JP3024389B2 - Silicon radiation detector - Google Patents

Silicon radiation detector

Info

Publication number
JP3024389B2
JP3024389B2 JP4253346A JP25334692A JP3024389B2 JP 3024389 B2 JP3024389 B2 JP 3024389B2 JP 4253346 A JP4253346 A JP 4253346A JP 25334692 A JP25334692 A JP 25334692A JP 3024389 B2 JP3024389 B2 JP 3024389B2
Authority
JP
Japan
Prior art keywords
film
detecting element
doped
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4253346A
Other languages
Japanese (ja)
Other versions
JPH06104474A (en
Inventor
泰明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4253346A priority Critical patent/JP3024389B2/en
Publication of JPH06104474A publication Critical patent/JPH06104474A/en
Application granted granted Critical
Publication of JP3024389B2 publication Critical patent/JP3024389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコンと結晶
シリコンとのヘテロ接合を用いたシリコン放射線検出素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon radiation detecting element using a heterojunction of amorphous silicon and crystalline silicon.

【0002】[0002]

【従来の技術】半導体接合に電圧を印加することによっ
て生成された空乏層に直接γ線、α線、β線、X線が、
あるいはそれらによって生ずる二次電子線が入射するこ
とによって起こる導電率の変化に伴う電流の変化を電気
信号として取出す放射線検出素子として、空乏層生成の
ためにpn接合を用いるもののほかに、非晶質シリコン
(以下a−Siと記す) と結晶シリコン (以下c−Siと記
す) との間のヘテロ接合を利用したものが、Proc. 4th
Sensor Synposium、Tsukuba (Institute of Electrical
Engineers of Japan 、Tokyo.1984) p.105 に矢部らに
よって発表されている。図2はそのような放射線検出素
子の構造を示し、p形c−Si基板1の上にa−Si膜2を
形成し、a−Si膜2の表面に上面電極3を、基板1の裏
面に下面電極4をそれぞれAlで形成したものである。そ
して電極3が正、電極4が負となる逆バイアスをヘテロ
接合に印加して空乏層を生成する。
2. Description of the Related Art γ-rays, α-rays, β-rays, and X-rays are directly applied to a depletion layer generated by applying a voltage to a semiconductor junction.
Alternatively, as a radiation detection element that extracts a change in current caused by a change in conductivity caused by the incidence of a secondary electron beam generated thereby as an electric signal, in addition to one using a pn junction for generating a depletion layer, silicon
(Hereinafter referred to as a-Si) and a heterojunction between crystalline silicon (hereinafter referred to as c-Si) are described in Proc.
Sensor Synposium, Tsukuba (Institute of Electrical
Engineers of Japan, Tokyo.1984) p.105 by Yabe et al. FIG. 2 shows the structure of such a radiation detecting element, in which an a-Si film 2 is formed on a p-type c-Si substrate 1, an upper electrode 3 is provided on the surface of the a-Si film 2, and a back surface of the substrate 1 is provided. The lower electrode 4 is formed of Al. Then, a reverse bias in which the electrode 3 is positive and the electrode 4 is negative is applied to the hetero junction to generate a depletion layer.

【0003】[0003]

【発明が解決しようとする課題】図2に示す検出素子
は、機能性膜としてのa−Si膜2にパッシベーション膜
としての役割を兼ねさせた優れたデバイスであるが、α
線検出の場合のように微弱な信号に感度よく応答できる
要求に対しては、印加電圧を高くして再結合の防止を計
ることから漏れ電流の低減を計る必要がある。そのため
には、パッシベーション膜は暗導電率が低いことが要求
される。一方、放射線に対する応答性の点からは明導電
率の高いことが望ましい。そのためには、明暗導電率比
を大きくすることが必要であるが、図2の従来構造でそ
れを実現することは難しいという問題がある。
The detection element shown in FIG. 2 is an excellent device in which the a-Si film 2 as a functional film also serves as a passivation film.
In order to respond to a weak signal with high sensitivity as in the case of line detection, it is necessary to reduce the leakage current by increasing the applied voltage to prevent recombination. For that purpose, the passivation film is required to have low dark conductivity. On the other hand, high light conductivity is desirable from the viewpoint of the response to radiation. For that purpose, it is necessary to increase the light-dark conductivity ratio, but there is a problem that it is difficult to realize it with the conventional structure of FIG.

【0004】本発明の目的は、この問題を解決し、放射
線に対する応答性が良好でかつ表面の漏れ電流の小さい
シリコン放射線検出素子を提供することにある。
An object of the present invention is to solve this problem and to provide a silicon radiation detecting element having good responsiveness to radiation and having a small surface leakage current.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のシリコン放射線検出素子は、第一導電形
のc−Si基板上に、下層は第二導電形で低不純物濃度で
あり上層は不純物がドープされてほぼ中性である2層の
a−Si膜が被着し、c−Si基板の裏面および上層a−Si
膜の表面それぞれに接触する電極が設けられたものとす
る。そして、c−Si基板がp形で下層a−Si膜はノンド
ープでn形であり、上層a−Si膜にはほう素がドープさ
れたことが有効である。また、各a−Si膜を電子サイク
ロトロン共鳴 (ECR) プラズマCVD装置を用いて成
膜することが効果的である。
In order to achieve the above object, a silicon radiation detecting element of the present invention comprises a first conductive type c-Si substrate, a lower layer having a second conductive type and a low impurity concentration. The upper layer is covered with a two-layered a-Si film which is doped with impurities and is almost neutral, and has a back surface of the c-Si substrate and an upper layer a-Si film.
It is assumed that an electrode is provided in contact with each surface of the film. It is effective that the c-Si substrate is p-type, the lower a-Si film is non-doped and n-type, and the upper a-Si film is doped with boron. Further, it is effective to form each a-Si film using an electron cyclotron resonance (ECR) plasma CVD apparatus.

【0006】[0006]

【作用】第一導電形のc−Si基板と接触する下層a−Si
膜は、低不純物濃度、例えばノンドープで第二導電形で
あって、ヘテロ接合を形成する高い明導電率の機能性膜
として働く、一方、上層a−Si膜は不純物がドープされ
てほぼ中性であるので暗導電率は最小となり、抵抗が高
くなって漏れ電流が減少する。この上層a−Si膜に電極
が接触するが、厚みを薄くすることによる下層a−Si膜
の機能性への影響を無視しうるようにすることができ
る。また、パッシベーション膜として働く上層a−Si膜
が下層a−Si膜と同一材質であるため、その間に応力が
生ずることがなく、膜剥がれなどのおそれがない。
The lower a-Si contacting the c-Si substrate of the first conductivity type.
The film has a low impurity concentration, for example, a non-doped second conductivity type, and functions as a functional film having high light conductivity forming a heterojunction, while the upper a-Si film is doped with impurities and is almost neutral. Therefore, the dark conductivity is minimized, the resistance is increased, and the leakage current is reduced. Although the electrode is in contact with the upper a-Si film, the effect of the thinner thickness on the functionality of the lower a-Si film can be neglected. Further, since the upper a-Si film serving as the passivation film is made of the same material as the lower a-Si film, no stress is generated therebetween and there is no possibility of film peeling.

【0007】[0007]

【実施例】図1は本発明の実施例のシリコン放射線検出
素子を示し、図2と共通の部分には、同一の符号が付さ
れている。基板1としては、厚さ0.5mmで抵抗率10kΩ
・cm以上のp形c−Si板を用い、まず裏面側よりほう素
を導入してp+ 層11を形成したのち、Alを蒸着してオー
ム性接触をする電極4を形成した。次に、平行平板型高
周波プラズマCVD装置を用い、SiH4 とH2 の混合ガ
スを導入してc−Si基板1の表面に下層a−Si膜21を1
μmの厚さに成膜した。この膜はノンドープであるがn
形であり、p形のc−Si基板1との間にヘテロ接合を形
成する。次いで原料ガスのSiH4 にジボラン (B
2 6 ) を混入することにより、同じCVD装置内でほ
う素ドープの上層a−Si膜22を1000Åの厚さに成膜し
た。このa−Si膜22のa−Si膜21の上面および側面を被
覆して保護膜として働く。このあと、a−Si膜22の上に
上面電極3をAl蒸着により形成した。
FIG. 1 shows a silicon radiation detecting element according to an embodiment of the present invention, and the same parts as those in FIG. 2 are denoted by the same reference numerals. The substrate 1 has a thickness of 0.5 mm and a resistivity of 10 kΩ.
Using a p-type c-Si plate of cm or more, boron was first introduced from the back surface side to form ap + layer 11, and then Al was deposited to form an electrode 4 which makes ohmic contact. Next, using a parallel plate type high frequency plasma CVD apparatus, a mixed gas of SiH 4 and H 2 was introduced to form a lower a-Si film 21 on the surface of the c-Si substrate 1.
A film was formed to a thickness of μm. This film is undoped, but n
And forms a heterojunction with the p-type c-Si substrate 1. Next, diborane (B) was added to the raw material gas SiH 4.
By mixing 2 H 6 ), a boron-doped upper a-Si film 22 was formed to a thickness of 1000 ° in the same CVD apparatus. The a-Si film 22 covers the upper surface and side surfaces of the a-Si film 21 and functions as a protective film. Thereafter, the upper electrode 3 was formed on the a-Si film 22 by Al evaporation.

【0008】別の実施例として、a−Si膜21、22の成膜
にECRプラズマCVD装置を用いた。この装置は周囲
に磁場発生機構を備えたプラズマ室と基板を収納する反
応室とからなり、プラズマ室にプラズマガスとして
2 、ヘリウムまたはアルゴンを導入し、反応室にSiH
4 を導入する。そしてプラズマ室で発生したプラズマを
引き出して反応室でSiH4 を分解させ、基板上にa−Si
膜を形成するが、上層a−Si膜22成膜のときには、プラ
ズマガスあるいはSiH4 のどちらにB2 6 を混入して
もよい。同じCVD装置をくり返し用いる場合、前の上
層a−Si膜22の成膜のときに用いたB2 6 が装置壁面
や装置の隙間に残留して次の下層a−Si膜21成膜時に反
応ガスに混入することを避けるには、成膜圧力が低い方
がよく、そのためにはECRプラズマCVD装置を用い
ることが最も合理的である。
In another embodiment, an ECR plasma CVD apparatus was used for forming the a-Si films 21 and 22. This apparatus comprises a plasma chamber having a magnetic field generating mechanism around it and a reaction chamber containing a substrate. H 2 , helium or argon is introduced as a plasma gas into the plasma chamber, and SiH is introduced into the reaction chamber.
Introduce 4 . Then, the plasma generated in the plasma chamber is extracted, SiH 4 is decomposed in the reaction chamber, and a-Si
Although a film is formed, B 2 H 6 may be mixed into either the plasma gas or SiH 4 when forming the upper a-Si film 22. When the same CVD apparatus is used repeatedly, B 2 H 6 used for forming the previous upper layer a-Si film 22 remains on the apparatus wall surface or the gap between the apparatuses and forms the next lower layer a-Si film 21 when forming. In order to avoid mixing with the reaction gas, the lower the film forming pressure, the better. For that purpose, it is most reasonable to use an ECR plasma CVD apparatus.

【0009】[0009]

【発明の効果】本発明によれば、パッシベーション膜と
して望ましい暗導電率の小さいa−Si膜をヘテロ接合の
機能性膜として働くa−Si膜と別に形成することによ
り、印加電圧を高くすることが可能となって、高い感度
で信頼性の高い放射線、例えばα線の検出素子が得られ
た。この素子では、パッシベーション膜としてSiO、Si
Nなど別の材質の絶縁膜を用いる場合と比較して、a−
Si膜との間に応力が発生することがなく、機能性膜への
影響も少ない利点がある。その上両膜を同一装置を用い
て連続的に成膜できるので生産性も良好である。
According to the present invention, an applied voltage can be increased by forming an a-Si film having a small dark conductivity, which is desirable as a passivation film, separately from an a-Si film serving as a heterojunction functional film. Has been obtained, and a highly sensitive and highly reliable radiation element, for example, an α-ray detecting element has been obtained. In this device, SiO, Si is used as a passivation film.
Compared to the case where an insulating film of another material such as N is used, a-
There is an advantage that no stress is generated between the Si film and the Si film, and the influence on the functional film is small. In addition, since both films can be formed continuously using the same apparatus, productivity is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のシリコン放射線検出素子の断
面図
FIG. 1 is a sectional view of a silicon radiation detecting element according to an embodiment of the present invention.

【図2】従来のシリコン放射線検出素子の断面図FIG. 2 is a cross-sectional view of a conventional silicon radiation detecting element.

【符号の説明】[Explanation of symbols]

1 c−Si基板 21 下層a−Si膜 22 上層a−Si膜 3 電極 4 電極 Reference Signs List 1 c-Si substrate 21 lower a-Si film 22 upper a-Si film 3 electrode 4 electrode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一導電形の結晶シリコン基板上に、下層
は第二導電形で低不純物濃度であり上層は不純物がドー
プされてほぼ中性である2層の非晶質シリコン膜が被着
し、結晶シリコン基板の裏面および上層非晶質シリコン
膜の表面それぞれに接触する電極が設けられたことを特
徴とするシリコン放射線検出素子。
1. A two-layer amorphous silicon film having a lower conductivity type of a second conductivity type, a low impurity concentration, and an impurity-doped and substantially neutral layer is formed on a first conductivity type crystalline silicon substrate. A silicon radiation detecting element, wherein electrodes are provided to be in contact with the back surface of the crystalline silicon substrate and the surface of the upper amorphous silicon film.
【請求項2】結晶シリコン基板がp形で下層非晶質シリ
コン膜はノンドープでn形であり、上層非晶質シリコン
膜にはほう素がドープされた請求項1記載のシリコン放
射線検出素子。
2. The silicon radiation detecting element according to claim 1, wherein the crystalline silicon substrate is p-type, the lower amorphous silicon film is non-doped and n-type, and the upper amorphous silicon film is doped with boron.
【請求項3】各非晶質シリコン膜を電子サイクロトロン
共鳴プラズマCVD装置を用いて成膜する請求項1ある
いは2記載のシリコン放射線検出素子。
3. The silicon radiation detecting element according to claim 1, wherein each amorphous silicon film is formed using an electron cyclotron resonance plasma CVD apparatus.
JP4253346A 1992-09-24 1992-09-24 Silicon radiation detector Expired - Lifetime JP3024389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253346A JP3024389B2 (en) 1992-09-24 1992-09-24 Silicon radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253346A JP3024389B2 (en) 1992-09-24 1992-09-24 Silicon radiation detector

Publications (2)

Publication Number Publication Date
JPH06104474A JPH06104474A (en) 1994-04-15
JP3024389B2 true JP3024389B2 (en) 2000-03-21

Family

ID=17250055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253346A Expired - Lifetime JP3024389B2 (en) 1992-09-24 1992-09-24 Silicon radiation detector

Country Status (1)

Country Link
JP (1) JP3024389B2 (en)

Also Published As

Publication number Publication date
JPH06104474A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
EP1113499B1 (en) High fill factor image array having a continuous amorphous silicon sensor layer and a doped poly-silicon back contact and fabrication method
US20020146871A1 (en) Semiconductor device, method for manufacturing the same, and radiation detector
EP0200532B1 (en) Photoelectric converting device
JP3236624B2 (en) Photosensitive electronic device, color sensor using the device, and method of manufacturing the device
EP0428050B1 (en) Photosensor having an amorphous silicon photoabsorption layer
JP3024389B2 (en) Silicon radiation detector
US9583665B2 (en) PIN diode with nanoclusters
US4524374A (en) Device for detecting infrared rays
JPH08236799A (en) Semiconductor radiation detector and rectifier
JP3036258B2 (en) Semiconductor radiation detector
JPS59167075A (en) Photosensor
JPH05259496A (en) Semiconductor radiation detecting device
JP3451833B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP3234677B2 (en) Lateral phototriac
EP0070682A2 (en) Method of producing a semiconductor layer of amorphous silicon and a device including such a layer
JPH08116045A (en) Solid-state image sensing device
JPS6415969A (en) Solid-state image sensing device and manufacture thereof
JPH07142757A (en) Manufacture of semiconductor light sensor
JP3711740B2 (en) Thin film thermistor and manufacturing method thereof
JP2000299487A (en) Light receiving element for ultraviolet rays
JPH01253971A (en) Semiconductor radiation detector and its manufacture
JPH07122772A (en) Semiconductor radiation detecting device
JPH01253973A (en) Semiconductor radiation detector and its manufacture
JPS61241970A (en) Thin film image sensor
JPH07202246A (en) Semiconductor radiation detector