JP2634366B2 - Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite - Google Patents

Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite

Info

Publication number
JP2634366B2
JP2634366B2 JP5134892A JP13489293A JP2634366B2 JP 2634366 B2 JP2634366 B2 JP 2634366B2 JP 5134892 A JP5134892 A JP 5134892A JP 13489293 A JP13489293 A JP 13489293A JP 2634366 B2 JP2634366 B2 JP 2634366B2
Authority
JP
Japan
Prior art keywords
magnetite
reaction
particle powder
toner
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5134892A
Other languages
Japanese (ja)
Other versions
JPH06345440A (en
Inventor
佳茂 駒
真一 広川
哲也 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP5134892A priority Critical patent/JP2634366B2/en
Publication of JPH06345440A publication Critical patent/JPH06345440A/en
Application granted granted Critical
Publication of JP2634366B2 publication Critical patent/JP2634366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は球状マグネタイト粒子粉
末及びその製造方法並びに球状マグネタイトを含む磁性
トナー、詳しくは、従来の電子写真、静電記録、静電複
写機及びレーザープリンター等における鮮明な複写画像
や高解像度の画像を得るために必要な小粒径トナーの製
造において必要とされる、低磁場中での飽和磁束密度
(σs)が高く分散性に優れ、トナー中に多量に使用さ
れても樹脂との混練状態が良く、分級後のトナーの粒度
分布が均一であり、トナー粒径を小さくすることができ
るマグネタイト粒子粉末及びその製造方法並びに該マグ
ネタイト粒子粉末を含む磁性トナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spherical magnetite particle powder, a method for producing the same, and a magnetic toner containing a spherical magnetite, and more specifically, a clear copy in conventional electrophotography, electrostatic recording, electrostatic copying machines, laser printers and the like. Saturation magnetic flux density (σs) in a low magnetic field is high, excellent in dispersibility, and used in a large amount in toner, which is required in the production of small particle size toner required to obtain images and high resolution images. The present invention also relates to a magnetite particle powder which has a good kneading state with a resin, has a uniform particle size distribution of the classified toner and can reduce the toner particle size, a method for producing the same, and a magnetic toner containing the magnetite particle powder.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電子写
真、静電記録、静電複写機及びレーザープリンター等に
おける鮮明な複写画像や高解像度の画像を得るために必
要な小粒径トナーの製造において、従来からマグネタイ
ト粒子粉末が使用されているが、一般的には、該マグネ
タイト粒子粉末の粒子形状は、立方体形、八面体形及び
不定形のため分散性に劣ると言う欠点を有しており更
に、低磁場中での飽和磁束密度(σs)が低いことから
上記マグネタイト粒子粉末は、トナー中に多量に使用さ
れなければならない。このことは、上記小粒径トナーの
製造をより困難なものにするだけでなく、上記トナー中
への上記マグネタイト粒子粉末の分散をも困難にするた
め上記トナー中のマグネタイト含有量は、不均一になっ
てしまう。
2. Description of the Related Art Production of small particle size toner necessary for obtaining a clear copied image or a high resolution image in electrophotography, electrostatic recording, electrostatic copying machine, laser printer, and the like. In the past, magnetite particle powder has been used, but generally, the particle shape of the magnetite particle powder has a disadvantage that the dispersibility is poor due to cubic, octahedral and irregular shapes. Further, since the saturation magnetic flux density (σs) in a low magnetic field is low, the magnetite particle powder must be used in a large amount in the toner. This not only makes the production of the small particle size toner more difficult, but also makes the dispersion of the magnetite particle powder in the toner difficult, so that the magnetite content in the toner is uneven. Become.

【0003】しかしながら、鮮明な複写画像や高解像度
の画像を得るために磁性トナー用に使用される物質は、
小粒径で粒度分布が狭く分散性に優れていることが必要
とされるが、従来のマグネタイト粒子粉末の立方状や八
面体及び不定型粒子は、その残留磁化(σr)の値が大
きいことも二次凝集を起こし易くする原因と考えられ、
樹脂中への分散が悪くなる原因である。また、上記磁性
トナー中のマグネタイト粒子粉末の含有量が不均一とな
ると粉砕分級工程で粒度分布が不均一となる。
[0003] However, the substances used for the magnetic toner to obtain a clear copy image or a high resolution image are as follows.
It is necessary to have a small particle size, a narrow particle size distribution, and excellent dispersibility. Conventional cubic, octahedral, and irregular particles of magnetite particles must have a large value of the remanent magnetization (σr). Is also considered to be the cause of secondary aggregation,
This is a cause of poor dispersion in the resin. Further, if the content of the magnetite particles in the magnetic toner becomes non-uniform, the particle size distribution becomes non-uniform in the pulverizing and classifying step.

【0004】そのため、トナー中の磁気特性の不均一化
や粒度分布の乱れが生じ、画像濃度やカブリの問題、更
にトナーの流動性やライフにも悪影響を及ぼすことにな
る。そこで、理想的なマグネタイト粒子粉末は、飽和磁
束密度(σs)が高く分散性に優れ、小粒径で球状を呈
すものが好ましいと考えられているが、今だにこれらの
条件を満たす磁性トナー用マグネタイト粒子粉末は提供
されていない。
[0004] As a result, the magnetic properties in the toner become non-uniform and the particle size distribution is disturbed, which causes problems such as image density and fog, and also adversely affects the fluidity and life of the toner. Therefore, it is considered that an ideal magnetite particle powder having a high saturation magnetic flux density (σs), excellent dispersibility, and a small particle size and a spherical shape is preferable. No magnetite particle powder is provided.

【0005】従って、本発明の目的は、従来の電子写
真、静電記録、静電複写機及びレーザープリンター等に
おける鮮明な複写画像や高解像度の画像を得るために必
要な小粒径トナーの製造において必要とされる、低磁場
中での飽和磁束密度(σs)が高く分散性に優れ、トナ
ー中に多量に使用されても樹脂との混練状態が良く、分
級後のトナーの粒度分布が均一であり、トナー粒径を小
さくすることができるマグネタイト粒子粉末粉末及びそ
の製造方法並びに該マグネタイト粒子粉末粉末を含む磁
性トナーを提供することにある。
Accordingly, an object of the present invention is to produce a toner having a small particle size necessary for obtaining a clear copied image or a high-resolution image in conventional electrophotography, electrostatic recording, electrostatic copying machines, laser printers and the like. High saturation magnetic flux density (σs) in a low magnetic field, excellent in dispersibility, good kneading with resin even when used in a large amount in toner, and uniform particle size distribution of toner after classification It is another object of the present invention to provide a magnetite particle powder capable of reducing the toner particle size, a method for producing the same, and a magnetic toner including the magnetite particle powder.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成すべく鋭意検討を行った結果、本発明に使用する
鉄塩の種類、塩基の種類及びその組み合わせ反応条件に
より、粒子形状を異にするマグネタイト粒子粉末が生成
すること、即ち、第一鉄塩、アルカリ金属水酸化物及び
アルカリ金属炭酸塩の使用量を調節することにより、反
応系のPH値を調節し且つ反応過程における反応系の増
粘傾向を減少させ、酸化反応の時間を短くすることで、
マグネタイト粒子粉末の形状や大きさを調節し得ること
を知見した。本発明は、上記知見に基づいてなされたも
ので、平均粒径が0.08〜0.2μm、比表面積が5
〜20m2 /gであり、ケイ素(Si)を鉄(Fe)に
対して0.1〜3.0原子%含有し、且つ低磁場(1K O
e )における飽和磁束密度(σs)が65emu/g以
上であることを特徴とする球状マグネタイト粒子粉末を
提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, the particle shape was determined depending on the type of the iron salt, the type of the base used in the present invention and the reaction conditions for the combination thereof. The magnetite particle powder is different, that is, by adjusting the amount of ferrous salt, alkali metal hydroxide and alkali metal carbonate to adjust the PH value of the reaction system and in the reaction process By reducing the tendency of the reaction system to thicken and shortening the oxidation reaction time,
It has been found that the shape and size of the magnetite particle powder can be adjusted. The present invention has been made based on the above findings, and has an average particle size of 0.08 to 0.2 μm and a specific surface area of 5 to 5.
2020 m 2 / g, containing silicon (Si) in an amount of 0.1 to 3.0 atomic% with respect to iron (Fe), and in a low magnetic field (1 K 2 O 3
e) providing a spherical magnetite particle powder characterized by having a saturation magnetic flux density (σs) of 65 emu / g or more.

【0007】また、本発明は、本発明の球状マグネタイ
ト粒子粉末の好ましい製造方法として、アルカリ金属水
酸化物及びアルカリ金属炭酸塩を含み更に、ケイ素(S
i)を反応に加えられる全鉄(Fe)量に対し0.1〜
3.0原子%含む混合溶液に、塩化第一鉄を反応に加え
られる全第一鉄塩に対しモル比で0.1〜0.5含み、
且つ塩化第二鉄を上記塩化第一鉄に対しモル比で1.0
〜5.0を含む混合溶液を加え、マグネタイトの種晶を
生成させ、次いで、反応に加えられる全第一鉄塩に対し
モル比で0.5〜0.95となる量の塩化第一鉄を含む
溶液を加えて反応系のPH値を9.0〜12.5とし、
反応温度を80〜100℃に保持しながら、酸化性ガス
を吹き込み、マグネタイト粒子を生成させ、然る後、濾
過、水洗、乾燥及び粉砕を行うことを特徴とするマグネ
タイト粒子粉末の製造方法を提供するものである。
Further, the present invention provides a preferable method for producing the spherical magnetite particle powder of the present invention, which comprises an alkali metal hydroxide and an alkali metal carbonate, and further comprises silicon (S).
i) with respect to the total amount of iron (Fe) added to the reaction
A mixed solution containing 3.0 atomic% contains ferrous chloride in a molar ratio of 0.1 to 0.5 with respect to all ferrous salts added to the reaction,
And ferric chloride in a molar ratio of 1.0 to ferrous chloride.
To 5.0 to produce a magnetite seed crystal, and then an amount of ferrous chloride in a molar ratio of 0.5 to 0.95 to the total ferrous salt added to the reaction. The pH value of the reaction system is adjusted to 9.0 to 12.5 by adding a solution containing
An oxidizing gas is blown while maintaining the reaction temperature at 80 to 100 ° C. to generate magnetite particles, and thereafter, filtration, washing, drying, and grinding are performed. Is what you do.

【0008】本発明の球状マグネタイト粒子粉末の製造
方法において、上記反応系のPH値は、第一鉄塩、アル
カリ金属水酸化物及びアルカリ金属炭酸塩それぞれのモ
ル比によって調節され、該モル比は正確を要する。即
ち、反応に加えられる第一鉄塩、アルカりリ金属水酸
化物及びアルカリ金属炭酸塩のモル比をそれぞれ1.
0:0.5〜1.5:1.0〜3.0とし、一次反応
に用いられる第一鉄塩及び第二鉄塩のモル比はそれぞれ
1.0:1.0〜5.0で反応中の反応系のPH値は
9.0〜12.5の範囲に保つことが重要でこの時に生
成するマグネタイト粒子粉末の形状は多面体形である
が、これを更に微細化することで該マグネタイト粒子粉
末の形状は、球状になる。
In the method for producing spherical magnetite particles according to the present invention, the PH value of the reaction system is adjusted by the molar ratio of each of ferrous salt, alkali metal hydroxide and alkali metal carbonate, and the molar ratio is Needs accuracy. That is, the molar ratio of the ferrous salt, alkali metal hydroxide and alkali metal carbonate added to the reaction was 1.
0: 0.5 to 1.5: 1.0 to 3.0, and the molar ratio of the ferrous salt and the ferric salt used in the primary reaction is 1.0: 1.0 to 5.0, respectively. It is important that the PH value of the reaction system during the reaction be kept in the range of 9.0 to 12.5, and the shape of the magnetite particle powder generated at this time is a polyhedral shape. The shape of the particle powder becomes spherical.

【0009】以下、本発明のマグネタイト粒子粉末の製
造方法の好ましい実施態様について詳述する。ガス通気
管を有する攪拌式酸化反応槽の中に、空気(酸化性ガ
ス)を5〜10リットル/minの速度で通気しなが
ら、反応に加えられる全第一鉄塩、アルカリ金属水酸化
物及びアルカリ金属炭酸塩のモル比をそれぞれ1.0:
0.8〜1.1:1.0〜1.5とした混合溶液を加え
る。更に、上記反応槽の混合溶液中に、ケイ素(Si)
を反応に加えられる全鉄(Fe)量に対し0.1〜3.
0原子%含む様に加え、攪拌しながら該反応槽の温度を
80〜100℃に昇温させる。
Hereinafter, preferred embodiments of the method for producing magnetite particles according to the present invention will be described in detail. While aerating air (oxidizing gas) at a rate of 5 to 10 L / min into a stirred oxidation reaction tank having a gas vent tube, all ferrous salts, alkali metal hydroxides and The molar ratio of the alkali metal carbonate is 1.0:
0.8 to 1.1: A mixed solution of 1.0 to 1.5 is added. Furthermore, silicon (Si) is contained in the mixed solution of the reaction tank.
To the total amount of iron (Fe) added to the reaction.
Then, the temperature of the reaction vessel is raised to 80 to 100 ° C. while stirring.

【0010】次に、一次反応として、別に用意した塩化
第一鉄を、反応に加えられる全第一鉄塩に対しモル比で
0.1〜0.5含み、且つ塩化第二鉄を上記塩化第一鉄
に対しモル比で1.0〜5.0を含む混合溶液を、定量
ポンプを用いて上記反応槽の中に、5〜10分間程で滴
下してコロイド状またはゲル状のマグネタイトの種晶粒
子を生成させる。その後、上記反応槽の内部を空気から
窒素へ置換する。
Next, as a primary reaction, ferrous chloride prepared separately is contained in a molar ratio of 0.1 to 0.5 with respect to all ferrous salts added to the reaction, and ferric chloride is converted to the above-mentioned chloride. A mixed solution containing a molar ratio of 1.0 to 5.0 with respect to ferrous iron was dropped into the above-mentioned reaction tank for about 5 to 10 minutes by using a metering pump, so that colloidal or gel-like magnetite was formed. Generate seed particles. Thereafter, the inside of the reaction tank is replaced with nitrogen from air.

【0011】この時、一次反応に用いられる上記塩化第
一鉄は、最終的に分散性に優れたマグネタイト粒子を製
造させるために、反応に加えられる全第一鉄塩に対しモ
ル比で0.1〜0.5とする。該モル比が0.1未満で
は、生成する上記マグネタイトの種晶粒子は、不定形又
はツブ状となり、また0.5超では、生成する上記マグ
ネタイトの種晶粒子は大きくなり、本発明における目的
に適さないものとなる。
At this time, the ferrous chloride used in the primary reaction has a molar ratio of 0.1 to the total ferrous salt added to the reaction in order to finally produce magnetite particles having excellent dispersibility. 1 to 0.5. When the molar ratio is less than 0.1, the formed magnetite seed particles are irregular or lumpy, and when the molar ratio is more than 0.5, the generated magnetite seed particles are large. It is not suitable for

【0012】上記一次反応における上記第一鉄塩及び上
記第二鉄塩のモル比は、それぞれ1.0:1.0〜5.
0であるが、マグネタイトのスピネル構造によるフェラ
イト組成を考慮すると、1.0:1.5〜3.0とする
のが更に好ましい。
The molar ratio of the ferrous salt and the ferric salt in the primary reaction is 1.0: 1.0 to 5.0.
However, considering the ferrite composition due to the spinel structure of magnetite, the ratio is more preferably 1.0: 1.5 to 3.0.

【0013】また、一次反応用の上記混合溶液の滴下時
間を5分未満とすると、生成する上記マグネタイトの種
晶粒子はネックレス状で大きく分散性に劣るものとな
り、10分超とすると、生成する上記マグネタイトの種
晶粒子は微細になりすぎてコロイド状またはネックレス
状となり、いずれも好ましくない。
[0013] When the time of dropping the mixed solution for the primary reaction is less than 5 minutes, the seed crystal particles of the magnetite to be formed are necklace-shaped and largely inferior in dispersibility. The magnetite seed crystal particles become too fine and become colloidal or necklace-like, both of which are not preferred.

【0014】次に、2次反応として、反応に加えられる
全第一鉄塩に対しモル比で0.5〜0.95となる量の
塩化第一鉄を含む溶液を上記反応槽の中に加えて反応系
のPH値を9.0〜12.5とし、反応温度を80〜1
00℃に保持しながら約5〜10分間程攪拌した後、再
び上記反応槽の内部を窒素から酸化性ガスである空気へ
置換して酸化反応を再開し、マグネタイト粒子を生成さ
せる。然る後、上記マグネタイト粒子を常法により濾
過、水洗、乾燥及び粉砕し、最終生成物であるマグネタ
イト粒子粉末を得る。
Next, as a secondary reaction, a solution containing ferrous chloride in a molar ratio of 0.5 to 0.95 with respect to all ferrous salts added to the reaction is placed in the above-mentioned reaction tank. In addition, the pH value of the reaction system is set to 9.0 to 12.5, and the reaction temperature is set to 80 to 1
After stirring for about 5 to 10 minutes while maintaining the temperature at 00 ° C., the inside of the reaction tank is replaced again with nitrogen as air, which is an oxidizing gas, to restart the oxidation reaction to generate magnetite particles. Thereafter, the magnetite particles are filtered, washed with water, dried and pulverized by a conventional method to obtain a magnetite particle powder as a final product.

【0015】この時の上記反応系のPH値は、反応過程
における上記反応系の増粘傾向を抑えるために9.0〜
12.5とする。また、2次反応である酸化反応全体の
時間は、2〜3時間とするのが好ましい。
At this time, the pH value of the reaction system is controlled to 9.0 to suppress the tendency of the reaction system to thicken in the course of the reaction.
12.5. Further, the time of the whole oxidation reaction as the secondary reaction is preferably set to 2 to 3 hours.

【0016】上記酸化反応の速度は、酸化性ガス(空
気)の通気速度に依存し、該通気速度が速く酸化が速す
ぎると、生成するマグネタイト粒子は極微細な粒子とな
り、また上記通気速度が遅く酸化が遅すぎると、上記マ
グネタイト粒子は多面体形状を有する大きなものとな
る。
The rate of the oxidation reaction depends on the rate of air flow of the oxidizing gas (air). If the air flow rate is too high and the oxidation is too fast, the generated magnetite particles will be extremely fine particles. If the oxidation is too slow, the magnetite particles will be large with a polyhedral shape.

【0017】従って、生成するマグネタイト粒子粉末の
粒径及び大きさを磁性トナーに適したものにするために
は、酸化性ガスの上記通気速度は5〜10リットル/m
inとするのが好ましい。上記酸化性ガスとしては、空
気、酸素等が用いられる。
Therefore, in order to make the particle size and size of the generated magnetite particles suitable for the magnetic toner, the oxidizing gas is passed at a rate of 5 to 10 l / m 2.
It is preferably in. Air, oxygen, or the like is used as the oxidizing gas.

【0018】次に、本発明の球状マグネタイト粒子粉末
の製造方法において使用される反応物質について詳述す
る。本発明に使用されるアルカリ金属水酸化物及びアル
カリ金属炭酸塩としては、例えば苛性ソーダ及び炭酸ソ
ーダを挙げることができるが、特にこれらに限定される
ものではない。また、上記アルカリ金属水酸化物及びア
ルカリ金属炭酸塩それぞれの溶液の濃度は、通常のマグ
ネタイト粒子粉末の製造方法において使用される濃度と
同一で、0.5〜1.5mol/リットルである。
Next, the reactants used in the method for producing spherical magnetite particle powder of the present invention will be described in detail. Examples of the alkali metal hydroxide and alkali metal carbonate used in the present invention include, but are not particularly limited to, caustic soda and sodium carbonate. The concentration of each solution of the alkali metal hydroxide and the alkali metal carbonate is the same as that used in a usual method for producing magnetite particle powder, and is 0.5 to 1.5 mol / liter.

【0019】本発明に使用されるケイ(Si)素は、ケ
イ素(Si)化合物の形で用いられ、例えばNa2 Si
3 、Na2 SiO5 等のケイ酸塩、Si(OH)4
の水酸化物及びSiO2 等の酸化物等を挙げることがで
るが、特にこれらに限定されるものではない。
The silicon (Si) element used in the present invention is used in the form of a silicon (Si) compound, for example, Na 2 Si
Examples include silicates such as O 3 and Na 2 SiO 5 , hydroxides such as Si (OH) 4 and oxides such as SiO 2, but are not particularly limited thereto.

【0020】また、使用されるケイ素(Si)が、反応
に加えられる全鉄(Fe)量に対し、0.1原子%未満
では、最終生成物であるマグネタイト粒子粉末の形状は
大きくなり、また3.0原子%超では、上記マグネタイ
ト粒子粉末の形状が乱れてしまい本発明における目的に
適さないものとなる。
If the amount of silicon (Si) used is less than 0.1 atomic% with respect to the total amount of iron (Fe) added to the reaction, the shape of the magnetite particle powder as a final product becomes large. If the content exceeds 3.0 atomic%, the shape of the magnetite particle powder is disturbed, which is not suitable for the purpose of the present invention.

【0021】上述の本発明の球状マグネタイト粒子粉末
の製造方法によれば、平均粒径が0.08〜0.2μ
m、比表面積が5〜20m2 /gであり、ケイ素(S
i)を鉄(Fe)に対して0.1〜3.0原子%含有
し、且つ低磁場(1K Oe )における飽和磁束密度(σ
s)が65emu/g以上である球状マグネタイト粒子
粉末が得られる。上記の本発明のマグネタイト粒子粉末
は、ケイ素(Si)がマグネタイト粒子粉末の内部及び
表面上にあるため、分散性に優れ、樹脂キャリア等へ利
用することも可能である。
According to the method for producing spherical magnetite particle powder of the present invention described above, the average particle size is 0.08 to 0.2 μm.
m, the specific surface area is 5 to 20 m 2 / g, and silicon (S
i) containing 0.1 to 3.0 atomic% with respect to iron (Fe), and a saturation magnetic flux density (σ) in a low magnetic field (1 K Oe).
A spherical magnetite particle powder having s) of 65 emu / g or more is obtained. Since the magnetite particle powder of the present invention has silicon (Si) inside and on the surface of the magnetite particle powder, it has excellent dispersibility and can be used as a resin carrier or the like.

【0022】また、上記マグネタイト粒子粉末は、低磁
場(1K Oe )における飽和磁束密度(σs)が65em
u/g以上であり、そのため、トナー中の上記マグネタ
イト粒子粉末の含有量が通常のマグネタイト粒子粉末よ
り少なくても、従来の飽和磁束密度(σs)を維持する
ことができる。
The magnetite particles have a saturation magnetic flux density (σs) of 65 em in a low magnetic field (1 K Oe).
u / g or more, so that the conventional saturation magnetic flux density (σs) can be maintained even if the content of the magnetite particle powder in the toner is smaller than that of the usual magnetite particle powder.

【0023】本発明のマグネタイト粒子粉末の樹脂中へ
の分散性の評価は下記の方法により行った。即ち、常法
により2本加圧式熱ローラーでマグネタイト粒子粉末の
溶融混練を行い、ジェットミル式粉砕機及び分級機を用
いて、平均粒径10μmを有する磁性トナーを得た後、
この磁性トナーについて、市販の一成分系複写の現像液
ボックスを改良したものを用い、次のブラシ飛散法によ
り該磁性トナーの磁気分布を測定した。
The evaluation of the dispersibility of the magnetite particle powder of the present invention in a resin was performed by the following method. That is, the magnetite particle powder is melt-kneaded with two pressurized heat rollers by a conventional method, and a magnetic toner having an average particle diameter of 10 μm is obtained using a jet mill type pulverizer and a classifier.
With respect to this magnetic toner, the magnetic distribution of the magnetic toner was measured by the following brush scattering method using an improved developer box for commercially available one-component copying.

【0024】ブラシ飛散法とは、マグローラの回転数を
可変式に改良し、磁性トナーの仕込み量を一定化させた
場合、回転数を速くすることで、磁力の弱いトナー(磁
性材の含有量が少ないトナー)は遠心力で飛ばされ、そ
の飛ばされた量とそのトナーの磁気を測定することによ
りトナー中のマグネタイトの分散性を計測する方法であ
る。つまり、上記ブラシ飛散法は、樹脂中へのマグネタ
イト粒子粉末の分散が悪い場合、個々のトナーの磁力が
異なるため、磁力の弱いトナーが早く飛ばされることを
利用した計測方法である。
In the brush scattering method, when the number of rotations of the mag roller is variably improved and the charged amount of the magnetic toner is fixed, the number of rotations is increased to increase the number of rotations of the toner. Is a method of measuring the dispersibility of magnetite in the toner by measuring the amount of the toner and the magnetism of the toner. In other words, the brush scattering method is a measurement method using the fact that when the dispersion of the magnetite particle powder in the resin is poor, the magnetic force of each toner is different, so that the toner having a weak magnetic force is quickly blown.

【0025】上記計測方法を用いて本発明のマグネタイ
ト粒子粉末の樹脂中への分散性を評価した結果、本発明
のマグネタイト粒子粉末は、微細な粒子形状を呈してい
ながらも、その粒度分布は均一であり、粒子形状も球状
を呈しており且つ、ケイ素(Si)を内部及び表面上に
保有しているため分散性に優れ、小粒径トナーに必要な
条件である樹脂との混練状態が良く磁気特性も均一であ
った。そのため、製造されたトナー1個当たりのマグネ
タイト粒子粉末の含有量が均一化しているので、コピー
の画質及び解像度を向上させ、カブリやトナー飛散の恐
れもなく鮮明な複写画像が得られた。
As a result of evaluating the dispersibility of the magnetite particle powder of the present invention in the resin using the above-mentioned measuring method, the magnetite particle powder of the present invention has a uniform particle size distribution while exhibiting a fine particle shape. The particle shape is spherical, and silicon (Si) is retained inside and on the surface, so that the dispersibility is excellent, and the kneading state with the resin which is a necessary condition for the small particle size toner is good. The magnetic properties were also uniform. Therefore, since the content of the magnetite particle powder per manufactured toner is uniform, the image quality and resolution of the copy are improved, and a clear copy image is obtained without fear of fogging or toner scattering.

【0026】[0026]

【実施例】以下、本発明の球状マグネタイト粒子粉末及
びその製造方法を、実施例及び比較例を挙げて更に具体
的に説明するが、本発明はこれらに限定されるものでは
ない。尚、下記実施例1〜4及び比較例1〜4で用いた
物質のそれぞれの反応量を〔表1〕に示す。
EXAMPLES Hereinafter, the spherical magnetite particle powder of the present invention and a method for producing the same will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, each reaction amount of the substance used in the following Examples 1 to 4 and Comparative Examples 1 to 4 is shown in [Table 1].

【0027】<実施例1>ガス通気管を有する内容積5
0リットルの攪拌式酸化反応槽の中に、空気を10リッ
トル/minの速度で通気させながら固形の苛性ソーダ
0.64Kg及び炭酸ソーダ2.544Kgを水22.
5リットルに溶解し、更にケイ素(Si)化合物60g
を溶解し攪拌しながら反応槽の温度を90〜100℃に
昇温させた。次に一次反応として、別に用意した濃度4
25g/リットルの種晶用塩化第一鉄溶液717mlび
濃度510g/リットルの塩化第二鉄溶液1304ml
を含む混合溶液に水を混合し、全量を2.5リットルと
した混合溶液を、定量ポンプを用いて上記反応槽の中に
約7分間程で滴下してコロイド状またはゲルじょうのマ
グネタイトの種晶粒子を生成させた後、上記反応槽の内
部を空気から窒素へ置換した。次に2次反応として、濃
度425g/リットルの塩化第一鉄溶液4046mlに
水を混合し、全量を15リットルとした塩化第一鉄溶液
を、上記反応槽の中に加えてPH値を9.0〜12.5
とし、反応温度を80〜100℃に保持しながら約5分
間程攪拌した。その後、上記反応槽の内部に空気を10
リットル/minの速度で通気し、上記反応槽の内部を
窒素から空気へ置換して酸化反応を再開し、マグネタイ
ト粒子を生成した。この際の2次反応全体の時間を、約
2.5時間程度とした。
<Embodiment 1> Internal volume 5 having gas vent tube
While passing air at a rate of 10 liter / min into a 0-liter stirred oxidation reaction tank, 0.64 kg of solid caustic soda and 2.544 kg of sodium carbonate were added to 22.
Dissolved in 5 liters and 60g of silicon (Si) compound
Was dissolved and stirred, and the temperature of the reaction vessel was raised to 90 to 100 ° C. Next, as a primary reaction, a separately prepared concentration of 4
717 ml of 25 g / l ferrous chloride solution for seed crystals and 1304 ml of 510 g / l ferric chloride solution
Water was mixed with the mixed solution containing the above, and the mixed solution having a total volume of 2.5 liters was dropped into the above-mentioned reaction tank using a metering pump in about 7 minutes, and the colloidal or gel-like magnetite seeds were added. After generating the crystal grains, the inside of the reaction vessel was replaced with nitrogen from air. Next, as a secondary reaction, water was mixed with 4046 ml of a ferrous chloride solution having a concentration of 425 g / liter, and a total of 15 liters of the ferrous chloride solution was added to the reaction tank to adjust the PH value to 9. 0 to 12.5
The mixture was stirred for about 5 minutes while maintaining the reaction temperature at 80 to 100 ° C. After that, air was introduced into the reaction tank by 10 times.
Ventilation was performed at a rate of 1 liter / min, and the inside of the reaction tank was replaced with nitrogen to air to restart the oxidation reaction, thereby producing magnetite particles. The time for the entire secondary reaction at this time was about 2.5 hours.

【0028】然る後、上記方法で製造したマグネタイト
粒子粉末を常法により濾過、水洗、乾燥及び粉砕し、ブ
ラシ飛散法を用いて生成したマグネタイト粒子粉末の樹
脂中への分散性を評価した。その結果を〔表2〕に示
し、また上記マグネタイト粒子粉末の粒子構造を図1に
示す。表2の結果から明らかな様に、上記マグネタイト
粒子粉末は、平均粒径が0.16μm、比表面積が1
1.1m2 /gであり、ケイ素(Si)を鉄(Fe)に
対して2.4原子%含有し、且つ低磁場(1K Oe )にお
ける飽和磁束密度(σs)が70.1emu/gであっ
た。また、図1の結果から明らかな様に、上記マグネタ
イト粒子粉末の形状は、球形を呈していた。
Thereafter, the magnetite particle powder produced by the above method was filtered, washed with water, dried and pulverized by a conventional method, and the dispersibility of the generated magnetite particle powder in the resin was evaluated by a brush scattering method. The results are shown in Table 2 and the particle structure of the magnetite particles is shown in FIG. As is clear from the results in Table 2, the magnetite particles had an average particle size of 0.16 μm and a specific surface area of 1
1.1 m 2 / g, containing 2.4 atomic% of silicon (Si) with respect to iron (Fe), and having a saturation magnetic flux density (σs) in a low magnetic field (1 K Oe) of 70.1 emu / g. there were. Further, as is apparent from the results of FIG. 1, the shape of the magnetite particle powder was spherical.

【0029】<実施例2〜4>ケイ素(Si)化合物の
添加量を変えた以外は、それぞれ実施例1と同様の反応
条件で反応させ、微細化することにより球形を呈したマ
グネタイト粒子粉末を製造し、実施例1と同様にして上
記マグネタイト粒子粉末の樹脂中への分散性を評価し
た。その結果を〔表2〕に示す。表2の結果から明らか
な様に、それぞれの実施例において製造されたマグネタ
イト粒子粉末は、どれも平均粒径が0.08〜0.2μ
mと小さく球形を呈し、比表面積が5〜20m2 /gで
あり、且つ低磁場(1K Oe )における飽和磁束密度(σ
s)が65emu/g以上であった。
<Examples 2 to 4> Except that the addition amount of the silicon (Si) compound was changed, the reaction was carried out under the same reaction conditions as in Example 1, and the magnetite particle powder having a spherical shape was obtained by miniaturization. It was manufactured, and the dispersibility of the magnetite particle powder in the resin was evaluated in the same manner as in Example 1. The results are shown in [Table 2]. As is clear from the results in Table 2, the magnetite particle powders produced in the respective examples all have an average particle diameter of 0.08 to 0.2 μm.
m, a spherical shape, a specific surface area of 5 to 20 m 2 / g, and a saturation magnetic flux density (σ) in a low magnetic field (1 K Oe).
s) was 65 emu / g or more.

【0030】<比較例1>塩化第一鉄溶液及び塩化第二
鉄溶液を含む混合溶液の滴下を省略し、2次反応として
濃度425g/リットルの塩化第一鉄溶液4760ml
に水を混合し、全量を15リットルとした塩化第一鉄溶
液を、反応槽の中に加えた以外は、実施例1と同様の反
応条件で反応させ、マグネタイト粒子粉末を製造し、実
施例1と同様にして上記マグネタイト粒子粉末の樹脂中
への分散性を評価した。その結果を〔表2〕に示し、上
記マグネタイト粒子粉末の粒子構造を図2に示す。表2
の結果から明らかな様に、上記マグネタイト粒子粉末
は、低磁場(1K Oe)における飽和磁束密度(σs)が
62.3emu/gと低かった。また、図2の結果から
明らかな様に、上記マグネタイト粒子粉末の形状は、八
面体形を呈していた。
<Comparative Example 1> Dropping of a mixed solution containing a ferrous chloride solution and a ferric chloride solution was omitted, and 4760 ml of a ferrous chloride solution having a concentration of 425 g / liter was used as a secondary reaction.
The reaction was carried out under the same reaction conditions as in Example 1 except that a ferrous chloride solution having a total volume of 15 liters was added to the reaction vessel to produce magnetite particle powder. In the same manner as in Example 1, the dispersibility of the magnetite particle powder in the resin was evaluated. The results are shown in Table 2 and the particle structure of the magnetite particles is shown in FIG. Table 2
As is clear from the results, the magnetite particle powder had a low saturation magnetic flux density (σs) in a low magnetic field (1 K Oe) of 62.3 emu / g. Further, as is apparent from the results of FIG. 2, the shape of the magnetite particle powder was octahedral.

【0031】<比較例2>炭酸ソーダの添加を省略した
以外は実施例1と同様の反応条件で反応させ、マグネタ
イト粒子粉末を製造し、実施例1と同様にして上記マグ
ネタイト粒子粉末の樹脂中への分散性を評価した。その
結果を〔表2〕に示す。表2の結果から明らかな様に、
上記マグネタイト粒子粉末は、平均粒径が0.11〜
0.3μmであり粒度分布が不均一で、低磁場(1K Oe
)における飽和磁束密度(σs)も61.8emu/
gと低かった。また、上記マグネタイト粒子粉末の形状
は、不定形を呈していた。
<Comparative Example 2> A magnetite particle powder was prepared by reacting under the same reaction conditions as in Example 1 except that the addition of sodium carbonate was omitted. Was evaluated for dispersibility. The results are shown in [Table 2]. As is clear from the results in Table 2,
The magnetite particle powder has an average particle diameter of 0.11 to 0.11.
0.3μm, non-uniform particle size distribution, low magnetic field (1K Oe
) Also has a saturation magnetic flux density (σs) of 61.8 emu /
g. In addition, the shape of the magnetite particle powder was irregular.

【0032】<比較例3>炭酸ソーダの添加及び2次反
応の際の反応槽の内部の空気から窒素への置換を省略
し、2次反応として濃度425g/リットルの塩化第一
鉄溶液4760mlに水を混合し、全量を15リットル
とした塩化第一鉄溶液を、上記反応槽の中に加えた以外
は、実施例1と同様の反応条件で反応させマグネタイト
粒子粉末を製造し、実施例1と同様にして上記マグネタ
イト粒子粉末の樹脂中への分散性を評価した。その結果
を〔表2〕に示す。表2の結果から明らかな様に、上記
マグネタイト粒子粉末は、平均粒径が0.10〜0.3
μmであり粒度分布が不均一で、低磁場(1K Oe )にお
ける飽和磁束密度(σs)も60.6emu/gと低か
った。また、上記マグネタイト粒子粉末の形状は、八面
体を呈しており更に、形状が針状を呈するものも生成し
ていた。
<Comparative Example 3> The addition of sodium carbonate and the replacement of the air inside the reaction tank with nitrogen during the secondary reaction were omitted, and the secondary reaction was carried out in 4760 ml of a ferrous chloride solution having a concentration of 425 g / l. Water was mixed and the reaction was carried out under the same reaction conditions as in Example 1 except that a ferrous chloride solution having a total volume of 15 liters was added to the above-mentioned reaction vessel, thereby producing magnetite particles. The dispersibility of the magnetite particle powder in the resin was evaluated in the same manner as described above. The results are shown in [Table 2]. As is clear from the results in Table 2, the magnetite particle powder has an average particle size of 0.10 to 0.3.
μm, the particle size distribution was not uniform, and the saturation magnetic flux density (σs) in a low magnetic field (1 K Oe) was as low as 60.6 emu / g. Further, the shape of the magnetite particle powder was octahedral, and some of the magnetite particles had a needle shape.

【0033】<比較例4>ケイ素(Si)化合物の添加
を省略した以外は、実施例1と同様の反応条件で反応さ
せマグネタイト粒子粉末を製造し、実施例1と同様にし
て上記マグネタイト粒子粉末の樹脂中への分散性を評価
した。その結果を〔表2〕に示す。表2の結果から明ら
かな様に、上記マグネタイト粒子粉末は、平均粒径が
0.10〜0.3μmであり粒度分布が不均一で、低磁
場(1K Oe )における飽和磁束密度(σs)も50.8
emu/gと低かった。また、上記マグネタイトは、形
状が八面体を呈していた。
Comparative Example 4 A magnetite particle powder was produced by reacting under the same reaction conditions as in Example 1 except that the addition of the silicon (Si) compound was omitted, and the magnetite particle powder was produced in the same manner as in Example 1. Was evaluated for dispersibility in a resin. The results are shown in [Table 2]. As is clear from the results in Table 2, the magnetite particles have an average particle size of 0.10 to 0.3 μm, a nonuniform particle size distribution, and a saturation magnetic flux density (σs) in a low magnetic field (1 K Oe). 50.8
emu / g was low. The magnetite had an octahedral shape.

【0034】[0034]

【表1】 [Table 1]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明の球状マグネタイト粒子粉末及び
その製造方法並びに球状マグネタイトを含む磁性トナー
は、電子写真、静電記録、静電複写機及びレーザープリ
ンター等における鮮明な複写画像や高解像度の画像を得
るために必要な小粒径トナーの製造において必要とされ
る、低磁場中での飽和磁束密度(σs)が高く分散性に
優れ、トナー中に多量に使用されても樹脂との混練状態
が良く、分級後のトナーの粒度分布が均一であり、トナ
ー粒径を小さくすることができる。
The spherical magnetite particle powder of the present invention, the method for producing the same, and the magnetic toner containing the spherical magnetite can be used to produce a sharp copy image or a high-resolution image in an electrophotography, electrostatic recording, electrostatic copier, laser printer, or the like. High saturation magnetic flux density (σs) in a low magnetic field, excellent in dispersibility, and kneaded with resin even when used in a large amount in toner The particle size distribution of the classified toner is uniform, and the particle size of the toner can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例1において製造された
マグネタイト粒子粉末の粒子構造を示す電子顕微鏡写真
である。
FIG. 1 is an electron micrograph showing the particle structure of a magnetite particle powder produced in Example 1 of the present invention.

【図2】図2は、比較例1において製造されたマグネタ
イト粒子粉末の粒子構造を示す電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing the particle structure of the magnetite particle powder produced in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−213620(JP,A) 特開 平5−286723(JP,A) 特公 平3−9045(JP,B2) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP 5-213620 (JP, A) JP 5-286723 (JP, A) JP 3-9045 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径が0.08〜0.2μm、比表
面積が5〜20m2/gであり、ケイ素(Si)を鉄
(Fe)に対して0.1〜3.0原子%含有し、且つ低
磁場(1K Oe )における飽和磁束密度(σs)が65e
mu/g以上であることを特徴とする球状マグネタイト
粒子粉末。
An average particle size is 0.08 to 0.2 μm, a specific surface area is 5 to 20 m 2 / g, and silicon (Si) is contained in an amount of 0.1 to 3.0 atomic% with respect to iron (Fe). Saturated magnetic flux density (σs) at low magnetic field (1K Oe) is 65e
Spherical magnetite particle powder characterized by being at least mu / g.
【請求項2】 請求項1記載の球状マグネタイト粒子粉
末の製造方法であって、アルカリ金属水酸化物及びアル
カリ金属炭酸塩を含み更に、ケイ素(Si)を反応に加
えられる全鉄(Fe)量に対し0.1〜3.0原子%含
む混合溶液に、塩化第一鉄を反応に加えられる全第一鉄
塩に対しモル比で0.1〜0.5含み、且つ塩化第二鉄
を上記塩化第一鉄に対しモル比で1.0〜5.0を含む
混合溶液を加え、マグネタイトの種晶を生成させ、次い
で、反応に加えられる全第一鉄塩に対しモル比で0.5
〜0.95となる量の塩化第一鉄を含む溶液を加えて反
応系のPH値を9.0〜12.5とし、反応温度を80
〜100℃に保持しながら、酸化性ガスを吹き込み、マ
グネタイト粒子を生成させ、然る後、濾過、水洗、乾燥
及び粉砕を行うことを特徴とするマグネタイト粒子粉末
の製造方法。
2. The method for producing spherical magnetite particles according to claim 1, wherein the total amount of iron (Fe) containing an alkali metal hydroxide and an alkali metal carbonate and further adding silicon (Si) to the reaction. In a mixed solution containing 0.1 to 3.0 atomic%, ferrous chloride is contained in a molar ratio of 0.1 to 0.5 with respect to all ferrous salts added to the reaction, and ferric chloride is contained. A mixed solution containing 1.0 to 5.0 in molar ratio with respect to the ferrous chloride is added to generate a magnetite seed crystal, and then in a molar ratio of 0.1 to the total ferrous salt added to the reaction. 5
A solution containing ferrous chloride in an amount of 0.95 to 0.95 was added to adjust the pH value of the reaction system to 9.0 to 12.5, and the reaction temperature to 80
A method for producing magnetite particle powder, comprising blowing an oxidizing gas while maintaining the temperature at 〜100 ° C. to generate magnetite particles, and then performing filtration, washing with water, drying and pulverization.
【請求項3】 請求項1記載のマグネタイト粒子粉末を
含むことを特徴とするトナー。
3. A toner comprising the magnetite particle powder according to claim 1.
JP5134892A 1993-06-04 1993-06-04 Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite Expired - Fee Related JP2634366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5134892A JP2634366B2 (en) 1993-06-04 1993-06-04 Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134892A JP2634366B2 (en) 1993-06-04 1993-06-04 Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite

Publications (2)

Publication Number Publication Date
JPH06345440A JPH06345440A (en) 1994-12-20
JP2634366B2 true JP2634366B2 (en) 1997-07-23

Family

ID=15138962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134892A Expired - Fee Related JP2634366B2 (en) 1993-06-04 1993-06-04 Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite

Country Status (1)

Country Link
JP (1) JP2634366B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128523A (en) * 2000-10-17 2002-05-09 Rikogaku Shinkokai Method of manufacturing ferrite fine particle
JP5352067B2 (en) * 2007-06-29 2013-11-27 三井金属鉱業株式会社 Iron oxide particles powder

Also Published As

Publication number Publication date
JPH06345440A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
JP3584954B2 (en) Magnetic iron oxide particle powder for magnetic toner, method for producing the same, and magnetic toner using the magnetic iron oxide particle powder
EP1724643B1 (en) Magnetic toner
WO2009057807A1 (en) Magnetic toner
JPH0959025A (en) Magnetic iron oxide particle powder for spherical magnetic toner and production of the powder and magnetic toner using the same
JP2008241742A (en) Carrier core material for electrophotographic developer and manufacturing method thereof, carrier for electrophotographic developer, and electrophotographic developer
JPS62278131A (en) Silicon element-containing magnetic iron oxide and production thereof
EP0532315B2 (en) Process for producing magnetite particles
JPH05213620A (en) Magnetite particles and its production
JP4026982B2 (en) Magnetite particles and method for producing the same
JP2634366B2 (en) Spherical magnetite particle powder, method for producing the same, and magnetic toner containing spherical magnetite
JP3458886B2 (en) Magnetic iron oxide particle powder for magnetic toner and magnetic toner using the magnetic iron oxide particle powder
JP4735810B2 (en) Magnetic iron oxide particle powder for magnetic toner and magnetic toner using the magnetic iron oxide particle powder
JP2634366C (en)
JP2628967B2 (en) Magnetite particle powder and method for producing the same
JP3664216B2 (en) Black magnetic particle powder for black magnetic toner and black magnetic toner using the black magnetic particle powder
JP3317359B2 (en) Magnetic particle powder for magnetic toner used for character recognition of magnetic images
JP2001312095A (en) Magnetic particle powder for magnetic toner
US5846683A (en) Toner producing method using recycled extra-fine toner particles
JP2001002426A (en) Black magnetic iron oxide particle powder for magnetic toner and its production
US6083476A (en) Black ultrafine magnetite particles and process for preparing the same
JPH0543253A (en) Polyhedral magnetite granular powder and its production
JPH10279313A (en) Magnetite particle and its production
JPH04362954A (en) Magnetic developer, device unit, electrophotographic device and method for discriminating magnetic ink mark
JP3600754B2 (en) Iron oxide particle powder
JP3437714B2 (en) Magnetite particles and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees