JPH0287681A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPH0287681A
JPH0287681A JP63240105A JP24010588A JPH0287681A JP H0287681 A JPH0287681 A JP H0287681A JP 63240105 A JP63240105 A JP 63240105A JP 24010588 A JP24010588 A JP 24010588A JP H0287681 A JPH0287681 A JP H0287681A
Authority
JP
Japan
Prior art keywords
coating
boron
layer
amorphous semiconductor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63240105A
Other languages
Japanese (ja)
Inventor
Ryuma Hirano
龍馬 平野
Yoshio Mito
三戸 美生
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63240105A priority Critical patent/JPH0287681A/en
Publication of JPH0287681A publication Critical patent/JPH0287681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To obtain a semiconductor radiation detector which improves the detection sensitivity of neutron with low operating voltage and lessens aged changes and is superior in characteristics of a resistance to environment by providing a coating containing boron on a single crystal semiconductor substrate and at a part of the region on an amorphous semiconductor layer which forms heterojunction. CONSTITUTION:A coating 3 containing at least boron is provided on a single crystal semiconductor substrate 1 and at least at a part of the region on an amorphous semiconductor layer 2 which forms heterojunction and then, metallic electrodes 4 and 5 which cover the coating are mounted on the coating. As it is possible to cause the amorphous semiconductor layer 2 to have the film thickness of 200 nm or less, it is sufficiently thin as an insensitive layer to alpha rays. As there is a structure where the boron coating 3 and a heterojunction interface are formed across the above layer 2, the alpha rays may arrive at a depletion layer efficiently. Further, in this structure, as there is the boron coating 3 that is the generation source of the alpha rays by neutrons in the vicinity of the depletion layer even under inverse biased voltage, this configuration does not worsen the sensitivity of its detector. The covering of boron coating 3 with the metallic electrodes 4 and 5 protects the coating from contact with the outside air.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特に中性子線を含む放射線を検出する半導体放
射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor radiation detector for detecting radiation, particularly including neutron radiation.

従来の技術 従来、中性子線の半導体放射線検出器は特開昭61−3
5384号公報に示されているように、第2図のような
構造になっている。
Conventional technology Conventionally, a semiconductor radiation detector for neutron beams was disclosed in Japanese Patent Application Laid-open No. 61-3.
As shown in Japanese Patent No. 5384, it has a structure as shown in FIG.

すなわちN形単結晶St基板11上に水素化非晶質半導
体層12を堆積してヘテロ接合を形成し、Si基板11
のもう一方の面にホウ素被膜13を設けて、最後に電極
14.15を形成した構造になっている。
That is, a hydrogenated amorphous semiconductor layer 12 is deposited on an N-type single-crystal St substrate 11 to form a heterojunction.
The structure is such that a boron coating 13 is provided on the other surface, and electrodes 14 and 15 are finally formed.

その動作は中性子の吸収断面積の大きいホウ素の同位元
素+eBの”B(nl α)反応を利用してα線21を
発生させる。そして、そのα線が前記のヘテロ接合に印
加した逆バイアス電圧によりできた空乏層内16に入射
して電子−正孔対を発生させることににより中性子線2
2を検出している。
Its operation uses the "B (nl α)" reaction of boron isotope + eB, which has a large neutron absorption cross section, to generate α rays 21.Then, the α rays generate the reverse bias voltage applied to the heterojunction. The neutron beam 2 enters the depletion layer 16 formed by
2 is detected.

しかし、その信号強度は弱く、空乏層を広げるのに高い
逆バイアス電圧を印加するのでリーク電流の低減がSN
比の向上のためには重要である。
However, the signal strength is weak, and a high reverse bias voltage is applied to widen the depletion layer, so the reduction of leakage current is
This is important for improving the ratio.

発明が解決しようとする課題 しかしながら、従来の構造ではホウ素被膜13中で発生
したα線の飛程(例えば4.4MeVでSt中で約20
μm)が短いので空乏層にα線が到達する効率が低いの
が課題である。また、空乏層はヘテロ接合界面から逆バ
イアス電圧の印加によりSt基板11中に広がるのでペ
テロ接合界面と反対側のSt基板11のもう一方の面に
形成したホウ素被膜13付近まで空乏層を広げるにはか
なり高い逆バイアス電圧を印加する必要がある。
Problems to be Solved by the Invention However, in the conventional structure, the range of α rays generated in the boron coating 13 (for example, at 4.4 MeV and about 20
The problem is that the efficiency with which α rays reach the depletion layer is low because the length (μm) is short. Moreover, since the depletion layer spreads into the St substrate 11 from the heterojunction interface by applying a reverse bias voltage, the depletion layer spreads to the vicinity of the boron coating 13 formed on the other surface of the St substrate 11 on the opposite side to the heterojunction interface. requires the application of a fairly high reverse bias voltage.

そのため、リーク電流が増大しノイズが大きくなる。ま
た、高い逆バイアス電圧を得るには、その制御回路が複
雑で高価なものになる。また、ホウ素被膜13は外囲気
との接触により経時変化等を生じ、剥離したりして安定
性に欠けると言う課題がある。
Therefore, leakage current increases and noise increases. Furthermore, in order to obtain a high reverse bias voltage, the control circuit becomes complex and expensive. Further, the boron coating 13 suffers from changes over time due to contact with the surrounding air, and may peel off, resulting in a lack of stability.

本発明は、この様な課題を解決することを目的としてい
る。
The present invention aims to solve such problems.

課題を解決するための手段 上記課題を解決するために、単結晶半導体基板とヘテロ
接合を形成する非晶質半導体層上の少なくとも一部の領
域に少なくともホウ素を含有する膜を設けた。また、前
記のホウ素を含有する膜の上にそれを覆う金属電極を設
けた。
Means for Solving the Problems In order to solve the above problems, a film containing at least boron was provided in at least a partial region on an amorphous semiconductor layer that forms a heterojunction with a single crystal semiconductor substrate. Further, a metal electrode was provided on the boron-containing film to cover it.

作用 上記した手段を用いることによって生ずる本発明の作用
は次のようなものである。非晶質半導体層の膜厚は20
0nm以下にすることが可能なのでα線に対する不感層
としては十分に薄い。  それを隔ててホウ素被膜とヘ
テロ接合界面が形成された構造になるのでα線は空乏層
に効率良く到達する。また、この構造では低い逆バイア
ス電圧でも空乏層の近くに中性子によるα線の発生源で
あるホウ素被膜があるので感度が低下することは無い。
Effects The effects of the present invention produced by using the above-mentioned means are as follows. The thickness of the amorphous semiconductor layer is 20
Since the thickness can be reduced to 0 nm or less, it is sufficiently thin as a layer insensitive to alpha rays. Since the structure is such that a boron film and a heterojunction interface are formed between them, α rays can efficiently reach the depletion layer. In addition, with this structure, even at a low reverse bias voltage, there is no reduction in sensitivity because there is a boron coating near the depletion layer that is a source of α rays generated by neutrons.

  さらに、ホウ素被膜を金属電極で覆うことによりそ
れを外囲気との接触から守る。
Furthermore, covering the boron coating with a metal electrode protects it from contact with the surrounding atmosphere.

実施例 以下、本発明の第一の実施例について、その断面構成図
を第1図に示して説明する。実験には比抵抗10にΩ・
Cm程度、面方位(111)、厚さ500μmで5mm
角のp形の単結晶Si基板1を用いた。製造工程は以下
の通り出ある。洗浄した単結晶Si基板1上に容量結合
形プラズマCVD装置で、SiH4ガスとCH4ガスと
を用い、そのガス混合比を7:3として基板温度200
°Cで水素化非晶質半導体層としての非晶質SiC膜2
を200nm堆積した。  ガス圧力は0.5TOOr
+  高周波電力はIW/cffIt以下(13,56
MHz)で行った。その非晶質SiC膜上に前記の容量
結合形プラズマCVD装置で基板温度は変えずに導入ガ
スをB2H6(H2ベースで5%)に切り換えてホウ素
被膜3を0. 3〜1μm堆積した。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to FIG. 1, which shows a cross-sectional configuration diagram thereof. In the experiment, the resistivity was 10Ω・
About Cm, plane orientation (111), thickness 500μm and 5mm
A square p-type single crystal Si substrate 1 was used. The manufacturing process is as follows. A cleaned single-crystal Si substrate 1 is heated to a substrate temperature of 200 using a capacitively coupled plasma CVD apparatus using SiH4 gas and CH4 gas at a gas mixing ratio of 7:3.
Amorphous SiC film 2 as hydrogenated amorphous semiconductor layer at °C
was deposited to a thickness of 200 nm. Gas pressure is 0.5TOOr
+ High frequency power is less than IW/cffIt (13,56
MHz). A boron coating 3 was deposited on the amorphous SiC film using the capacitively coupled plasma CVD apparatus described above by changing the introduced gas to B2H6 (5% based on H2) without changing the substrate temperature. A thickness of 3 to 1 μm was deposited.

そのときのガス圧力は0.1〜1Toors  投入面
周波電力は前記の非晶質SiC膜の形成と同等かそれよ
りも高くした。ホウ素被膜3の比抵抗は数十Ω・cm以
下で導電性で非晶質SiC膜に電圧を印加するのに問題
はなく電気信号も取り出せた。そして前記ホウ素被膜3
をArによるイオンビームエツチングでレジストをマス
クにして数mrrlJにパターンニングした。次に前記
ホウ素被膜3上と前記単結晶Si基板1の裏面とに金属
電極4.5を膜厚400nmのAIを蒸着して形成した
The gas pressure at that time was 0.1 to 1 Tors, and the applied surface frequency power was equal to or higher than that for forming the amorphous SiC film. The boron coating 3 had a specific resistance of several tens of Ω·cm or less and was electrically conductive, so there was no problem in applying voltage to the amorphous SiC film and electrical signals could be extracted. and the boron coating 3
was patterned into several mrrlJ by ion beam etching using Ar using a resist as a mask. Next, metal electrodes 4.5 were formed on the boron coating 3 and on the back surface of the single crystal Si substrate 1 by vapor depositing AI with a thickness of 400 nm.

最後に、図に示さなかったが、金属電極4.5とリード
線とを銀ペイストで接続し、樹脂で検出器の全体を封じ
た。その結果、中性子線22の検出感度が向上し、逆、
バイアス電圧が従来例では50V程度必要であったのが
20〜30Vと低くできた。そのためリーク電流も数分
の1に減少した。
Finally, although not shown in the figure, the metal electrode 4.5 and the lead wire were connected with silver paste, and the entire detector was sealed with resin. As a result, the detection sensitivity of the neutron beam 22 is improved, and vice versa.
The bias voltage, which was required to be about 50V in the conventional example, can be reduced to 20 to 30V. As a result, leakage current was also reduced to a fraction of that.

さらに、耐環境特性も向上し経時変化の少ない半導体放
射線検出器が得られた。
Furthermore, a semiconductor radiation detector with improved environmental resistance and less deterioration over time was obtained.

発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.

単結晶半導体基板とヘテロ接合を形成する非晶質半導体
層上の少なくとも一部の領域に少なくともホウ素を含有
する膜を設けたことにより、中性子線によりホウ素被膜
中で発生したα線が空乏層に容易で効率よく到達するよ
うになり、低い動作電圧で中性子線の検出感度の向上し
た半導体放射線検出器の製造が得られるようになった。
By providing a film containing at least boron in at least a partial region of the amorphous semiconductor layer that forms a heterojunction with the single crystal semiconductor substrate, α rays generated in the boron film by neutron beams can be absorbed into the depletion layer. This has become easy and efficient to produce semiconductor radiation detectors with low operating voltages and improved neutron detection sensitivity.

また、ホウ素被膜を金属7I!極で覆ってホウ素被膜を
保護することによりの経時変化の少なく、耐環境特性の
良い半導体放射線検出器ができた。
In addition, the boron coating is metal 7I! By protecting the boron coating by covering it with an electrode, a semiconductor radiation detector with good environmental resistance and less deterioration over time was created.

本発明の構造では単結晶半導体基板がp形またはN形で
あっても同じ構造ででき、基板がGaASN  In、
Pl CdTe等であっても同様の効果がある。
The structure of the present invention has the same structure regardless of whether the single crystal semiconductor substrate is p-type or n-type;
A similar effect can be obtained using Pl CdTe or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体放射線検出器の第1の実施例の
断面構成図、第2図は従来の半導体放射線検出器の断面
構成図である。 1・・・単結晶Si基板、2・・・非晶質SiC膜、3
・・・ホウ素被膜、4・・・金属電極、5・・・金属電
極。
FIG. 1 is a cross-sectional configuration diagram of a first embodiment of a semiconductor radiation detector of the present invention, and FIG. 2 is a cross-sectional configuration diagram of a conventional semiconductor radiation detector. 1... Single crystal Si substrate, 2... Amorphous SiC film, 3
...Boron coating, 4...Metal electrode, 5...Metal electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)単結晶半導体基板と前記単結晶半導体基板上に形
成した非晶質半導体膜とのヘテロ接合を有し、前記非晶
質半導体膜上の少なくとも一部の領域に少なくともホウ
素を含有する膜を設けたことを特徴とする半導体放射線
検出器。
(1) A film having a heterojunction between a single crystal semiconductor substrate and an amorphous semiconductor film formed on the single crystal semiconductor substrate, and containing at least boron in at least a partial region on the amorphous semiconductor film. A semiconductor radiation detector characterized by being provided with.
(2)少なくともホウ素を含有する膜が導電性であり前
記非晶質半導体膜上の一部の領域だけに形成されていて
、前記のホウ素を含有する膜上にこの膜を覆う金属電極
を設けたことを特徴とする特許請求の範囲第1項記載の
半導体放射線検出器。
(2) At least the film containing boron is conductive and is formed only in a part of the amorphous semiconductor film, and a metal electrode is provided on the film containing boron to cover this film. A semiconductor radiation detector according to claim 1, characterized in that:
JP63240105A 1988-09-26 1988-09-26 Semiconductor radiation detector Pending JPH0287681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240105A JPH0287681A (en) 1988-09-26 1988-09-26 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240105A JPH0287681A (en) 1988-09-26 1988-09-26 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPH0287681A true JPH0287681A (en) 1990-03-28

Family

ID=17054566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240105A Pending JPH0287681A (en) 1988-09-26 1988-09-26 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPH0287681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763744A1 (en) * 1997-05-26 1998-11-27 Fuji Electric Co Ltd Neutron detector of semiconductor type
KR20020073241A (en) * 2001-03-13 2002-09-23 미쓰비시덴키 가부시키가이샤 Semiconductor device and method for the fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763744A1 (en) * 1997-05-26 1998-11-27 Fuji Electric Co Ltd Neutron detector of semiconductor type
KR20020073241A (en) * 2001-03-13 2002-09-23 미쓰비시덴키 가부시키가이샤 Semiconductor device and method for the fabrication

Similar Documents

Publication Publication Date Title
GB1602007A (en) Amorphous silicon photovoltaic device having an insulating layer
US6774013B2 (en) N-type boron-carbide semiconductor polytype and method of fabricating the same
US6043106A (en) Method for surface passivation and protection of cadmium zinc telluride crystals
US3254276A (en) Solid-state translating device with barrier-layers formed by thin metal and semiconductor material
Luke et al. Germanium orthogonal strip detectors with amorphous-semiconductor contacts
JPH0287681A (en) Semiconductor radiation detector
Hong et al. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane
US4611224A (en) Semiconductor radiation detector
Foulon et al. A new technique for the fabrication of thin silicon radiation detectors
CN219959011U (en) Silicon carbide detector chip containing transparent electrode
JPS6161708B2 (en)
JPH01253973A (en) Semiconductor radiation detector and its manufacture
JPH01253971A (en) Semiconductor radiation detector and its manufacture
Rancoita et al. Silicon detectors in electromagnetic and hadronic calorimetry
JPH03222376A (en) Diamond semiconductor light emitting element
JPS5863179A (en) Photovoltaic device
JPS5853869A (en) Preparation of photo-electric conversion apparatus
JPH03200374A (en) Manufacture of solar cell
JPH05259496A (en) Semiconductor radiation detecting device
CN116705869A (en) Preparation method and application of silicon carbide detector chip containing transparent electrode
Paz et al. Determination of diffusion length of electron beam induced minority carriers in polycrystalline GaAs
Angelini et al. A large area MicroGap Chamber with two-dimensional read-out
JPH0129075B2 (en)
JPH0342878A (en) Semiconductor position detector
JP3024389B2 (en) Silicon radiation detector