色剤などがあり、これらは目的とする磁気記録
媒体の性状などに応じて適宜選択使用すればよい。
Examples of the binder include vinyl chloride-vinyl acetate copolymers, cellulose resins, polyvinyl butyral, polyurethane, and incyanate compounds. The additives include dispersants, lubricants, abrasives, antistatic agents, fillers, colorants, etc., and these may be selected and used as appropriate depending on the properties of the intended magnetic recording medium.

〔発明の効果] この発明に係る垂直磁気記録用磁性粉は、マグネトプラ
ンバイト型構造におけるFe成分の一部がCoまたはN
iとSnとで置換された六角板状粒子からなるものであ
るため、CoまたはNiを置換成分に用いているにもか
かわらず磁化容易軸方向が実質的に粒子板面に対して垂
直方向のみであって垂直磁気記録用としての本来の特徴
を具備し、しかも高密度磁気記録に有効な高い飽和磁化
量(σS)と通常の磁気ヘッドによる記録に適した低い
保磁力(Hc)とを有する。
[Effects of the Invention] The magnetic powder for perpendicular magnetic recording according to the present invention has a magnetoplumbite structure in which part of the Fe component is Co or N.
Because it is composed of hexagonal plate-shaped particles substituted with i and Sn, the axis of easy magnetization is substantially only perpendicular to the particle plate surface, even though Co or Ni is used as a substituted component. It has the original characteristics for perpendicular magnetic recording, and has a high saturation magnetization (σS) effective for high-density magnetic recording and a low coercive force (Hc) suitable for recording with a normal magnetic head. .

また、この発明に係る上記磁性粉の製造方法によれば、
磁気記録媒体用記録素子としてとくに好適な微粒子状の
上記磁性粉を容易かつ確実に得ることが可能である。
Further, according to the method for producing magnetic powder according to the present invention,
It is possible to easily and reliably obtain the above-described magnetic powder in the form of fine particles, which is particularly suitable as a recording element for a magnetic recording medium.

〔実施例〕〔Example〕

次に、この発明を実施例および比較例に基づいて具体的
に説明する。
Next, the present invention will be specifically explained based on Examples and Comparative Examples.

実施例1 塩化第二鉄400y(1,48モル)、塩化バリウム4
3.5y(0,178モル)、塩化コバルト35゜:l
(0,148モル)および塩化第二錫51.4y(0,
148モル)を水に溶解させて51の水溶液とし、これ
を水酸化ナトリウム480yを含む水溶液5I!に加え
、水酸化物を共沈させた。この水酸化物共沈物の懸濁液
のPHは12以上であった。
Example 1 Ferric chloride 400y (1.48 mol), barium chloride 4
3.5y (0,178 mol), cobalt chloride 35°:l
(0,148 mol) and stannic chloride 51.4y (0,
148 mol) was dissolved in water to make an aqueous solution of 51, and this was made into an aqueous solution 5I! containing 480y of sodium hydroxide! In addition, hydroxide was co-precipitated. The pH of this hydroxide coprecipitate suspension was 12 or higher.

続いてこの懸濁液を水洗してPH8,0以下とした上で
、濾過して水酸化物共沈物のケーキを得、これを21!
の塩化カリウム飽和水溶液に加えて充分に撹拌し、吸引
濾過したのち100℃で乾燥し、粒子表面に塩化カリウ
ムが被着した水酸化物共沈物を得た。この塩化カリウム
の被着量は水酸化物共沈物100重量部に対して65重
量部であっtう次に上記乾燥物を900℃にて2時間加
熱焼成したのち、充分に水洗、乾燥して六角板状粒子か
らなるバリウムフェライト磁性粉を得た。
Subsequently, this suspension was washed with water to bring the pH to 8.0 or less, and filtered to obtain a hydroxide coprecipitate cake, which was added to 21!
The particles were added to a saturated aqueous solution of potassium chloride, thoroughly stirred, filtered under suction, and dried at 100°C to obtain a hydroxide coprecipitate in which potassium chloride was adhered to the particle surface. The amount of potassium chloride deposited was 65 parts by weight per 100 parts by weight of the hydroxide coprecipitate.Next, the dried product was baked at 900°C for 2 hours, thoroughly washed with water, and dried. Barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained.

実施例2 塩化第二鉄を381’(1,42モル)、塩化コバルト
を42.2y(0,178モル)、塩化第二錫を61.
69(0,178モル)とした以外は実施例1と全く同
様にして六角板状粒子からなるバリウムフェライト磁性
粉を得た。
Example 2 Ferric chloride was 381' (1,42 mol), cobalt chloride was 42.2 y (0,178 mol), and stannic chloride was 61.
Barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in exactly the same manner as in Example 1 except that the amount was changed to 69 (0,178 mol).

実施例3 塩化第二鉄を362p(1,34モル)、塩化コバルト
を49.39 (0,207モル)、塩化第二錫を81
.9y(0,236モル)とした以外は実施例1と全く
同様にして六角板状粒子からなるバリウムフェライト磁
性粉を得た。
Example 3 Ferric chloride 362p (1.34 mol), cobalt chloride 49.39 (0,207 mol), stannic chloride 81
.. Barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in exactly the same manner as in Example 1 except that 9y (0,236 mol) was used.

実施例4 塩化コバルトを31.7y(0,133モル)、塩化第
二錫を45.8y(0,132モル)とした以外は実施
例1と全く同様にして六角板状粒子からなるバリウムフ
ェライト磁性粉末を得た。
Example 4 Barium ferrite consisting of hexagonal plate-shaped particles was prepared in the same manner as in Example 1 except that cobalt chloride was 31.7y (0,133 mol) and tin chloride was 45.8y (0,132 mol). A magnetic powder was obtained.

実施例5 塩化コバルトに代えて塩化ニッケル35.29(0゜1
48モル)を用いた以外は実施例1と全く同様にして六
角板状粒子からなるバリウムフェライト磁性粉を得た。
Example 5 Nickel chloride 35.29 (0°1
Barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in exactly the same manner as in Example 1 except that 48 mol) was used.

実施例6 塩化バリウムに代えて硝酸鉛58.9 ? (0,17
8モル)を用いた以外は実施例1と全く同様にして六角
板状粒子からなる鉛フェライト磁性粉を得た。
Example 6 Lead nitrate instead of barium chloride 58.9 ? (0,17
Lead ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in exactly the same manner as in Example 1, except that 8 mol) was used.

実施例7 塩化バリウムに代えて塩化ストロンチウム47゜5p(
0,178モル)を用いた以外は実施例1と全く同様に
して六角板状粒子からなるストロンチウムフェライト磁
性粉を得た。
Example 7 Strontium chloride 47°5p (
Strontium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in exactly the same manner as in Example 1, except that 0.178 mol) was used.

比較例1 塩化コバルトおよび塩化第二錫を用いなかった以外は実
施例1と全く同様にして六角板状粒子からなるバリウム
フェライト磁性粉を得た。
Comparative Example 1 Barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in exactly the same manner as in Example 1 except that cobalt chloride and stannic chloride were not used.

比較例2 塩化コバルトを35.2y(0,148モル)とし、か
つ塩化第二錫を用いなかった以外は実施例1と全(同様
にして六角板状粒子からなるバリウムフェライト磁性粉
を得た。
Comparative Example 2 A barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in the same manner as in Example 1 except that cobalt chloride was 35.2y (0,148 mol) and stannic chloride was not used. .

比較例3 塩化第二錫を51.1’(0,148モル)とし、かつ
塩化コバルトを用いなかった以外は実施例1と全く同様
にして六角板状粒子からなるバリウムフェライト磁性粉
を得た。
Comparative Example 3 Barium ferrite magnetic powder consisting of hexagonal plate-shaped particles was obtained in the same manner as in Example 1 except that the stannic chloride was 51.1' (0,148 mol) and cobalt chloride was not used. .

比較例4 塩化第二錫に代えて四塩化チタン28.1 F/ (0
゜148モル)を含有する酸性水溶液200−を用いた
以外は実施例1と全く同様にしてバリウムフェライト磁
性粉を得た。ただしこの磁性粉は六角板状粒子以外に不
定形粒子を高割合で含むものであった。
Comparative Example 4 Titanium tetrachloride 28.1 F/(0
Barium ferrite magnetic powder was obtained in exactly the same manner as in Example 1, except that an acidic aqueous solution containing 148 mol) was used. However, this magnetic powder contained a high proportion of irregularly shaped particles in addition to the hexagonal plate-like particles.

比較例5 塩化コバルトを75.4y(0,317モル)、塩化第
二錫を110.1y(0,317モル)とした以外は実
施例1と全(同様にして六角板状粒子からなるバリウム
フェライト磁性粉を得た。
Comparative Example 5 Same as Example 1 except that cobalt chloride was 75.4y (0,317 mol) and tin chloride was 110.1y (0,317 mol). Ferrite magnetic powder was obtained.

以上の実施例および比較例にて得られた磁性粉について
、それぞれ各種磁気特性、平均粒子径(粒子板面方向の
最長)、磁化容易軸成分の粒子板面に対する方向を調べ
た。その結果を下表に示す。
Regarding the magnetic powders obtained in the above Examples and Comparative Examples, various magnetic properties, average particle diameter (longest length in the direction of the particle plate surface), and direction of the easy magnetization axis component with respect to the particle plate surface were investigated. The results are shown in the table below.

なお磁化容易軸成分の方向については次の方法で測定し
た。
The direction of the easy axis component of magnetization was measured using the following method.

〈磁化容易軸成分の方向〉 磁性粉の水ペーストを厚さ9μのポリエステルフィルム
上に塗布し、IOKガウス(G)の磁場中で乾燥させ、
得られる磁気シートを直径3aIの円形に打ち抜き、こ
れを試料として高感度磁気トルク計(東英工業社製)に
てIOKエルステッド(Oe)の磁界中における磁気シ
ート面内の回転角−トルクの関係を調べる。その結果、
第3図(4)、(B)の理論曲線図に示したように、磁
化容易軸成分が粒子板面に対して垂直方向のみからなる
場合は回転角が0〜90°で正のピーク、90〜180
0で負のピークを示す曲線[第3図(A)]となり、水
平方向のみからなる場合は回転角が0〜90°で負のピ
ーク、90〜180°で正のピークを示す曲線〔第3図
(B)〕となり、また垂直および水平方向の二成分から
なる場合は2成分の比によって曲線形状は複雑な変化を
示すが、どの場合もO〜90’および90〜180の回
転角の範囲のおのおのにおいて正と負のピーりを示す曲
線となるため、これをもって判別する。
<Direction of easy magnetization axis component> A water paste of magnetic powder was applied onto a 9μ thick polyester film, dried in an IOK Gauss (G) magnetic field,
The resulting magnetic sheet was punched out into a circular shape with a diameter of 3aI, and this was used as a sample to measure the relationship between rotation angle and torque within the plane of the magnetic sheet in an IOK Oersted (Oe) magnetic field using a high-sensitivity magnetic torque meter (manufactured by Toei Kogyo Co., Ltd.). Find out. the result,
As shown in the theoretical curve diagrams in Fig. 3 (4) and (B), when the easy axis component of magnetization consists only of the direction perpendicular to the particle plate surface, there is a positive peak at the rotation angle of 0 to 90°; 90-180
When the rotation angle is 0 to 90°, the curve shows a negative peak [Figure 3 (A)], and when the rotation angle is 0 to 90°, the curve shows a negative peak, and when the rotation angle is 90 to 180°, it shows a positive peak [Figure 3 (A)]. 3 (B)], and when it consists of two components in the vertical and horizontal directions, the curve shape shows complicated changes depending on the ratio of the two components, but in all cases, the curve shape shows complicated changes depending on the ratio of the two components. Since the curves show positive and negative peaks in each range, this is used for discrimination.

ちなみに、第1図は実施例1の磁性粉の回転角−トルク
の関係を示す特性曲線であって、磁化容易軸成分が実質
的に粒子板面に対して垂直方向のみからなる特徴が現わ
れている。また第2図は比較例4の磁性粉の回転角−ト
ルクの関係を示す特性曲線であって磁化容易軸成分が垂
直および水平の二方向である特徴が現われている。
Incidentally, FIG. 1 is a characteristic curve showing the rotation angle-torque relationship of the magnetic powder of Example 1, and shows a characteristic that the easy magnetization axis component is substantially only in the direction perpendicular to the particle plate surface. There is. Further, FIG. 2 is a characteristic curve showing the rotation angle-torque relationship of the magnetic powder of Comparative Example 4, which shows the characteristic that the easy magnetization axis components are in two directions, vertical and horizontal.

(※)土は垂直方向、りは水平方向を示す。(*) Soil indicates the vertical direction, and ri indicates the horizontal direction.

上表の結果から明らかなように、この発明に係る磁性粉
(実施例1〜7)は、いずれも磁化容易軸が実質的に粒
子板面に対して垂直方向成分のみである六角板状粒子か
らなり、しかも約50emu/y程度あるいはそれ以上
の高い飽和磁化量(σS)と2,000エルステッド(
Oe)以下の低い保磁力(Hc)を備えていることが判
る。
As is clear from the results in the above table, all of the magnetic powders according to the present invention (Examples 1 to 7) are hexagonal plate-shaped particles in which the axis of easy magnetization is substantially only a component perpendicular to the particle plate surface. Moreover, it has a high saturation magnetization (σS) of about 50 emu/y or more and 2,000 oersteds (
It can be seen that it has a low coercive force (Hc) of less than Oe).

これに対して通常のマグネトプランバイト型磁性粉(比
較例1)では保磁力(Hc)が極端に高く、Coのみを
置換成分とするもの(比較例2)では保磁力(Hc)は
低くなるが磁化容易軸が水平方向成分に変化し、またC
oとTiとを置換成分として併用したもの(比較例4)
では同様に保磁力(Hc)は低くなるが磁化容易軸が垂
直および水平方向の二成分となり、いずれも不都合であ
ることが判る。さらにSnのみを置換成分としたもの(
比較例3)では保磁力(Hc)が充分に低くならず、C
oとSnとを併用しても置換量が多すぎるもの(比較例
5)では飽和磁化量(σS)が著しく低(なることも明
らかである。
On the other hand, the coercive force (Hc) of ordinary magnetoplumbite-type magnetic powder (Comparative Example 1) is extremely high, and the coercive force (Hc) of one containing only Co as a substituted component (Comparative Example 2) is low. The axis of easy magnetization changes to a horizontal component, and C
O and Ti used together as replacement components (Comparative Example 4)
In this case, the coercive force (Hc) is similarly lowered, but the axis of easy magnetization becomes two components in the vertical and horizontal directions, both of which are found to be disadvantageous. Furthermore, one in which only Sn is a substituted component (
In Comparative Example 3), the coercive force (Hc) was not sufficiently lowered and C
It is also clear that even if o and Sn are used in combination, the saturation magnetization (σS) is extremely low in the case where the amount of substitution is too large (Comparative Example 5).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る実施例1の磁性粉の磁気トルク
曲線を示す特性図、第2図は比較例4の磁性粉の磁気ト
ルク曲線を示す特性図、第3図囚。 @)は磁性粉の磁化容易軸が粒子板面に対して垂直方向
のみからなる場合および水平方向のみからなる場合のそ
れぞれ理論磁気トルク曲線を示す参考図である。 特許出願人  日立マクセル株式会社 第1日 + 第2図 +
FIG. 1 is a characteristic diagram showing the magnetic torque curve of the magnetic powder of Example 1 according to the present invention, FIG. 2 is a characteristic diagram showing the magnetic torque curve of the magnetic powder of Comparative Example 4, and FIG. @) is a reference diagram showing theoretical magnetic torque curves when the axis of easy magnetization of the magnetic powder is only in the vertical direction and only in the horizontal direction with respect to the particle plate surface. Patent applicant: Hitachi Maxell, Ltd. Day 1+ Figure 2+

Claims (4)

【特許請求の範囲】[Claims] (1)AO・nFe_2O_3(ただし、AはBa、S
r、Pbより選ばれる少なくとも一種の原子、nは整数
)で示されるマグネトプランバイト型構造における上記
Fe原子の25原子%以下がCoまたはNiとSnとで
置換された六角板状粒子からなる垂直磁気記録用磁性粉
(1) AO・nFe_2O_3 (A is Ba, S
At least one type of atom selected from r, Pb, n is an integer) in a magnetoplumbite type structure, in which 25 atomic % or less of the Fe atoms are substituted with Co or Ni and Sn. Magnetic powder for magnetic recording.
(2)保磁力が2,000エルステッド以下で磁化容易
軸方向が実質的に粒子板面に対して垂直方向成分のみか
らなる特許請求の範囲第(1)項記載の垂直磁気記録用
磁性粉。
(2) The magnetic powder for perpendicular magnetic recording according to claim (1), wherein the coercive force is 2,000 Oe or less and the easy axis direction of the magnetization consists essentially of only a component perpendicular to the particle plate surface.
(3)飽和磁化量が50emu/g以上である特許請求
の範囲第(1)項または第(2)項記載の垂直磁気記録
用磁性粉。
(3) The magnetic powder for perpendicular magnetic recording according to claim (1) or (2), which has a saturation magnetization of 50 emu/g or more.
(4)a)第二鉄塩と、b)バリウム塩、ストロンチウ
ム塩、鉛塩から選ばれる少なくとも1種の塩と、c)コ
バルト塩、ニッケル塩から選ばれる少なくとも1種の塩
と、d)錫塩とを溶解した水溶液にアルカリを作用させ
、PH7以上にて水酸化物共沈物を析出させ、この水酸
化物共沈物を水洗、分離したのち、融剤とともに高温下
で加熱焼成することを特徴とする垂直磁気記録用磁性粉
の製造方法。
(4) a) ferric salt; b) at least one salt selected from barium salts, strontium salts, and lead salts; c) at least one salt selected from cobalt salts and nickel salts; d) An alkali is applied to an aqueous solution containing tin salt to precipitate a hydroxide coprecipitate at a pH of 7 or above, and this hydroxide coprecipitate is washed with water and separated, and then heated and calcined at a high temperature with a flux. A method for producing magnetic powder for perpendicular magnetic recording, characterized by:
JP60014088A 1985-01-28 1985-01-28 Magnetic powder for vertical magnetic recording and its production Pending JPS61174118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014088A JPS61174118A (en) 1985-01-28 1985-01-28 Magnetic powder for vertical magnetic recording and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014088A JPS61174118A (en) 1985-01-28 1985-01-28 Magnetic powder for vertical magnetic recording and its production

Publications (1)

Publication Number Publication Date
JPS61174118A true JPS61174118A (en) 1986-08-05

Family

ID=11851351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014088A Pending JPS61174118A (en) 1985-01-28 1985-01-28 Magnetic powder for vertical magnetic recording and its production

Country Status (1)

Country Link
JP (1) JPS61174118A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219720A (en) * 1985-03-25 1986-09-30 Central Glass Co Ltd Production of particulate magnet plumbite-type ferrite
JPS6260209A (en) * 1985-09-10 1987-03-16 Sony Corp Manufacture of hexagonal system ferrite magnetic powder
JPS62100419A (en) * 1985-10-24 1987-05-09 Nippon Zeon Co Ltd Production of magnetic powder for magnetic recording
JPS62105932A (en) * 1985-11-05 1987-05-16 Nippon Zeon Co Ltd Method of producing magnetic powder for magnetic recording
JPS62155504A (en) * 1986-11-29 1987-07-10 Toshiba Corp Magnetic powder for high-density magnetic recording and manufacture thereof
JPS63275103A (en) * 1987-05-07 1988-11-11 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media
JPH08181012A (en) * 1995-08-30 1996-07-12 Toshiba Corp Magnetic powder for high-density magnetic recording and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122726A (en) * 1983-12-06 1985-07-01 Central Glass Co Ltd Manufacture of fine particle of magneto plumboferrite by wet process
JPS6189605A (en) * 1984-10-09 1986-05-07 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122726A (en) * 1983-12-06 1985-07-01 Central Glass Co Ltd Manufacture of fine particle of magneto plumboferrite by wet process
JPS6189605A (en) * 1984-10-09 1986-05-07 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219720A (en) * 1985-03-25 1986-09-30 Central Glass Co Ltd Production of particulate magnet plumbite-type ferrite
JPS6260209A (en) * 1985-09-10 1987-03-16 Sony Corp Manufacture of hexagonal system ferrite magnetic powder
JPS62100419A (en) * 1985-10-24 1987-05-09 Nippon Zeon Co Ltd Production of magnetic powder for magnetic recording
JPS62105932A (en) * 1985-11-05 1987-05-16 Nippon Zeon Co Ltd Method of producing magnetic powder for magnetic recording
JPS62155504A (en) * 1986-11-29 1987-07-10 Toshiba Corp Magnetic powder for high-density magnetic recording and manufacture thereof
JPS63275103A (en) * 1987-05-07 1988-11-11 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media
JPH08181012A (en) * 1995-08-30 1996-07-12 Toshiba Corp Magnetic powder for high-density magnetic recording and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0290263B1 (en) Platelike magnetic powder and its manufacturing method and a recording medium which use the platelike magnetic powder
EP0346123B1 (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
JPS61174118A (en) Magnetic powder for vertical magnetic recording and its production
US4851292A (en) Plate-like barium ferrite particles suitable for use in magnetic recording and process for producing the same
US4781981A (en) Plate-like magnetoplumbite ferrite particles for magnetic recording and process for producing the same
JPS62216922A (en) Hexagonal ferrite fine powder for magnetic recording medium and its production
JP3095047B2 (en) Magnetoplumbite-type ferrite particle powder for magnetic card and method for producing the same
US5118575A (en) Plate-like composite ferrite fine particles for magnetic recording and a process for producing the same
EP0349287A2 (en) Plate-like composite ferrite fine particles suitable for use in magnetic recording and process for producing the same
JPH02296303A (en) Magnetic powder for magnetic record medium
JP2745306B2 (en) Ferromagnetic fine powder for magnetic recording and method for producing the same
JP2946375B2 (en) Method for producing composite ferrite magnetic powder
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JP3135988B2 (en) Acicular hexagonal ferrite magnetic powder having perpendicular magnetic anisotropy and method for producing the same
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JP2577945B2 (en) Barium ferrite magnetic powder and method for producing the same
JP3417981B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
EP0310682B1 (en) Fine ferromagnetic powder for magnetic recording
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPS6260209A (en) Manufacture of hexagonal system ferrite magnetic powder
JP3011787B2 (en) Acicular hexagonal ferrite magnetic powder and method for producing the same
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0524869B2 (en)
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS61295236A (en) Production of particular magnet plumbite-type ferrite