JPH01253971A - Semiconductor radiation detector and its manufacture - Google Patents

Semiconductor radiation detector and its manufacture

Info

Publication number
JPH01253971A
JPH01253971A JP63081561A JP8156188A JPH01253971A JP H01253971 A JPH01253971 A JP H01253971A JP 63081561 A JP63081561 A JP 63081561A JP 8156188 A JP8156188 A JP 8156188A JP H01253971 A JPH01253971 A JP H01253971A
Authority
JP
Japan
Prior art keywords
film
radiation detector
boron
semiconductor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63081561A
Other languages
Japanese (ja)
Inventor
Ryuma Hirano
龍馬 平野
Yoshio Mito
三戸 美生
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63081561A priority Critical patent/JPH01253971A/en
Publication of JPH01253971A publication Critical patent/JPH01253971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a semiconductor radiation detector which has a very small leakage current and can also detect neutrons by providing a boron nitride film as an insulating protective film covering a single crystal semiconductor substrate. CONSTITUTION:A film 5 containing at least boron nitride is provided as an insulating protective film covering a single crystal semiconductor substrate 1. As the boron nitride film 5 is an excellent insulating film, it can be used for protecting an element without increasing a leakage current. The concentration of an isotop <10>B of boron is not much different from the concentration of <10>B of a boron film and neutrons can be also detected. With this constitution, a semiconductor radiation detector with a very small leakage current can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は放射線を検出する半導体放射線検出器に関する
。特に中性子線を含む放射線の検出に適する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor radiation detector for detecting radiation. It is particularly suitable for detecting radiation including neutron beams.

従来の技術 従来、半導体放射線検出器の保護膜は特開昭59−21
8732号公報に示されているようにホウ素被膜が用い
られている。また、前記ホウ素被膜は特開昭61−15
2082号公報に示されているようにホウ素の同位元素
1@Bの1iIB(n、α)反応を利用してα線を発生
させることにより中性子線を検出する半導体放射線検出
器にも用いられている。その構造を第3図に示して説明
する。
Conventional technology Conventionally, a protective film for a semiconductor radiation detector was disclosed in Japanese Patent Application Laid-Open No. 59-21.
A boron coating is used as shown in Japanese Patent No. 8732. Further, the boron coating is
As shown in Publication No. 2082, it is also used in semiconductor radiation detectors that detect neutron rays by generating α rays using the 1iIB (n, α) reaction of the boron isotope 1@B. There is. Its structure is shown in FIG. 3 and will be explained.

すなわちN形単結晶81基板11にP形層12を形成し
、前記P形層12の北だけにホウ素被膜13を形成した
構造になっている。
That is, the structure is such that a P-type layer 12 is formed on an N-type single crystal 81 substrate 11, and a boron coating 13 is formed only on the north side of the P-type layer 12.

発明が解決しようとする課題 しかしながら、従来のホウ素被膜には導電性がある。そ
のためにその硬度が高くても、l結晶半導体基板を用い
て作られた素子の一部分しか保護できず、全体を覆う絶
縁保護膜としては使えず、N形単結晶Si基板llの電
気的に活性な表面及びその端部14が保護されないまま
残り、それがリーク電流を増大させた。しかしながら従
来から単結晶半導体基板を用いた素子の絶縁保護膜とし
て知られている窒化ケイ素、二酸化ケイ素等は中性子の
検出用には使えないし、それらを用いる場合には製造工
程も増加し複雑になる。
Problems to be Solved by the Invention However, conventional boron coatings are electrically conductive. Therefore, even if the hardness is high, it can only protect a part of the device made using the crystalline semiconductor substrate, and cannot be used as an insulating protective film to cover the whole. surface and its edges 14 remained unprotected, which increased leakage current. However, silicon nitride, silicon dioxide, etc., which have traditionally been known as insulating protective films for devices using single-crystal semiconductor substrates, cannot be used for neutron detection, and if they are used, the manufacturing process will increase and become complicated. .

特に半導体放射線検出器は空乏層を単結晶半導体基板の
厚さ方向にできるだけ広げて使いたいために数十■の高
い逆バイアス電圧を印加し、素子の接合面積も通常数m
m2と広いのでリーク電流が増大し易く、信号電流も多
くとれないことから、そのリーク電流の増大が放射線の
検出感度に重大な影響を与える。そのため導電性のホウ
素被膜は保護膜または中性子線検出用に用いるにしても
高電圧が印加されのでリーク′fL流が増大すると言う
rR題がある。また、そのホウ素被膜の加工性が悪く、
製造工程中に不用な部分に残留もしくわ付若し、それが
導電性であるためにリーク電流を増大させ製造の歩留ま
りも悪くすると言う課題もある。
In particular, in the case of semiconductor radiation detectors, a high reverse bias voltage of several tens of square meters is applied because the depletion layer should be expanded as much as possible in the thickness direction of the single crystal semiconductor substrate, and the junction area of the element is usually several meters.
Since it is as wide as m2, leakage current tends to increase and a large signal current cannot be obtained, so an increase in leakage current has a serious effect on radiation detection sensitivity. Therefore, even if the conductive boron film is used as a protective film or for detecting neutron beams, a high voltage is applied to the film, resulting in an rR problem in which the leakage 'fL flow increases. In addition, the processability of the boron coating is poor,
There is also the problem that residual or creases remain in unnecessary parts during the manufacturing process, and because they are conductive, they increase leakage current and reduce the manufacturing yield.

以上のことにより、中性子線の検出用にも使える絶縁保
護膜を有し、リーク電流等の小さい特性の良い半導体放
射線検出器が得られなっかた。
As a result of the above, it has been impossible to obtain a semiconductor radiation detector that has an insulating protective film that can also be used for detecting neutron beams and has good characteristics such as low leakage current.

さらにその製造工程も複雑で歩fl!まりも悪かった。Furthermore, the manufacturing process is complicated! Mari was also bad.

本発明は、この様な課題を解決することを目的としてい
る。
The present invention aims to solve such problems.

課題を解決するための手段 上記課題を解決するために、本発明では単結晶半導体基
板を覆う絶縁保護膜として少なくとも窒化ホウ素を含有
する膜を設けるものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a film containing at least boron nitride as an insulating protective film covering a single crystal semiconductor substrate.

作用 上記した手段を用いることによって生ずる本発明の作用
は次のようなものである。単結晶半導体基板を用いて作
製した素子の少なくともホウ素を含有する保護膜に例え
ば窒化ホウ素膜を設けたことにより、窒化ホウ素膜が優
れた絶縁膜であるのでリーク電流を増大させることなく
素子の保護に使えて、ホウ素被膜と比較してもホウ素の
同位元素+11Bの濃度は大差ないので、中性子線も検
出できるリーク電流の小さい半導体放射線検出器が得ら
れる。また、窒化ホウ素膜は絶縁体なので製造工程でそ
の残留や付着がリーク電流の増大に寄与せず、絶縁保護
膜と中性子検出との両方の作用を一つの膜で行うので、
製造工程も簡単になり歩留まりも向上する。
Effects The effects of the present invention produced by using the above-mentioned means are as follows. By providing a boron nitride film, for example, as a protective film containing at least boron for a device fabricated using a single crystal semiconductor substrate, the boron nitride film is an excellent insulating film and can protect the device without increasing leakage current. Since the concentration of the boron isotope +11B is not much different than that of a boron film, a semiconductor radiation detector with low leakage current that can also detect neutron beams can be obtained. In addition, since the boron nitride film is an insulator, its residue or adhesion during the manufacturing process will not contribute to an increase in leakage current, and a single film functions as an insulating protective film and a neutron detection film.
The manufacturing process is also simplified and the yield is improved.

さらに、混合ガスの放電によるCVD (気相成長)法
で窒化ホウ素膜を形成すると低温で良質の非晶質膜がで
き素子に対するカバレッジも良くなる。そのとき含有さ
れる水素は基板の表面や端部の電気的に活性な欠陥等を
補償しリーク電流を低減する。また、低温工程であるこ
とから特に半導体放射線検出器のように高純度、低欠陥
密度、高抵抗の単結晶半導体基板が要求される場合、結
晶欠陥の発生や不純物の拡散等をなくすことができるの
でリーク電流の少ないものができる。
Furthermore, if a boron nitride film is formed by a CVD (vapor phase growth) method using discharge of a mixed gas, a high-quality amorphous film can be obtained at low temperature, and the coverage for the device can be improved. The hydrogen contained at this time compensates for electrically active defects on the surface and edges of the substrate and reduces leakage current. In addition, since it is a low-temperature process, it is possible to eliminate the occurrence of crystal defects and the diffusion of impurities, especially when a single crystal semiconductor substrate with high purity, low defect density, and high resistance is required, such as in semiconductor radiation detectors. Therefore, it is possible to create a device with low leakage current.

実施例 以下、本発明の第一の実施例についてその断面構成図を
第1図に示して説明する。実験には比抵抗10 kΩ”
cm程度、面方位(111)、厚さ500μmで5mm
角のp形の単結晶Si基板1を用いた。小結晶Si基板
l)、に容量結合形プラズマCVD装置で5iHaガス
とCHaガスとを用い、そのガス混合比を7:3として
非晶質半導体膜2の非晶質SiCを200 n rn堆
積した。次に非晶質半導体膜2の上と小結晶81基板1
の裏面とに金属電極3.4を400nmのAIを蒸着し
、3mm角にパターニングして形成した。そして容量結
合形プラズマCV D 装置で、ガス圧力0.7Tor
r、基板温度400℃以下、水素希釈のB2H6ガス、
N H3ガス、N2ガス等を用い、13.56MHzの
高JMI波を印加して放電させ非晶質13 N膜5を2
0〜11000n堆積した。この非晶質BN膜5は絶縁
体で赤外吸収スペクトルから、その含有する水素はを測
定するとO6数パーセント以上であった。この水素が前
記単結晶Si基板1の表面及び側面端部にある欠陥を補
償しリーク電流をさらに少なくする。その非晶質BN膜
5をフォトプロセスとイオンビームエツチングにより、
パターンニングして金属電極3とのコタクト窓を開けた
。(図示していない)最後に、図に示さなかったが、金
属電極層3.4とリード線とを銀ペイストで接続し、樹
脂で検出器の全体を封じた。  その結果、従来のもの
よりもリーク電流が逆バイアス電圧50Vで20パーセ
ント少ない中性子線も検出できる半導体放射線検出器が
できた。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to a cross-sectional configuration diagram shown in FIG. 1. For the experiment, a resistivity of 10 kΩ”
cm, plane orientation (111), thickness 500μm and 5mm
A square p-type single crystal Si substrate 1 was used. 200 nrn of amorphous SiC of the amorphous semiconductor film 2 was deposited on a small crystal Si substrate l) using a capacitively coupled plasma CVD apparatus using 5iHa gas and CHa gas at a gas mixture ratio of 7:3. . Next, the top of the amorphous semiconductor film 2 and the small crystal 81 substrate 1
A metal electrode 3.4 was formed by depositing 400 nm of AI on the back surface of the substrate and patterning it into a 3 mm square. Then, using a capacitively coupled plasma CVD device, the gas pressure was 0.7 Torr.
r, substrate temperature below 400°C, hydrogen diluted B2H6 gas,
Using N H3 gas, N2 gas, etc., a high JMI wave of 13.56 MHz is applied to discharge the amorphous 13 N film 5.
0 to 11000n was deposited. This amorphous BN film 5 is an insulator, and its hydrogen content was measured from an infrared absorption spectrum to be several percent or more of O6. This hydrogen compensates for defects on the surface and side edges of the single crystal Si substrate 1, further reducing leakage current. The amorphous BN film 5 is formed by photoprocessing and ion beam etching.
Patterning was performed to open a contact window with the metal electrode 3. (Not shown) Finally, although not shown, the metal electrode layer 3.4 and the lead wire were connected with silver paste, and the entire detector was sealed with resin. As a result, a semiconductor radiation detector capable of detecting neutron beams with a leakage current of 20 percent less than conventional ones at a reverse bias voltage of 50 V was created.

本実施例のように単結晶半導体基板表面部の電気的接合
の一つとして非晶質SiC膜と単結晶Sl基板lとのへ
テロ接合を用いた場合、同じプラズマCVD装置で非晶
質SiC膜とBI’J膜とが堆積できるので工程及び設
備が簡易なものになり大面積のものも製造が容易になる
As in this example, when a heterojunction between an amorphous SiC film and a single-crystal Sl substrate is used as one of the electrical connections on the surface of a single-crystal semiconductor substrate, the amorphous SiC film can be Since the film and the BI'J film can be deposited, the process and equipment can be simplified, making it easy to manufacture large-area products.

次に、この電気的接合がショットキー接合である場合の
第2の実施例について第2図に示して説明する。第1の
実施例と同様なところは同じ記号を用いて説明した。こ
の場合は第1の実施例の非晶質半導体膜に換えてショッ
トキーバリア形成のための白金6を1100n堆積しで
ある。その製造方法は白金6を蒸着で堆積することとそ
の白金6が金属型Fii3を兼ねること以外、第1の実
施例と同じである。ショットキー接合は白金6を用いる
ので金属電極3が不用となり他の電気的接合よりも不感
層の薄い第1の実施例と同様な半導体放射線検出器が得
られた。また、電気的接合がPN接合でも本発明では同
様の課題を解決した半導体放射線検出器が得られた。
Next, a second embodiment in which the electrical junction is a Schottky junction will be described with reference to FIG. 2. The same parts as in the first embodiment have been explained using the same symbols. In this case, in place of the amorphous semiconductor film of the first embodiment, 1100 nm of platinum 6 was deposited to form a Schottky barrier. The manufacturing method is the same as that of the first embodiment except that platinum 6 is deposited by vapor deposition and the platinum 6 also serves as the metal type Fii3. Since the Schottky junction uses platinum 6, the metal electrode 3 is not required, and a semiconductor radiation detector similar to the first embodiment with a thinner insensitive layer than other electrical junctions is obtained. Further, even if the electrical junction is a PN junction, the present invention provides a semiconductor radiation detector that solves the same problem.

また、非晶質BN膜5を水素が含有しないようにスパッ
タ法でターゲットにBN膜をもちいて堆積し比較したと
ころ、水素を含有した場合の方がリーク電流が小さかっ
た。そして容量結合形プラズマCVD法で非晶質BN膜
5を堆積する方がスパッタ法よりも素子のカバレッジが
良く基板の側面端部まで堆積することができた。さらに
、非晶質BN膜5を多結晶BN膜に置き換えて実験する
と、そのち密度とが悪いので多結晶粒界からの増速拡散
等により外囲気の水分等に対する保護特性が悪く経時変
化が大きかった。その製造工程も500〜800℃の高
温だったので単結晶S【基板1にも熱ストレス等による
結晶欠陥が生じており、非晶質膜の方がリーク電流が小
さかった。
Furthermore, when the amorphous BN film 5 was deposited by sputtering using a BN film as a target so as not to contain hydrogen, the leakage current was smaller in the case where hydrogen was contained. When the amorphous BN film 5 was deposited using the capacitively coupled plasma CVD method, the device coverage was better than when using the sputtering method, and the film could be deposited up to the side edges of the substrate. Furthermore, when an experiment was carried out by replacing the amorphous BN film 5 with a polycrystalline BN film, it was found that the density was poor and the protective properties against moisture in the surrounding air were poor due to accelerated diffusion from the polycrystalline grain boundaries, resulting in poor deterioration over time. It was big. Since the manufacturing process was also at a high temperature of 500 to 800° C., crystal defects were also generated in the single crystal S substrate 1 due to thermal stress, and the leakage current was smaller in the amorphous film.

発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.

単結晶半導体基板を覆う絶縁保護膜として窒化ホウ素膜
を設けたことにより、それは絶縁保護と中性子線検出用
の二つの機能を満たし、従来のものよりもリーク電流が
少ない中性子線も検出できる半導体放射線検出器ができ
た。
By providing a boron nitride film as an insulating protective film covering a single crystal semiconductor substrate, it fulfills the dual functions of insulation protection and neutron beam detection, and is a semiconductor radiation detector that can also detect neutron beams with less leakage current than conventional ones. The detector has been created.

また、製造工程も簡単になり非晶質BN膜5が絶縁体で
あるため、そのパターンニングのときに単結晶半導体基
板1の周辺に残ってもリーク電流の増加はなく歩留まり
が向上した。
Further, the manufacturing process is simplified, and since the amorphous BN film 5 is an insulator, even if it remains around the single crystal semiconductor substrate 1 during patterning, leakage current does not increase and the yield improves.

非晶質BN膜5に水素が含有されていると単結晶半導体
基板の表面及び側面端部にある欠陥をその水素が補償し
リーク電流を小さくした。さらに、その水素の(n、p
)反応により速中性子の検出感度も向上した。その製造
方法としてホウ素元素と窒素元素と水素元素とを含む混
合ガスの放電を利用すると400℃以下の低温工程で単
結晶半導体基板中に結晶欠陥等の発生させることなく水
素を含む保護膜としてカバレッジの良い非晶質BN膜が
形成できて、さらにリーク電流を低減した保護特性の良
い半導体放射線検出器ができた。
When the amorphous BN film 5 contains hydrogen, the hydrogen compensates for defects on the surface and side edges of the single crystal semiconductor substrate, reducing leakage current. Furthermore, the hydrogen (n, p
) reaction also improved the detection sensitivity of fast neutrons. As a manufacturing method, using discharge of a mixed gas containing boron, nitrogen, and hydrogen elements, it can be used as a protective film containing hydrogen in a single-crystal semiconductor substrate without causing crystal defects in a low-temperature process of 400°C or less. An amorphous BN film with good properties was formed, and a semiconductor radiation detector with good protection characteristics and reduced leakage current was obtained.

本発明の実施例では述べなかったが、単結晶半導体基板
がGaAs、InP、CdTe等であり、それの電気的
接合がPN接合、ショットキー接合であっても同様の効
果が得られる。
Although not described in the embodiments of the present invention, the same effect can be obtained even if the single crystal semiconductor substrate is made of GaAs, InP, CdTe, etc. and the electrical junction thereof is a PN junction or a Schottky junction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体放射線検出器の第1の実施例の
断面構成図、第2図は本発明の半導体放射線検出器の第
2の実施例の断面構成図、第3図は従来の半導体放射線
検出器の断面構成図である。 1・・・単結晶Si基板、2・・・非晶質半導体膜、3
・・・金属電極、4・・・金属電極、5・・・非晶質B
N膜、6・・・白金、11・・・N形単結晶Si基板、
12・・・P形層、13・・・ホウ素被膜。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 /単ガ晶、Sδ【技
FIG. 1 is a cross-sectional diagram of a first embodiment of a semiconductor radiation detector of the present invention, FIG. 2 is a cross-sectional diagram of a second embodiment of a semiconductor radiation detector of the present invention, and FIG. 3 is a diagram of a conventional semiconductor radiation detector. FIG. 2 is a cross-sectional configuration diagram of a semiconductor radiation detector. 1... Single crystal Si substrate, 2... Amorphous semiconductor film, 3
...Metal electrode, 4...Metal electrode, 5...Amorphous B
N film, 6...Platinum, 11...N-type single crystal Si substrate,
12... P type layer, 13... Boron coating. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1/Single crystal, Sδ

Claims (5)

【特許請求の範囲】[Claims] (1)単結晶半導体基板表面部に電気的接合を有し、そ
れらの上部に少なくともホウ素を含有する絶縁膜を設け
たことを特徴とする半導体放射線検出器。
(1) A semiconductor radiation detector characterized in that it has an electrical junction on the surface of a single crystal semiconductor substrate, and an insulating film containing at least boron is provided on top of the electrical junction.
(2)単結晶半導体基板上に非晶質半導体膜を形成し、
少なくとも前記単結晶半導体基板及び前記非晶質半導体
膜上にそれらを覆う少なくともホウ素を含有する絶縁膜
を設けたことを特徴とする半導体放射線検出器。
(2) forming an amorphous semiconductor film on a single crystal semiconductor substrate;
A semiconductor radiation detector characterized in that an insulating film containing at least boron is provided on at least the single crystal semiconductor substrate and the amorphous semiconductor film to cover them.
(3)ホウ素を含有する絶縁膜が非晶質窒化ホウ素(B
N)膜であることを特徴とする特許請求の範囲第1項ま
たは第2項記載の半導体放射線検出器。
(3) The insulating film containing boron is made of amorphous boron nitride (B
N) The semiconductor radiation detector according to claim 1 or 2, wherein the semiconductor radiation detector is a film.
(4)ホウ素を含有する絶縁膜が水素を含有することを
特徴とする特許請求の範囲第3項記載の半導体放射線検
出器。
(4) The semiconductor radiation detector according to claim 3, wherein the insulating film containing boron contains hydrogen.
(5)単結晶半導体基板上の少なくとも一部の領域に非
晶質半導体膜を形成する工程と、少なくともホウ素元素
と窒素元素と水素元素とを含む混合ガスの放電による気
相成長法で前記単結晶半導体基板及び前記非晶質半導体
膜とを覆う窒化ホウ素膜を形成する工程とを有すること
を特徴とする半導体放射線検出器の製造方法。
(5) forming an amorphous semiconductor film on at least a partial region of a single crystal semiconductor substrate; A method for manufacturing a semiconductor radiation detector, comprising the step of forming a boron nitride film covering a crystalline semiconductor substrate and the amorphous semiconductor film.
JP63081561A 1988-04-01 1988-04-01 Semiconductor radiation detector and its manufacture Pending JPH01253971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081561A JPH01253971A (en) 1988-04-01 1988-04-01 Semiconductor radiation detector and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081561A JPH01253971A (en) 1988-04-01 1988-04-01 Semiconductor radiation detector and its manufacture

Publications (1)

Publication Number Publication Date
JPH01253971A true JPH01253971A (en) 1989-10-11

Family

ID=13749703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081561A Pending JPH01253971A (en) 1988-04-01 1988-04-01 Semiconductor radiation detector and its manufacture

Country Status (1)

Country Link
JP (1) JPH01253971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017462A1 (en) * 1990-04-27 1991-11-14 Hitachi, Ltd. Neutron exposure dosimeter for individual use, neutron dose rate meter, neutron detector and method of producing them
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321269A (en) * 1990-04-24 1994-06-14 Hitachi, Ltd. Neutron individual dose meter, neutron dose rate meter, neutron detector and its method of manufacture
USRE35908E (en) * 1990-04-24 1998-09-29 Hitachi, Ltd. Neutron individual dose meter neutron dose rate meter, neutron detector and its method of manufacture
WO1991017462A1 (en) * 1990-04-27 1991-11-14 Hitachi, Ltd. Neutron exposure dosimeter for individual use, neutron dose rate meter, neutron detector and method of producing them
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector

Similar Documents

Publication Publication Date Title
EP0177918B1 (en) Uv detector and method for fabricating it
US4665609A (en) Process of manufacturing a photosensitive device having a plurality of detectors separated by zones impervious to the radiation to be detected
WO2002084740A2 (en) Multispectral monolithic infrared focal plane array detectors
US6649915B2 (en) Ionizing radiation detector
JP3560462B2 (en) Diamond film UV sensor and sensor array
JPS60152971A (en) Conductor radiation detector
Thompson et al. Schottky barrier amorphous-crystalline interface formation
US4005468A (en) Semiconductor photoelectric device with plural tin oxide heterojunctions and common electrical connection
US3952323A (en) Semiconductor photoelectric device
JPS62123716A (en) Manufacture of semiconductor device
JPH01253971A (en) Semiconductor radiation detector and its manufacture
US4524374A (en) Device for detecting infrared rays
JPS6248390B2 (en)
JPH08236799A (en) Semiconductor radiation detector and rectifier
JPH0564862B2 (en)
JPS60124879A (en) Multichannel type radiation detector and manufacture thereof
JP2773219B2 (en) Semiconductor device
JPH01253973A (en) Semiconductor radiation detector and its manufacture
JPH0442835B2 (en)
JPS59135779A (en) Detector for infrared ray
JP2760430B2 (en) Method for manufacturing heterojunction device
JPH0287681A (en) Semiconductor radiation detector
JPH06112515A (en) Semiconductor radiation detector and its manufacture
JP3036258B2 (en) Semiconductor radiation detector
JP3024389B2 (en) Silicon radiation detector