JPH07202246A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPH07202246A
JPH07202246A JP6000652A JP65294A JPH07202246A JP H07202246 A JPH07202246 A JP H07202246A JP 6000652 A JP6000652 A JP 6000652A JP 65294 A JP65294 A JP 65294A JP H07202246 A JPH07202246 A JP H07202246A
Authority
JP
Japan
Prior art keywords
layer
barrier layer
semiconductor
electrode layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6000652A
Other languages
Japanese (ja)
Inventor
Masakazu Ueno
正和 上野
Noritada Sato
則忠 佐藤
Haruo Kawakami
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6000652A priority Critical patent/JPH07202246A/en
Publication of JPH07202246A publication Critical patent/JPH07202246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To prevent decrease in resolution due to an increased attenuation of a radioactive ray obliquely incident in a radiation detector using a semiconductor substrate and a hetero-junction between amorphous carbon films on the substrate. CONSTITUTION:Amorphous carbon in which attenuation of radioactive ray and particularly an alpha-ray is low has excellent chemical resistance. The carbon is used for a protective layer 4. Further, an entire thickness of a layer for forming a radiation incident window is formed 1.6mum or less, thereby obtaining resolution of 2% or less required for an alpha-ray detector. When a thickness of a barrier layer 2 is made 2-500nm, a uniform and complete junction structure can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素体内の空乏層
への放射線の入射により生成される電子・正孔対を利用
した半導体放射線検出素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor radiation detecting element utilizing electron-hole pairs generated by the incidence of radiation on a depletion layer in a semiconductor body.

【0002】[0002]

【従来の技術】半導体を用いるこの種の放射線検出素子
のうち、特公昭61−61707号公報に開示されてい
る素子においては、シリコン半導体放射線検出素子の放
射線が入射する窓電極にアンチモンを含む金を用いてい
る。窓電極は0.5〜2%のアンチモンを含み、p形シリ
コン基板にこの金を蒸着した後、合金化熱処理をして金
に含まれるアンチモンをシリコン基板内でドナー化し、
pn接合を形成する。このpn接合に逆バイアス電圧を
印加すると、空乏層が成長し窓電極側から入射するα線
を検知することができる。
2. Description of the Related Art Among the radiation detecting elements of this type using a semiconductor, the element disclosed in Japanese Patent Publication No. 61-61707 discloses a silicon semiconductor radiation detecting element containing gold containing antimony in a window electrode on which the radiation is incident. Is used. The window electrode contains 0.5 to 2% of antimony. After depositing this gold on a p-type silicon substrate, alloying heat treatment is performed to convert the antimony contained in gold into a donor in the silicon substrate.
Form a pn junction. When a reverse bias voltage is applied to this pn junction, the depletion layer grows and the α ray incident from the window electrode side can be detected.

【0003】特開平3−96284公報にも、上記素子
と同じ目的で、第一の非晶質シリコン薄膜と単結晶シリ
コン基板との界面でヘテロ接合を形成した素子で、さら
に窓電極表面上とその周囲に第二の非晶質シリコンを成
長させて耐蝕性を増した素子が開示されている。この素
子も上記の素子と同様の方法でα線を検出する。特願平
5−203991号明細書に記載された素子も、上記の
二つの素子と同じ目的で、これは窓電極表面上とその周
囲に第二の非晶質カーボン膜を成長させて耐蝕性を増し
た素子である。
Japanese Patent Laid-Open No. 3-96284 also discloses an element in which a heterojunction is formed at the interface between a first amorphous silicon thin film and a single crystal silicon substrate for the same purpose as the above element, and further on the surface of the window electrode. A device is disclosed in which a second amorphous silicon is grown around it to increase the corrosion resistance. This element also detects α rays in the same manner as the above-mentioned element. The device described in Japanese Patent Application No. 5-203991 also has the same purpose as the above two devices, in that a second amorphous carbon film is grown on and around the surface of the window electrode to improve corrosion resistance. Is an element that has increased.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特公昭
61−61707号公報および特開平3−96284号
公報に示す放射線検出素子は、いずれも近接したエネル
ギーを放出するα線、例えば241 Am (5.426Me
V) と242 Cm (5.796MeV) を分離して検出する
ことは困難であった。
However, the radiation detecting elements disclosed in Japanese Patent Publication No. 61-61707 and Japanese Patent Application Laid-Open No. 3-96284 are all α-rays, for example, 241 Am (5. 426Me
It was difficult to detect V) and 242 Cm (5.796 MeV) separately.

【0005】特公昭61−61707号公報に示された
放射線検出素子においては、金を主成分とする窓電極を
透過したα線を空乏層で検出するためα線が金属電極中
で減衰し分解能が悪くなるという問題があった。そこで
α線の減衰を減らそうとして金蒸着膜の厚みを薄くする
と、合金時の熱処理の際に金が粒状に分散して一様なp
n接合が得られない。そのために、エネルギー分解能が
低下し上述のように近接したエネルギーを放出するα線
を弁別して検出することは困難である。
In the radiation detecting element disclosed in Japanese Patent Publication No. 61-61707, since α rays transmitted through the window electrode containing gold as a main component are detected by the depletion layer, the α rays are attenuated in the metal electrode and the resolution is improved. There was a problem that was worse. Therefore, if the thickness of the vapor deposited gold film is reduced in order to reduce the attenuation of α rays, gold is dispersed in a granular form during the heat treatment during alloying, resulting in a uniform p
No n-junction can be obtained. Therefore, it is difficult to discriminate and detect the α-rays that emit energy close to each other because the energy resolution is lowered.

【0006】特開平3−96284号公報に示された放
射線検出素子は、上記の素子にくらべ空乏層に達するま
でのα線の減衰率の低下が少なく分解能が向上したが、
この素子でも上記の近接したエネルギーを持つα線を分
離して検出することは難しい。その理由は、その公報に
示されているように、第一の非晶質シリコン層の厚さが
1μm程度、第二の非晶質シリコン層の厚さも1μm以
上で、これらの非晶質シリコン層および電極の金属層に
α線が斜め方向に入射する場合、その減衰率が大きい。
従って、窓電極に対し垂直方向に入射したα線のほか
に、このようにエネルギーが減衰したα線が加わるので
分解能が低下する。
In the radiation detecting element disclosed in Japanese Patent Laid-Open No. 3-96284, the attenuation rate of α rays until reaching the depletion layer is smaller than that of the above element, and the resolution is improved.
Even with this element, it is difficult to separate and detect the α rays having the above-mentioned energy close to each other. The reason is that, as shown in that publication, the thickness of the first amorphous silicon layer is about 1 μm and the thickness of the second amorphous silicon layer is 1 μm or more. When α-rays are obliquely incident on the layers and the metal layers of the electrodes, the attenuation rate is large.
Therefore, in addition to the α rays incident in the direction perpendicular to the window electrode, the α rays whose energy has been attenuated in this way are added, so that the resolution is lowered.

【0007】この発明の目的は、上述の欠点を解決し、
空乏層に到達するまでにα線が電極などで吸収される量
を抑え分解能を高めると共に、一様な接合が形成され、
かつ耐蝕性に優れた構造の半導体検出素子を提供するこ
とにある。
The object of the invention is to solve the above-mentioned drawbacks,
By suppressing the amount of α-rays absorbed by electrodes etc. before reaching the depletion layer, the resolution is improved and a uniform junction is formed.
Another object of the present invention is to provide a semiconductor detection element having a structure excellent in corrosion resistance.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電形の半導体基板の一面上に非
晶質カーボンよりなる障壁層、金属電極層および保護層
が順次積層され、他面上にオーム性接触する裏面電極層
が被着され、金属電極層と裏面電極層間に印加される電
圧により半導体基板と障壁層間の接合から半導体基板内
に広がる空乏層に半導体基板の一面側から入射する放射
線により生成される電子・正孔対に基づき放射線を検出
する半導体放射線検出素子において、障壁層、金属電極
層および保護層の全膜厚が1.6μm以下であるものとす
る。障壁層の厚さが2ないし500nmであることが有
効である。また、半導体基板がp形のシリコンよりなる
こと、保護層が障壁層と実質的に同質の非晶質カーボン
よりなること、さらに金属電極層がアルミニウムからな
ることが良い。
In order to achieve the above object, the present invention provides a barrier layer made of amorphous carbon, a metal electrode layer, and a protective layer in this order on one surface of a semiconductor substrate of the first conductivity type. The back surface electrode layer is laminated and has an ohmic contact on the other surface, and the semiconductor substrate is a depletion layer that spreads from the junction between the semiconductor substrate and the barrier layer into the semiconductor substrate by the voltage applied between the metal electrode layer and the back surface electrode layer. In a semiconductor radiation detection element that detects radiation based on electron-hole pairs generated by radiation incident from one surface side, the total thickness of the barrier layer, the metal electrode layer and the protective layer is 1.6 μm or less. To do. It is effective that the thickness of the barrier layer is 2 to 500 nm. It is preferable that the semiconductor substrate be made of p-type silicon, the protective layer be made of amorphous carbon that is substantially the same in quality as the barrier layer, and that the metal electrode layer be made of aluminum.

【0009】[0009]

【作用】非晶質カーボンは原子番号の小さい物質で、し
かも薄くしてシリコン基板上に形成できるので、放射
線、特にα線の減衰が少ない。そして、保護層にも非晶
質カーボンを用いる場合にも、窓を構成する層の全膜厚
を1.6μm以下にすることにより、入射するα線のほと
んど全部が空乏層内で減衰し、すなわち入射α線のほと
んどのエネルギーが電気エネルギーに変換され、分解能
のすぐれたα線検出素子が得られる。
Since amorphous carbon is a substance having a small atomic number and can be formed thin on a silicon substrate, the attenuation of radiation, especially α rays is small. Even when amorphous carbon is used for the protective layer, by setting the total thickness of the layer forming the window to 1.6 μm or less, almost all incident α rays are attenuated in the depletion layer, That is, most of the energy of incident α-rays is converted into electric energy, and an α-ray detection element with excellent resolution can be obtained.

【0010】さらに、障壁層の厚さを2ないし500n
mとすることで均一で完全な接合構造とすることが出来
る。すなわち、空乏層を充分に拡げエネルギー変換効率
を向上させることが出来る。保護層を障壁層を実質的に
同質の非晶質カーボンで形成することにより、耐率品性
がすぐれ、かつ成膜装置を共通にすることができる。
Further, the barrier layer has a thickness of 2 to 500 n.
By setting m, a uniform and complete joint structure can be obtained. That is, the depletion layer can be sufficiently expanded to improve the energy conversion efficiency. By forming the protective layer and the barrier layer with substantially the same amorphous carbon, it is possible to improve the product resistance and share the film forming apparatus.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明の一実施例の半導体放射線検出素子
を示す断面図である。図において、高抵抗率のp型Si
基板1の上に非晶質カーボンからなる障壁層2、Alか
らなる電極層3および非晶質カーボンからなる保護層4
がこの順に積層されている。一方、シリコン基板1の裏
面にはAlからなる裏面電極層5が設けられる。また、
電極3および裏面電極5にはそれぞれリード線6、7が
接続されており、電源9からこれらのリード線6、7を
介してSi基板1と障壁層2との間の接合に対する逆バ
イアス電圧が印加されるようになっている。なお、Si
基板1と裏面電極層5の間にはオーム性接続を得るため
のp形の高不純物濃度層が存在するが、図示は省略し
た。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a semiconductor radiation detecting element according to an embodiment of the present invention. In the figure, high resistivity p-type Si
A barrier layer 2 made of amorphous carbon, an electrode layer 3 made of Al, and a protective layer 4 made of amorphous carbon are formed on a substrate 1.
Are stacked in this order. On the other hand, the back surface electrode layer 5 made of Al is provided on the back surface of the silicon substrate 1. Also,
Lead wires 6 and 7 are connected to the electrode 3 and the back surface electrode 5, respectively, and a reverse bias voltage for a junction between the Si substrate 1 and the barrier layer 2 is supplied from a power source 9 via the lead wires 6 and 7. Is applied. Note that Si
Although there is a p-type high impurity concentration layer for obtaining an ohmic connection between the substrate 1 and the back surface electrode layer 5, the illustration thereof is omitted.

【0012】このような半導体放射線検出素子は、例え
ば以下のようにして作製される。まず、抵抗率が10k
Ωcm程度のp形Si基板1に、非晶質カーボンを全面
に厚さ10nmに成膜し、障壁層2とする。この上にマ
スクを用いて中央部にのみ電極層3を蒸着する。一方、
裏面には全面にAlの裏面電極層5を形成する。その
後、厚さが300nmに非晶質カーボンを成膜し、保護
膜4とする。
Such a semiconductor radiation detecting element is manufactured, for example, as follows. First, the resistivity is 10k
Amorphous carbon is deposited over the entire surface to a thickness of 10 nm on a p-type Si substrate 1 having a resistance of about Ωcm to form a barrier layer 2. The electrode layer 3 is vapor-deposited only on the central portion on this using a mask. on the other hand,
An Al back electrode layer 5 is formed on the entire back surface. After that, an amorphous carbon film is formed to a thickness of 300 nm to form the protective film 4.

【0013】こうして作製された半導体放射線検出素子
は、障壁層2とSi基板1との界面にいわゆるヘテロ接
合を形成し、電極層31裏面電極層5間に逆バイアス電
圧を印加すると、電極層2の直下に空乏層8が広がり、
この部分をα線が通る時電子−正孔対が発生することか
ら、これを電流パルスとして検出することが可能とな
る。
In the semiconductor radiation detecting element thus manufactured, a so-called heterojunction is formed at the interface between the barrier layer 2 and the Si substrate 1, and when a reverse bias voltage is applied between the electrode layer 31 and the back electrode layer 5, the electrode layer 2 is formed. The depletion layer 8 spreads just below
Since electron-hole pairs are generated when α rays pass through this portion, it is possible to detect this as a current pulse.

【0014】ここで、非晶質カーボン膜の成膜条件は以
下の通りである。 成膜方法:ECRプラズマCVD法 ソースガス:メタン ガス圧力:0.6Pa 基板加熱温度:100℃ このような半導体素子を、障壁層の厚さを2〜500n
mの範囲で変えて作製した。表1はそれらの素子の逆バ
イアス60V印加時のリーク電流の値をまとめたもので
ある。
The conditions for forming the amorphous carbon film are as follows. Film forming method: ECR plasma CVD method Source gas: Methane gas pressure: 0.6 Pa Substrate heating temperature: 100 ° C. Such a semiconductor device having a barrier layer thickness of 2 to 500 n
It was produced by changing the range of m. Table 1 is a summary of the values of the leak currents when a reverse bias of 60 V is applied to these devices.

【0015】[0015]

【表1】 なお、障壁層2の厚さが2nm未満では、完全な接合が
出来ずにリーク電流が不安定で再現性がなく、しかも1
-5A/cm2 台以上であたかもSi/Alのショット
キー接合のような特性を示した。一方、500nmの膜
厚では整流比が10:1程度 (60V時) であり、これ
を越えると整流比が極端に低下することが分かった。以
上の結果から、障壁層2の厚さは2〜500nmの範囲
にないと、接合特性が不完全であることが明らかになっ
た。
[Table 1] If the thickness of the barrier layer 2 is less than 2 nm, perfect bonding cannot be performed, the leak current is unstable, and reproducibility is low.
The characteristics of the Si / Al Schottky junction were as high as 0 -5 A / cm 2 or more. On the other hand, when the film thickness is 500 nm, the rectification ratio is about 10: 1 (at 60 V), and it has been found that the rectification ratio is extremely reduced when the film thickness exceeds this. From the above results, it was revealed that the bonding characteristics were incomplete unless the thickness of the barrier layer 2 was in the range of 2 to 500 nm.

【0016】次に、α線検出素子の分解能について考察
を行う。図2は6.3MeVのα線 (例えばRn) のSi
基板1中での飛程を入射角に対してプロットしたもので
ある。ただし、膜厚dμmの不感層 (本発明の実施例の
素子では、障壁層、電極層および保護層に相当する) 中
の飛程を差し引いている。これは、Siより入射側に存
在する不感層中で発生した電子・正孔対は、再結合によ
り外部に取り出せないからである。図2に示す通り、不
感層の膜厚が増す飛程の減少率が大きいことが判る。
Next, the resolution of the α-ray detecting element will be considered. Fig. 2 shows Si of 6.3 MeV α rays (eg Rn).
The range in the substrate 1 is plotted against the incident angle. However, the range in the dead layer (corresponding to the barrier layer, the electrode layer, and the protective layer in the device of the example of the present invention) having a film thickness of d μm is subtracted. This is because the electron-hole pairs generated in the dead layer on the incident side of Si cannot be extracted to the outside by recombination. As shown in FIG. 2, it can be seen that the range reduction rate at which the film thickness of the dead layer increases is large.

【0017】α線検出素子の使用状態は種々考えられる
が、一般的には検出素子の大きさと同じ程度の距離に線
源を置くのが検出感度と分解能の兼ね合いから都合が良
い。従って、入射角は0〜45度の範囲である。一方α
線検出素子の分解能 (半値全幅) は120KeVが要求
され、これは中心エネルギーに対して約2%である。垂
直入射 (0度) の不感層中の飛程は、dμm、45度入
射の不感層中の飛程はcos45°×d=21/2 ×dμ
m、Si中の飛程は33μmである。従ってSi中で発
生する電子・正孔対の数の分散 (つまり分解能) は、
(21/2 −1)×d/33で計算出来る。これが2%以下
であるためにはdが1.6μm以下でなければならないこ
とが計算される。つまり本発明による素子では、障壁層
2、金属電極層3および保護層4の全膜厚が1.6μm以
下でなければならないことになる。保護層を有機樹脂な
どで形成する場合には、放射線の減衰が多いので、全膜
厚はさらに薄くしなければならない。
Although various usage states of the α-ray detecting element can be considered, it is generally convenient to place the radiation source at a distance approximately the same as the size of the detecting element in view of the balance between detection sensitivity and resolution. Therefore, the incident angle is in the range of 0 to 45 degrees. On the other hand α
The resolution (full width at half maximum) of the line detection element is required to be 120 KeV, which is about 2% with respect to the central energy. The range in the insensitive layer at normal incidence (0 degree) is dμm, and the range in the insensitive layer at 45 degree incidence is cos 45 ° × d = 2 1/2 × dμ
The range in m and Si is 33 μm. Therefore, the dispersion (that is, resolution) of the number of electron-hole pairs generated in Si is
It can be calculated by (2 1/2 −1) × d / 33. It is calculated that d must be less than 1.6 μm for this to be less than 2%. That is, in the device according to the present invention, the total film thickness of the barrier layer 2, the metal electrode layer 3, and the protective layer 4 must be 1.6 μm or less. When the protective layer is formed of an organic resin or the like, radiation is attenuated so much that the total film thickness must be further reduced.

【0018】なお、前述の実施例ではp形Si基板上に
ECR−CVD法で非晶質カーボンを形成する方法を述
べたが、各要素の構成・製造方法は適宜変更することを
妨げるものではない。本発明の主旨は、非晶質カーボン
からなる障壁層、金属電極層それに保護層の全膜厚を1.
6μm以下とし、障壁層の厚さを2〜500nmとする
ことである。
Although the method of forming amorphous carbon on the p-type Si substrate by the ECR-CVD method has been described in the above-mentioned embodiment, the constitution and manufacturing method of each element do not prevent appropriate modification. Absent. The gist of the present invention is that the total thickness of the barrier layer made of amorphous carbon, the metal electrode layer and the protective layer is 1.
The thickness is 6 μm or less, and the thickness of the barrier layer is 2 to 500 nm.

【0019】[0019]

【発明の効果】本発明によれば、障壁層と金属電極と保
護層の全膜厚を1.6μm以下とすることにより、エネル
ギー分解能が実用的な値2%を達成できる。また、障壁
層の厚さを2〜500nmとすることで、均一で完全な
接合構造とすることができる。さらに、保護層の材料と
して非晶質カーボンとすることで、耐薬品性の優れたα
線検出素子を提供し、しかも障壁層と保護層を実質的に
同質の非晶質カーボンで形成することから、簡単な工程
でこれを達成出来る。
According to the present invention, by setting the total film thickness of the barrier layer, the metal electrode and the protective layer to 1.6 μm or less, the energy resolution of 2% which is a practical value can be achieved. Further, by setting the thickness of the barrier layer to 2 to 500 nm, a uniform and complete junction structure can be obtained. Furthermore, by using amorphous carbon as the material of the protective layer, α with excellent chemical resistance can be obtained.
This can be achieved by a simple process because the line detecting element is provided and the barrier layer and the protective layer are formed of substantially the same amorphous carbon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体放射線検出素子の断
面図
FIG. 1 is a sectional view of a semiconductor radiation detecting element according to an embodiment of the present invention.

【図2】Si基板上の不感層の厚さをパラメータとした
基板中でのα線の飛程と入射角との関係線図
FIG. 2 is a diagram showing the relationship between the range of α-rays and the incident angle in the substrate with the thickness of the dead layer on the Si substrate as a parameter.

【符号の説明】[Explanation of symbols]

1 p形Si基板 2 障壁層 3 電極層 4 保護層 5 裏面電極層 8 空乏層 9 逆バイアス電源 1 p-type Si substrate 2 barrier layer 3 electrode layer 4 protective layer 5 back electrode layer 8 depletion layer 9 reverse bias power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第一導電形の半導体基板の一面上に非晶質
カーボンよりなる障壁層、金属電極層および保護層が順
次積層され、他面上にオーム性接触する裏面電極層が被
着され、金属電極層と裏面電極層間に印加される電圧に
より半導体基板と障壁層間の接合から半導体基板に広が
る空乏層に半導体基板の一面側から入射する放射線によ
り生成される電子・正孔対に基づき放射線を検出するも
のにおいて、障壁層、金属電極層および保護層の全膜厚
が1.6μm以下であることを特徴とする半導体放射線検
出素子。
1. A barrier layer made of amorphous carbon, a metal electrode layer, and a protective layer are sequentially laminated on one surface of a semiconductor substrate of the first conductivity type, and a back electrode layer in ohmic contact is deposited on the other surface. Based on the electron-hole pairs generated by the radiation incident from one side of the semiconductor substrate on the depletion layer spreading from the junction between the semiconductor substrate and the barrier layer to the semiconductor substrate by the voltage applied between the metal electrode layer and the back electrode layer. A semiconductor radiation detection element for detecting radiation, wherein the total thickness of the barrier layer, the metal electrode layer and the protective layer is 1.6 μm or less.
【請求項2】障壁層の厚さが2ないし500nmである
請求項1記載の半導体放射線検出素子。
2. The semiconductor radiation detecting element according to claim 1, wherein the barrier layer has a thickness of 2 to 500 nm.
【請求項3】半導体基板がp形のシリコンよりなる請求
項1あるいは2記載の半導体放射線検出素子。
3. The semiconductor radiation detecting element according to claim 1, wherein the semiconductor substrate is made of p-type silicon.
【請求項4】保護層が障壁層と実質的に同質の非晶質カ
ーボンよりなる請求項1、2あるいは3記載の半導体放
射線検出素子。
4. The semiconductor radiation detecting element according to claim 1, 2 or 3, wherein the protective layer is made of amorphous carbon having substantially the same quality as that of the barrier layer.
【請求項5】金属電極層がアルミニウムよりなる請求項
1ないし4のいずれかに記載の半導体放射線検出素子。
5. The semiconductor radiation detecting element according to claim 1, wherein the metal electrode layer is made of aluminum.
JP6000652A 1994-01-10 1994-01-10 Semiconductor radiation detector Pending JPH07202246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000652A JPH07202246A (en) 1994-01-10 1994-01-10 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000652A JPH07202246A (en) 1994-01-10 1994-01-10 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPH07202246A true JPH07202246A (en) 1995-08-04

Family

ID=11479651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000652A Pending JPH07202246A (en) 1994-01-10 1994-01-10 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPH07202246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083037A (en) * 2006-08-30 2008-04-10 Seiko Eg & G Co Ltd Radiation detection apparatus and method for calibrating efficiency therefor
JP2011501171A (en) * 2007-10-22 2011-01-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for quantification of radiation dose and related isodose curve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083037A (en) * 2006-08-30 2008-04-10 Seiko Eg & G Co Ltd Radiation detection apparatus and method for calibrating efficiency therefor
JP2011501171A (en) * 2007-10-22 2011-01-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for quantification of radiation dose and related isodose curve

Similar Documents

Publication Publication Date Title
US4591892A (en) Semiconductor photoelectric conversion device
EP0221523B1 (en) Semiconductor device
JPS59227168A (en) Semiconductor radioactive ray detector
US4781765A (en) Photovoltaic device
EP0438889B1 (en) Method of forming an amorphous silicon sensor
WO2023066094A1 (en) γ-RAY DETECTION STRUCTURE BASED ON PEROVSKITE P-I-N JUNCTION, AND CORRECTION METHOD
GB2254732A (en) Diamond schottky diode
JPS60152971A (en) Conductor radiation detector
JPS59973A (en) Amorphous silicon solar battery associated with insulating layer with amorphous silicon body and method of suppressing reverse diffusion to n-type region of hale
JPH07202246A (en) Semiconductor radiation detector
JP7336569B1 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE
WO2002093654A1 (en) Semiconductor radiation detecting element
JPS6135384A (en) Neutron detector
JPH02111080A (en) Amorphous thin-film solar cell
JPH05259496A (en) Semiconductor radiation detecting device
JPS62256481A (en) Semiconductor device
JPH04290274A (en) Photoelectric transducer
JPS59135779A (en) Detector for infrared ray
JP3020563B2 (en) Solid-state imaging device
JPH044757B2 (en)
JP3474891B2 (en) Method for manufacturing photovoltaic device
JP3024389B2 (en) Silicon radiation detector
JPS61224368A (en) Semiconductor device
JPH01253973A (en) Semiconductor radiation detector and its manufacture
JPH0543196B2 (en)