JPS6070774A - Detector for radiation - Google Patents

Detector for radiation

Info

Publication number
JPS6070774A
JPS6070774A JP58178605A JP17860583A JPS6070774A JP S6070774 A JPS6070774 A JP S6070774A JP 58178605 A JP58178605 A JP 58178605A JP 17860583 A JP17860583 A JP 17860583A JP S6070774 A JPS6070774 A JP S6070774A
Authority
JP
Japan
Prior art keywords
crystal substrate
depletion layer
junction electrode
detector
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178605A
Other languages
Japanese (ja)
Inventor
Yuzo Ozaki
雄三 尾崎
Morio Wada
守夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58178605A priority Critical patent/JPS6070774A/en
Publication of JPS6070774A publication Critical patent/JPS6070774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/118Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors

Abstract

PURPOSE:To improve radiation sensitivity and frequency response characteristics by bringing the thickness of a high resistivity P type CdTe crystal substrate to predetermined thickness so that a depletion layer generated in a CdTe crystal under a Schottky-barrier junction electrode reaches to an ohmic junction electrode. CONSTITUTION:When radiation is projected into a CdTe crystal substrate 1 from the Schottky-barrier junction electrode 2 side, free carriers generated in a depletion layer 4 are accelerated by an electric field in the depletion layer 4, and reach to a Schottky-barrier junction electrode 2, and ionization currents I are obtained through a lead wire 5. The resistance of P type CdTe crystal substrate 1 itself is not made to be contained substantially in the series resistance component of a detector because the depletion layer 4 reaches to an ohmic junction electrode 3 at that time. Consequently, the depletion layer 4 generated by a Schottky-barrier junction expands with the increase of the resistivity of the crystal substrate 1, and sensitivity is improved. Large substrate resistance hardly has an effect on the series resistance component of the detector by making the thickness (t) of the CdTe crystal substrate 1 the same as that of the depletion layer 4.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、高比抵抗P形CdTe結晶基板を用いた放射
線検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a radiation detector using a high resistivity P-type CdTe crystal substrate.

〔従来技術の説明〕[Description of prior art]

第1図は従来のこの種のX線検出器の一例を示す構成斜
視図、第2図は要部断面図である。
FIG. 1 is a perspective view of the configuration of an example of a conventional X-ray detector of this type, and FIG. 2 is a sectional view of the main part.

この検出器は、高比抵抗P形CdTe結晶基板1にショ
ットキ・バリア特性を有する薄膜電極2を形成させると
ともに、これに対向してオーミック接合電極3を形成さ
せて構成したもので、ショットキ・バリア電極2と、C
dTe結晶基板1との接合によって生じた有感層(空乏
層)4を利用して、電極2側から入ってくるX線を検出
する。
This detector is constructed by forming a thin film electrode 2 having Schottky barrier characteristics on a high resistivity P-type CdTe crystal substrate 1, and forming an ohmic junction electrode 3 opposite to this. Electrode 2 and C
X-rays entering from the electrode 2 side are detected using a sensitive layer (depletion layer) 4 created by bonding with the dTe crystal substrate 1.

この様な構成の従来の検出器においては、接合容量等検
出器が有する容量成分と、シwy)キ。
In a conventional detector with such a configuration, capacitance components such as junction capacitance, etc., which the detector has, and

バリアによって生じたCdTa結晶内の空乏層化してな
い結晶基板Aの部分の抵抗と、接触抵抗の寄生直列抵抗
が存在し、これらによって、検出器の周波数の周波数応
答特性は決定され、良好な周波数応答特性が得られなか
った。また、検出器の有感層を広げ、X線感度を上げる
ためには、高比抵抗単結晶を使用する必要があり、基板
抵抗が検出器の直列抵抗を大きくしていた。
There is a resistance in the part of the crystal substrate A that is not depleted in the CdTa crystal caused by the barrier, and a parasitic series resistance of the contact resistance, and these determine the frequency response characteristics of the detector, and the frequency response characteristic of the detector is determined by these. Response characteristics could not be obtained. Furthermore, in order to expand the sensitive layer of the detector and increase its X-ray sensitivity, it is necessary to use a high resistivity single crystal, and the substrate resistance increases the series resistance of the detector.

〔本発明の目的〕[Object of the present invention]

本発明は、高比抵抗P形CdTe結晶を用い、高い放射
線感度を有し、かつ周波数応答特性の良好な放射線検出
器を実現しようとするものである。
The present invention aims to realize a radiation detector that uses a high resistivity P-type CdTe crystal, has high radiation sensitivity, and has good frequency response characteristics.

〔本発明の概要〕[Summary of the invention]

本発明に係る放射線検出器は、ショットキ・バリア接合
電極下のCdTe結晶内に生じる空乏層が、オーミック
接合電極に達するようにCdTe結晶基板の厚さを所定
の厚さにした点に構成上あ特徴がある。
The radiation detector according to the present invention has a structure in that the thickness of the CdTe crystal substrate is set to a predetermined thickness so that the depletion layer generated in the CdTe crystal under the Schottky barrier junction electrode reaches the ohmic junction electrode. It has characteristics.

〔実施例による説明〕[Explanation based on examples]

第6図は、本発明に係る放射線検出器の一例を示す要部
の側断面図である。この図において、1は例えば3X1
05Ωam程度の高比抵抗P形CdTs結晶基板、2は
このCdTe結晶基板上に例えば真空蒸着等の手法によ
って形成しfc)Ltのショットキ・バリア接合電極、
5はCdTe結晶基板の他方の面に形成した例えばA、
uのオーミック接合電極、4はショットキ・バリア電極
1の下に生じた有感層(空乏層)、5は各電極に接続さ
れたリード線である。
FIG. 6 is a side sectional view of essential parts showing an example of a radiation detector according to the present invention. In this figure, 1 is, for example, 3X1
A P-type CdTs crystal substrate with a high specific resistance of about 0.05 Ωam, 2 is formed on this CdTe crystal substrate by a method such as vacuum evaporation, and fc) Lt Schottky barrier junction electrode;
5 is formed on the other side of the CdTe crystal substrate, for example, A,
4 is a sensitive layer (depletion layer) formed under the Schottky barrier electrode 1, and 5 is a lead wire connected to each electrode.

本発明の検出器においては、CdTe結晶基板1の厚さ
tが、例えば0.25rnm程度の薄さに選定されてお
υ、ショットキ・バリア電極1の下に生じる有感層4が
、オーミック接合電極3まで到達している。
In the detector of the present invention, the thickness t of the CdTe crystal substrate 1 is selected to be as thin as, for example, 0.25 nm, so that the sensitive layer 4 formed under the Schottky barrier electrode 1 forms an ohmic contact. It has reached electrode 3.

この様に構成される検出器は、次のようにして作られる
A detector configured in this manner is manufactured as follows.

まず、cdとTeとを化学当量混合し、これを石英ガラ
スアンプルに真空封入した後、垂直ブリッジマン炉で加
熱し、結晶化して得られた単結晶インゴットを、ウェハ
状に切断する。これを、約0.3mmの厚さまで研摩し
、ブロムメタノール液で化学エッチし、厚さ0.25m
mのCdTe結晶基板を作る。次に、とのCdTe結晶
基板の表面を、Arイオンでスパッタエッチし、清浄化
した後、aを厚さ20nrn真空蒸着し、ショットキ・
バリア接合電極2を形成する。
First, CD and Te are mixed in chemical equivalents, vacuum sealed in a quartz glass ampoule, heated in a vertical Bridgman furnace, and the resulting single crystal ingot is cut into wafers. This was polished to a thickness of about 0.3 mm, chemically etched with a bromine methanol solution, and made to a thickness of 0.25 mm.
A CdTe crystal substrate of m is made. Next, the surface of the CdTe crystal substrate was sputter-etched with Ar ions and cleaned, and then a 20nrn thick film was vacuum-deposited with Schottky.
A barrier junction electrode 2 is formed.

続いて、CdTe結晶基板の他の表面に、塩化金を塗布
して、Auオーミック電極3を形成する。次に信号取り
出しのためのリード線5f、例えば導電性接着剤によっ
て各電極2,5に結合して完成する。
Subsequently, gold chloride is applied to the other surface of the CdTe crystal substrate to form an Au ohmic electrode 3. Next, a lead wire 5f for signal extraction is connected to each electrode 2, 5 using, for example, a conductive adhesive to complete the process.

第3図に示す検出器において、Atショットキ・バリア
接合電極2側から、放射線がCdTe結晶基板1内に入
射すると、空乏層4内に発生した自由キャリアは、空乏
層4内の電界で加速され、aショエ ノトキ・バリア接合電極2に到達し、電離電流/が メリード線5を介して得られる。ここで、本発明におい
ては、空乏層4がAuオーミック接合電極3まで到達し
ているので、検出器の直列抵抗成分には、本質的KP形
CdTe結晶基板1自体の抵抗は含まれない。このため
、結晶基板1の比抵抗が太きくなるほど、ショットキ・
バリア接合によって生じる空乏層4が大きくなり、感度
が上がると同時に、CdTe結晶基板1の厚さtを空乏
層4の幅とすることで、大きな基板抵抗が検出器の直列
抵抗成分にほとんど影響しなくなる。従って、検出器の
直列抵抗成分と接合容量等の容量で決まる検出器の周波
数応答特性を改善することができる。
In the detector shown in FIG. 3, when radiation enters the CdTe crystal substrate 1 from the At Schottky barrier junction electrode 2 side, free carriers generated in the depletion layer 4 are accelerated by the electric field in the depletion layer 4. , a reaches the barrier junction electrode 2, and an ionizing current / is obtained via the lead wire 5. In the present invention, since the depletion layer 4 reaches the Au ohmic junction electrode 3, the series resistance component of the detector does not essentially include the resistance of the KP type CdTe crystal substrate 1 itself. Therefore, the thicker the specific resistance of the crystal substrate 1, the Schottky
The depletion layer 4 generated by the barrier junction becomes larger, increasing the sensitivity. At the same time, by setting the thickness t of the CdTe crystal substrate 1 to the width of the depletion layer 4, the large substrate resistance hardly affects the series resistance component of the detector. It disappears. Therefore, the frequency response characteristic of the detector, which is determined by the series resistance component of the detector and the capacitance such as the junction capacitance, can be improved.

第4図は、結晶基板の厚さtを155mm、 0.53
mrn。
In Figure 4, the thickness t of the crystal substrate is 155 mm, 0.53
mrn.

0.25mmと変えてめた周波数応答特性を示す。この
実験結果によれば、厚さtf O,25rnmとしたも
の、すなわち、空乏層がオーミック接合電極に達するよ
うに構成したものが、最も周波数応答特性が良好であっ
た。
The frequency response characteristics obtained by changing the width to 0.25 mm are shown. According to the experimental results, the one with a thickness of tf O of 25 nm, that is, the one configured so that the depletion layer reached the ohmic junction electrode, had the best frequency response characteristics.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば、高い放射線感度
を有し、周波数応答特性の良好な放射線検出器が実現で
きる。
As explained above, according to the present invention, a radiation detector having high radiation sensitivity and good frequency response characteristics can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の検出器の一例を示す構成斜視図、第2図
はその要部断面図、第5図は本発明に係る検出器の一例
を示す要部の側面断面図、第4図は実験結果の一例を示
す特性線図である。 1・・・P形CdTe結晶基板、2・・・ショットキ・
バリア接合電極、3・・・オーミック接合電極、4・・
・空乏層、5・・・リード線。
FIG. 1 is a perspective view of the configuration of an example of a conventional detector, FIG. 2 is a cross-sectional view of the main parts thereof, FIG. 5 is a side cross-sectional view of the main parts of an example of the detector according to the present invention, and FIG. is a characteristic diagram showing an example of experimental results. 1... P-type CdTe crystal substrate, 2... Schottky
Barrier junction electrode, 3... Ohmic junction electrode, 4...
・Depletion layer, 5... Lead wire.

Claims (1)

【特許請求の範囲】[Claims] (1)高比抵抗P形CdTe結晶基板の一方の面にショ
ットキ・バリア接合電極を形成するとともに他方の面に
オーミンク接合電極を形成させた放射線検出器において
、 前記P形CdTe結晶基板の厚さを、前記ショットキ・
バリア接合電極下のCdTa結晶内に生ずる空乏層が、
前記オーミック接合電極に達するように所定の厚さに選
定したことを特徴とする放射線検出器。
(1) In a radiation detector in which a Schottky barrier junction electrode is formed on one surface of a high resistivity P-type CdTe crystal substrate and an Ohmink junction electrode is formed on the other surface, the thickness of the P-type CdTe crystal substrate , the Schottky
The depletion layer generated in the CdTa crystal under the barrier junction electrode is
A radiation detector characterized in that a predetermined thickness is selected so as to reach the ohmic junction electrode.
JP58178605A 1983-09-27 1983-09-27 Detector for radiation Pending JPS6070774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178605A JPS6070774A (en) 1983-09-27 1983-09-27 Detector for radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178605A JPS6070774A (en) 1983-09-27 1983-09-27 Detector for radiation

Publications (1)

Publication Number Publication Date
JPS6070774A true JPS6070774A (en) 1985-04-22

Family

ID=16051371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178605A Pending JPS6070774A (en) 1983-09-27 1983-09-27 Detector for radiation

Country Status (1)

Country Link
JP (1) JPS6070774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314479A (en) * 1986-07-07 1988-01-21 Nippon Mining Co Ltd Cdte radiation detecting element
EP1691422A1 (en) * 2003-11-27 2006-08-16 Nagoya Industrial Science Research Institute Semiconductor radiation detector and process for producing the same
WO2010134493A1 (en) * 2009-05-19 2010-11-25 Sasaki Takehisa Radiation detecting element and radiation detecting device
JP2014099621A (en) * 2013-12-11 2014-05-29 Takehisa Sasaki Radiation detecting element and radiation detecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661179A (en) * 1979-10-24 1981-05-26 Fuji Electric Co Ltd Preparation of semiconductor radiation detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661179A (en) * 1979-10-24 1981-05-26 Fuji Electric Co Ltd Preparation of semiconductor radiation detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314479A (en) * 1986-07-07 1988-01-21 Nippon Mining Co Ltd Cdte radiation detecting element
JPH0734480B2 (en) * 1986-07-07 1995-04-12 株式会社ジャパンエナジー CdTe radiation detection element
EP1691422A1 (en) * 2003-11-27 2006-08-16 Nagoya Industrial Science Research Institute Semiconductor radiation detector and process for producing the same
EP1691422A4 (en) * 2003-11-27 2008-12-24 Inst Nagoya Ind Science Res Semiconductor radiation detector and process for producing the same
WO2010134493A1 (en) * 2009-05-19 2010-11-25 Sasaki Takehisa Radiation detecting element and radiation detecting device
JP2010272577A (en) * 2009-05-19 2010-12-02 Takehisa Sasaki Radiation detecting element and radiation detector
US8674358B2 (en) 2009-05-19 2014-03-18 Takehisa Sasaki Radiation detecting element and radiation detecting device
US9054260B2 (en) 2009-05-19 2015-06-09 Takehisa Konda Radiation detecting element and radiation detecting device
JP2014099621A (en) * 2013-12-11 2014-05-29 Takehisa Sasaki Radiation detecting element and radiation detecting device

Similar Documents

Publication Publication Date Title
JPH0216591B2 (en)
US3568125A (en) Thermistor
US3939555A (en) Strip type radiation detector and method of making same
US2634322A (en) Contact for semiconductor devices
JPS6070774A (en) Detector for radiation
US3271636A (en) Gallium arsenide semiconductor diode and method
JPH05335618A (en) Optical position detecting semiconductor device
US3436613A (en) High gain silicon photodetector
US3634931A (en) Method for manufacturing pressure sensitive semiconductor device
JPS60124879A (en) Multichannel type radiation detector and manufacture thereof
US4060822A (en) Strip type radiation detector and method of making same
EP0235706B1 (en) Thyristor having a resistance element coupled to its gate, and method of making the same
US4462019A (en) Photosensitive semiconductor resistor
JPH0196548A (en) Sensor element
JPS5834943A (en) Semiconductor device and manufacture thereof
JPH06112515A (en) Semiconductor radiation detector and its manufacture
JPS6021781Y2 (en) infrared detector
JPS55162273A (en) Schottky barrier diode
JP2650280B2 (en) Island-shaped thin film element
JPS63274182A (en) Semiconductor radiation detector
JPH01253973A (en) Semiconductor radiation detector and its manufacture
JPS61100978A (en) Radiation detector and manufacture thereof
JPS5857762A (en) Preparation of semiconductor device
JPH0523508B2 (en)
JPH0287681A (en) Semiconductor radiation detector