JPS6135384A - Neutron detector - Google Patents

Neutron detector

Info

Publication number
JPS6135384A
JPS6135384A JP59158414A JP15841484A JPS6135384A JP S6135384 A JPS6135384 A JP S6135384A JP 59158414 A JP59158414 A JP 59158414A JP 15841484 A JP15841484 A JP 15841484A JP S6135384 A JPS6135384 A JP S6135384A
Authority
JP
Japan
Prior art keywords
rays
semiconductor
neutron
boron
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59158414A
Other languages
Japanese (ja)
Other versions
JPH053550B2 (en
Inventor
Yasukazu Seki
康和 関
Noritada Sato
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59158414A priority Critical patent/JPS6135384A/en
Publication of JPS6135384A publication Critical patent/JPS6135384A/en
Publication of JPH053550B2 publication Critical patent/JPH053550B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a neutron detector with high detection accuracy by combining a semiconductor P-N junction or semiconductor metallic Schottky junction or crystal semiconductor-amorphous semiconductor hetero junction and a thin boron film contg. the isotope <10>B of boron at a high concn. CONSTITUTION:An aluminum electrode 6 as a barrier metal and a metallic electrode 7 as an ohmic contact are respectively deposited by vacuum evaporation on, for example, a P type silicon substrate 1. Then thin boron film 8 is formed on the surface of at least either of the electrodes 6 and 7. When thermal neutron rays 4 are made incident on the element having such surface barrier type construction while a reverse voltage is held impressed thereto, alpha rays 5 are generated by neutron nuclear transformation reaction during the passage of the rays 4 through the thin boron film 8. The alpha rays 5 intrude into the depletion layer formed in the substrate 1, thus forming electron-hole pairs and forming current pulses. The detection of the thermal neutron rays is made possible. The neutron detector having the simple construction, high stability and high detection sensitivity is thus obtd.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ボロン薄膜を用いた中性子検出装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a neutron detection device using a boron thin film.

〔従来技術とその問題点〕[Prior art and its problems]

半導体放射線検出器の原理は、PN接合や、半導体−金
属シツ、トギー接合または結晶半導体−非晶質半導体ヘ
テロ接合等、いずれかの方法でダイオード構造を形成し
、該ダイオードに逆バイアス電圧馨印加し、これにより
前記半導体中に空乏層を拡げ、該を逆層中に飛来した放
射線により発生する゛離子−正孔対な電流パルスとして
カウントし検出するものである。
The principle of a semiconductor radiation detector is to form a diode structure using any method such as a PN junction, a semiconductor-metal junction, a toggle junction, or a crystalline semiconductor-amorphous semiconductor heterojunction, and then apply a reverse bias voltage to the diode. As a result, a depletion layer is expanded in the semiconductor, and the depletion layer is counted and detected as a current pulse in the form of electron-hole pairs generated by the radiation that has flown into the inverse layer.

半導体素材には、ゲルマニウム(Ge)ヤシリコン(S
i)等が用いられており、工業的に放射線線量計として
用いられているのは、現在は素材の入手が容易なことか
らシリコシ(SL)が圧倒的に多い。また最近では、低
電圧動作の要求から高純度高比抵抗のシリコンが用いら
れるようになって来ている。
Semiconductor materials include germanium (Ge) and silicon (S).
i), etc. Currently, Silikoshi (SL) is overwhelmingly used as a radiation dosimeter industrially because the material is easily available. Recently, high-purity, high-resistivity silicon has come to be used due to the demand for low-voltage operation.

放射線でも、X線、α線、β線及びr線は、半導体空乏
層内で直M!電子−正孔対な生じさせ、従来方法で放射
線検出が可能であるが、それ等に対して中性子線は電荷
をもっていないので、核反応以外には、軌道電子や原子
核のクー四ン場になんらの作用も及ぼさず、従って半導
体空乏層内で。
Even with radiation, X-rays, α-rays, β-rays, and R-rays are directly M in the semiconductor depletion layer! It is possible to generate electron-hole pairs and detect radiation using conventional methods, but since neutron beams have no electric charge, other than nuclear reactions, there is no effect on the orbital electrons or the Kuhn field of the atomic nucleus. also has no effect, therefore within the semiconductor depletion layer.

電子−正孔対は生じず、中性子線の検出は従来方法では
不可能である。このため中性子線検知方法として、中性
子の吸収断面積の大きな物質に中性子線を透過させ、中
性子核変換反応によりα線を発生させ、該α線が半導体
空乏層内で電子−正孔対を生成1−1これを検知し中性
子線を検知する方法がある。
No electron-hole pairs are produced and detection of the neutron beam is not possible with conventional methods. Therefore, as a neutron beam detection method, neutron beams are transmitted through a material with a large neutron absorption cross section, and α rays are generated by a neutron transmutation reaction, and the α rays generate electron-hole pairs within the semiconductor depletion layer. 1-1 There is a method to detect this and detect the neutron beam.

篩、α)反応を用い、次銃士示す反応に従って、中性子
緋が入射した際ボロンから発生するα線を検知する方法
がある。
There is a method of detecting the alpha rays generated from boron when neutron scarlet is incident, using the sieve and α) reaction and following the reaction shown by the next Musketeer.

+oB(n、α)反応: 10B+’ n −+  L
i +Heしかし、ボロンは2000 ’C以上の極め
て高い融点をもち、容易にボロン単体層を形成すること
は困難である。たとえボロン層を形成しえたとしても、
該α線を検知すべき基体自身が高温のため破壊或は劣化
してしまうと云う問題があった。
+oB(n,α) reaction: 10B+' n −+ L
i + He However, boron has an extremely high melting point of 2000'C or more, and it is difficult to easily form a single layer of boron. Even if a boron layer could be formed,
There was a problem in that the substrate itself, which should detect the alpha rays, would be destroyed or deteriorated due to the high temperature.

特に半導体放射線検出器においては、高温では熱的歪を
生じ、素子特性の劣化を生じてし味う問題がある。なか
でも、放射線検出器に使用する半導体は、高純度、高比
抵抗であるため、更に作製プロセスにおいては低温プロ
セスが要求される。
Particularly in semiconductor radiation detectors, there is a problem that thermal distortion occurs at high temperatures, resulting in deterioration of element characteristics. In particular, since semiconductors used in radiation detectors have high purity and high specific resistance, a low-temperature process is required in the manufacturing process.

高純度高比抵抗シリコンにおいては、400℃以上で熱
的歪が生じ始めると云われている。従って。
It is said that thermal strain begins to occur in high-purity, high-resistivity silicon at temperatures above 400°C. Therefore.

半導体プロセスで一般的に用いられている800℃以上
の高温プロセスは、半導体放射線検出器には適さない。
High-temperature processes of 800° C. or higher that are commonly used in semiconductor processes are not suitable for semiconductor radiation detectors.

たとえば、リン化ホウ素層と半導体PN接合とを組み合
わせた中性子検出器が公知になっているが、これは次に
示す点に8いて問題がある。
For example, a neutron detector combining a boron phosphide layer and a semiconductor PN junction is known, but this has the following problems.

■リン化ホウ素層形成に熱分解法を使用するため、90
0℃の高温に半導体基体を晒すことになり、前述した理
由により半導体特性劣化は避けられない。
■Because the thermal decomposition method is used to form the boron phosphide layer, 90%
Since the semiconductor substrate is exposed to a high temperature of 0° C., deterioration of semiconductor characteristics is unavoidable for the reasons mentioned above.

■ボロンの同位元素10Bは、自然界に10 B :1
1 B≠l:4の割合で存在するが、これに加えIOB
をさらに高濃度としても、フォスフイン(PHs)を用
いてリンがリン化ホウ素層に含まれるため。
■Boron isotope 10B is found in nature at 10B:1
1 B≠l:4, but in addition to this, IOB
Even at higher concentrations, phosphorus is included in the boron phosphide layer using phosphine (PHs).

10Bの濃度は減少する。そのため中性子検出感度は減
少する。
The concentration of 10B decreases. Therefore, neutron detection sensitivity decreases.

■作製したリン化ホウ素層厚みが加μmもあるため、発
生α線が自己吸収により減少し、そのため中性子検出感
度は減少する。
(2) Since the thickness of the prepared boron phosphide layer is more than 10 μm, the generated α-rays are reduced by self-absorption, and therefore the neutron detection sensitivity is reduced.

以上のようにリン化ホウ素層と半導体とを組み合わせた
中性子検出装置は問題がある。
As described above, a neutron detection device that combines a boron phosphide layer and a semiconductor has problems.

また半導体を用いない中性子検出器は構造が複雑で安定
性に乏しく、また検出感度が低く、計数特性が悪いと云
う問題があった。
In addition, neutron detectors that do not use semiconductors have a complicated structure, lack stability, have low detection sensitivity, and have poor counting characteristics.

〔発明の目的〕[Purpose of the invention]

構造が簡単で安定性が高く、しかも検出感度の高い中性
子検出装置を提供することを目的とする。
It is an object of the present invention to provide a neutron detection device having a simple structure, high stability, and high detection sensitivity.

〔発明の要点〕[Key points of the invention]

本発明はこの目的を達成するため、ボロン薄膜形成の際
、ボロンの同位元素 Bを選択濃縮し作製したジボラン
ガス(82H6)を用いてグロー放電を行い、1013
を高濃度に含有するボロン薄膜を形成することを特徴と
する。
In order to achieve this object, the present invention performs glow discharge using diborane gas (82H6) prepared by selectively concentrating boron isotope B when forming a boron thin film.
It is characterized by forming a boron thin film containing a high concentration of.

〔発明の実施例〕[Embodiments of the invention]

以下図を用い、て本発明の実施例について説明する。以
下、ここで開示する実施例の全てにおいて、示すボロン
薄膜は前述したボロンの同位元素 Bを高濃度に含有す
るボロン薄膜である。第1図及び第2図は表面障壁型構
造の検出器の場合で、例えばP型シリコンでは、障壁金
属としてのアルミニウム電極6、オーミックコンタクト
としての金電極7をそれぞれ真空蒸着したものである。
Embodiments of the present invention will be described below with reference to the drawings. Hereinafter, in all of the Examples disclosed herein, the boron thin film shown is a boron thin film containing the aforementioned boron isotope B at a high concentration. 1 and 2 show the case of a detector having a surface barrier type structure. For example, in the case of P-type silicon, an aluminum electrode 6 as a barrier metal and a gold electrode 7 as an ohmic contact are vacuum-deposited, respectively.

ボロン薄[8け、前記電極6及び7の少なくとも一方の
表面に形成される。この表面障壁型構造の素子に逆電圧
を印加した状態で熱中性子線4が入射すると、該熱中性
子線がボロン薄膜8を通過する際、B−1−on−+ 
 Li+α なる中性子核変換反応によりα線5が発生し、該α線が
シリコン半導体中1に形成した空乏層内に侵入して電子
・正孔対を生成し、電流)くルスとなるので、熱中性子
線が検出しうろことになる。第2図に示すように両電極
6及び7の表面にそれぞれボロン薄膜8を形成させた場
合は、裏面で発生したα線も検出するので熱中性子の検
出効率が第1図に示した実施例よりさらに高められる。
A thin boron film [8] is formed on at least one surface of the electrodes 6 and 7. When a thermal neutron beam 4 is incident on an element with this surface barrier type structure with a reverse voltage applied, when the thermal neutron beam passes through the boron thin film 8, B-1-on-+
α rays 5 are generated by the neutron transmutation reaction Li + α, and the α rays enter the depletion layer formed in the silicon semiconductor 1 and generate electron-hole pairs, which become electric current (current). The neutron beam will be difficult to detect. When a boron thin film 8 is formed on each of the surfaces of both electrodes 6 and 7 as shown in FIG. 2, α rays generated on the back surface are also detected, so that the thermal neutron detection efficiency is the same as that of the embodiment shown in FIG. 1. It can be further enhanced.

第3図、第4図および第5図はpn接合型放射線検出素
子の場合で、n型シリコン基板9に選択的にボロン薄膜
8を形成する。ボロン薄膜8の直下のn型シリコン基板
9に、ボロン侵入層、すなわちp+層10が形成される
。この1層は1021〜101022ato/1ytt
の極めて高いボロン濃度を有し、かつIOBを高濃度に
含むボロンであるため熱中性子を効率良く検出する。こ
の Bの高濃度に含有すの際使用するジボランガスとし
て、 Bを高濃度に含んだガスを使用することで形成す
るものである。
3, 4, and 5 show the case of a pn junction type radiation detection element, in which a boron thin film 8 is selectively formed on an n-type silicon substrate 9. A boron interstitial layer, that is, a p+ layer 10, is formed on the n-type silicon substrate 9 directly under the boron thin film 8. This 1 layer is 1021~101022ato/1ytt
Since it has an extremely high boron concentration and contains a high concentration of IOB, thermal neutrons can be detected efficiently. It is formed by using a gas containing a high concentration of B as the diborane gas used for this high concentration of B.

また、さらに熱中性子線の検出効率を高めるため、第4
図及び第5図に示すように電極6及び7の表面にもボロ
ン薄膜8を形成する。その結果、検出効兆の高い中性子
検出素子が得られる。
In addition, in order to further increase the detection efficiency of thermal neutron beams, a fourth
As shown in the figure and FIG. 5, a boron thin film 8 is also formed on the surfaces of the electrodes 6 and 7. As a result, a neutron detection element with high detection efficiency can be obtained.

第6図は、表面障壁型の検出素子の構造断面図である。FIG. 6 is a structural sectional view of a surface barrier type detection element.

ボロン薄膜8の直下にP+層10、すなわちオーミック
コンタクト層を形成し、さらに電極上にもボロン薄膜8
を形成している。
A P+ layer 10, that is, an ohmic contact layer, is formed directly under the boron thin film 8, and a boron thin film 8 is also formed on the electrode.
is formed.

第7図は、非晶質シリコンを単結晶シリコン半導体表面
上に形成したヘテロ接合素子の構造図である。
FIG. 7 is a structural diagram of a heterojunction element in which amorphous silicon is formed on the surface of a single-crystal silicon semiconductor.

これは単結晶シリコン表面にプラズマCVD法により非
晶質シリコンを堆積させて作製し、その後高濃度 B含
有のジボラy  B2H6ガスを用いたプラズマCVD
法で加のボロン薄膜層加を形成したものである。
This is manufactured by depositing amorphous silicon on the surface of single crystal silicon by plasma CVD method, and then plasma CVD using dibory B2H6 gas containing high concentration of B.
A thin boron film layer is formed using a method.

本検出素子はプラズマCVD法を用いることによりすべ
ての素子作製プロセスが200℃以下の低温であるため
、高純度シリコン9の熱的劣化が殆ど生ずることなく、
比抵抗10 kΩ−a以上の単結晶シリコンですら熱的
劣化はない。
This detection element uses the plasma CVD method and all element manufacturing processes are performed at a low temperature of 200°C or less, so there is almost no thermal deterioration of the high-purity silicon 9.
Even single crystal silicon with a resistivity of 10 kΩ-a or more is not thermally degraded.

たとえばloo&の表面積をもつシリコンウエノ1にお
ける感度を計算すると、中性子線線束密度100nVで
は、 計数率A=Nδφ ただしNは原子密度、δは散乱断面積、φは線束密度で
ある。
For example, when calculating the sensitivity of silicon Ueno 1 with a surface area of loo&, at a neutron flux density of 100 nV, the counting rate A=Nδφ where N is the atomic density, δ is the scattering cross section, and φ is the flux density.

A=2.0xlOx 1500xlOx 3814xl
O”10Bの原子密度   B薄膜の膜厚   Bの散
乱断面積xlOx  10 φ  表面積 =IQcps となり、高感度の中性子検出器が容易に形成しつる。ま
たこのボロン薄膜を多層形成すれは、勿論感度はこれ以
上に向上する。
A=2.0xlOx 1500xlOx 3814xl
Atomic density of O"10B Thickness of B thin film Scattering cross section of B xlOx 10 φ Surface area = IQcps Therefore, a highly sensitive neutron detector can be easily formed. Also, if this boron thin film is formed in multiple layers, of course the sensitivity will be It gets better than this.

ここで本素子作製の条件を以下に示す。Here, the conditions for manufacturing this device are shown below.

レシリコン単結晶:比抵抗10にΩ櫂以上 (40φ)
し非晶質シリコン:モノシラン〔SiH4(10%H2
ベース)〕を用いたり、CプラズマCVD法で 作製。
Resilicon single crystal: resistivity 10 Ω or more (40φ)
Amorphous silicon: Monosilane [SiH4 (10%H2
(base)] or by C plasma CVD method.

・プラズマCVD法   基板温度  200℃圧  
 力   IQ、QTorr 印加電圧  700■ レホロン薄膜ニジボラy CB2H6(1000ppm
 )(2ベース)〕を用いたり、CプラズマCVD法で
作製。
・Plasma CVD method Substrate temperature 200℃ pressure
Force IQ, QTorr Applied voltage 700 ■ Reholon thin film Nijibora y CB2H6 (1000ppm
) (2 base)] or by C plasma CVD method.

・プラズマCVD法   基板温度  200℃圧  
 力   2.0Torr 印加電圧  560 V 本発明による放射線検出器の構造自体は従来の検出器と
同様である力1ら当然、熱中性子以外の放射線も検出で
きる。例えば本半導体検出器においクトルを示す。
・Plasma CVD method Substrate temperature 200℃ pressure
Force: 2.0 Torr Applied voltage: 560 V The structure itself of the radiation detector according to the present invention is similar to that of conventional detectors.Of course, radiation other than thermal neutrons can also be detected. For example, in this semiconductor detector, the vector is shown.

前述したように、中性子が本検出器に侵入しボロン薄膜
を通過する際、ボロンの同位元素 Bと(n。α)反応
により2.30 MeVのα線を発生する。
As mentioned above, when neutrons enter this detector and pass through the boron thin film, they react with the boron isotope B (n.α) to generate α rays of 2.30 MeV.

このため第7図中12に示すスペクトルを示す。第8図
に示すように通常検出しうるr線と熱中性子線による該
α線とは明確に識別しつる。
Therefore, the spectrum shown at 12 in FIG. 7 is shown. As shown in FIG. 8, normally detectable r-rays and α-rays caused by thermal neutron beams can be clearly distinguished.

丈た、本検出器の中性子線入射窓にポリエチレン等の減
速材を載置すれば速中性子線の検出も可能である。すな
わち速中性子線が減速材に入射すると弾性衝突によって
叩き出されたプロトンが本検出器内に形成した空乏層に
入射して電子−正孔対な生ずるので他の放射線と同様に
検出しつる。
Furthermore, if a moderator such as polyethylene is placed on the neutron beam entrance window of this detector, fast neutron beams can also be detected. That is, when a fast neutron beam is incident on the moderator, protons ejected by elastic collisions enter the depletion layer formed within the detector to generate electron-hole pairs, so that it can be detected in the same way as other radiation.

ここで開示した実施例では、いずれも半導体基板にシリ
コンを用いたが、勿論ゲルマニウムや化合物半導体のG
aAsやCdTeなどを用いても、本検出器は十分その
中性子線を検出しつる。その理由は前述したボロン薄膜
はグロー放電によるプラズマCVD法により形成される
がその際半導体基板に加えられる温度は300’C以下
であるため該半導体基板に熱的歪みを生ずることなくボ
ロン薄膜を形成し、良好な放射線検出器を作表しつるか
らである。
In the embodiments disclosed here, silicon was used for the semiconductor substrate, but of course germanium and compound semiconductors were used.
Even if aAs or CdTe is used, this detector can sufficiently detect the neutron beam. The reason for this is that the aforementioned boron thin film is formed by the plasma CVD method using glow discharge, but the temperature applied to the semiconductor substrate is 300'C or less, so the boron thin film is formed without causing thermal distortion to the semiconductor substrate. This is because it produces a good radiation detector.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、従来のように中性子核変換物質を放
射線検出素子の前面に装着することなく熱中性子線を検
出することが出来る。しかもこのボロン薄膜は、放射線
検出素子に密着しているため、ボロンの同位元素 Bに
よる B(n 、α〕反応を生じさせまたボロン薄膜自
身も1500 A前後と薄いためα線の自己吸収も少な
く発生したα線が効率よく半導体基板に侵入するため、
熱中性子線の検出効率が高められると同時に、ボロン薄
膜の厚みも500〜1600 Aで不感層幅も極めて薄
くしつる。その結果α線やβ線及びr線の検出にも特に
支障がない。
According to the present invention, thermal neutron beams can be detected without attaching a neutron transmutation material to the front surface of a radiation detection element as in the prior art. Moreover, since this boron thin film is in close contact with the radiation detection element, it causes a B(n, α] reaction with the boron isotope B, and since the boron thin film itself is thin at around 1500 A, self-absorption of α rays is also low. Because the generated alpha rays efficiently penetrate into the semiconductor substrate,
The detection efficiency of thermal neutron beams is increased, and at the same time, the thickness of the boron thin film is 500 to 1600 A, and the width of the dead layer is extremely thin. As a result, there is no particular problem in detecting α-rays, β-rays, and R-rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は表面障壁型検出器の断面図、第3図
、第4図及び第5図はpn接合型放射線検出器の断面図
、第6図は表面障壁型放射線検出器の断面図、第7図は
ヘテロ接合型放射線検出器の断面図、第8図は本発明に
よる半導体放射線検出器を用いて中性子線を測定した際
のパルス波高に対する計数率のスペクトルでアル。 1・・・p型シリコン基板、4・・・中性子線、5・・
・α線、6及び7・・・電極、8・・・ボロン薄膜、9
・・・n型シリコン基板、10・・・P 領域、11・
・・r線スペクトル、12・・・α線スペクトル、加・
・・非晶質シリコン。 ;71(2) f′z閃
Figures 1 and 2 are cross-sectional views of a surface barrier type radiation detector, Figures 3, 4, and 5 are cross-sectional views of a pn junction type radiation detector, and Figure 6 is a cross-sectional view of a surface barrier type radiation detector. FIG. 7 is a cross-sectional view of a heterojunction radiation detector, and FIG. 8 is a spectrum of count rate versus pulse height when neutron beams are measured using the semiconductor radiation detector according to the present invention. 1...p-type silicon substrate, 4...neutron beam, 5...
・α rays, 6 and 7... Electrode, 8... Boron thin film, 9
...n-type silicon substrate, 10...P region, 11.
...r-ray spectrum, 12...α-ray spectrum,
...Amorphous silicon. ;71(2) f'z flash

Claims (1)

【特許請求の範囲】[Claims] 1)半導体PN接合または半導体−金属ショットキー接
合または結晶半導体−非晶質半導体ヘテロ接合と、ボロ
ンの同位元素^1^0Bを高濃度に含むボロン薄膜とを
組合わせたことを特徴とする中性子検出装置。
1) A neutron characterized by a combination of a semiconductor PN junction, a semiconductor-metal Schottky junction, or a crystalline semiconductor-amorphous semiconductor heterojunction, and a boron thin film containing a high concentration of the boron isotope ^1^0B. Detection device.
JP59158414A 1984-07-28 1984-07-28 Neutron detector Granted JPS6135384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59158414A JPS6135384A (en) 1984-07-28 1984-07-28 Neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59158414A JPS6135384A (en) 1984-07-28 1984-07-28 Neutron detector

Publications (2)

Publication Number Publication Date
JPS6135384A true JPS6135384A (en) 1986-02-19
JPH053550B2 JPH053550B2 (en) 1993-01-18

Family

ID=15671232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59158414A Granted JPS6135384A (en) 1984-07-28 1984-07-28 Neutron detector

Country Status (1)

Country Link
JP (1) JPS6135384A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019886A (en) * 1986-01-21 1991-05-28 Fuji Electric Co., Ltd. Semiconductor-based radiation-detector element
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector
US6771730B1 (en) * 1998-11-25 2004-08-03 Board Of Regents Of University Of Nebraska Boron-carbide solid state neutron detector and method of using the same
JP2010004038A (en) * 2008-06-09 2010-01-07 Honeywell Internatl Inc Neutron detection structure
WO2013158986A3 (en) * 2012-04-19 2013-12-12 Carnegie Mellon University A metal-semiconductor-metal (msm) heterojunction diode
US9543423B2 (en) 2012-09-04 2017-01-10 Carnegie Mellon University Hot-electron transistor having multiple MSM sequences
CN112599620A (en) * 2020-12-14 2021-04-02 中国科学院长春光学精密机械与物理研究所 Neutron radiation detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019886A (en) * 1986-01-21 1991-05-28 Fuji Electric Co., Ltd. Semiconductor-based radiation-detector element
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector
US6771730B1 (en) * 1998-11-25 2004-08-03 Board Of Regents Of University Of Nebraska Boron-carbide solid state neutron detector and method of using the same
JP2010004038A (en) * 2008-06-09 2010-01-07 Honeywell Internatl Inc Neutron detection structure
WO2013158986A3 (en) * 2012-04-19 2013-12-12 Carnegie Mellon University A metal-semiconductor-metal (msm) heterojunction diode
US9553163B2 (en) 2012-04-19 2017-01-24 Carnegie Mellon University Metal-semiconductor-metal (MSM) heterojunction diode
US9941382B2 (en) 2012-04-19 2018-04-10 Carnegie Mellon University Metal-semiconductor-metal (MSM) heterojunction diode
US9543423B2 (en) 2012-09-04 2017-01-10 Carnegie Mellon University Hot-electron transistor having multiple MSM sequences
CN112599620A (en) * 2020-12-14 2021-04-02 中国科学院长春光学精密机械与物理研究所 Neutron radiation detector

Also Published As

Publication number Publication date
JPH053550B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US7687780B2 (en) Semiconductor radiation detector
US6771730B1 (en) Boron-carbide solid state neutron detector and method of using the same
US9632190B2 (en) Neutron imaging systems utilizing lithium-containing semiconductor crystals
Miller et al. Semiconductor particle detectors
US9638809B2 (en) Handheld dual thermal neutron detector and gamma-ray spectrometer
US9429662B2 (en) Bulk semiconducting scintillator device for radiation detection
US20150276950A1 (en) Compact solid-state neutron detector
JPS6135384A (en) Neutron detector
JPH06101577B2 (en) Semiconductor radiation detector
Ruddy Silicon carbide radiation detectors: progress, limitations and future directions
JPS61152084A (en) Semiconductor element for neutron detector
Alexiev et al. Review of Ge detectors for gamma spectroscopy
WO2000033106A1 (en) Boron-carbide solid state neutron detector and method of using same
JPH0473636B2 (en)
JPH0513390B2 (en)
JPS6135385A (en) Neutron detector
Dearnaley Semiconductor nuclear radiation detectors
US20040182993A1 (en) Solid-state radiation detector using a single crystal of compound semiconductor inSb
Robertson et al. Semiconducting boron-rich neutron detectors
Hamm Development and Characterization of Lithium Indium Diselenide for Neutron Detection and Imaging Applications
Miller et al. Investigations on lithium-drift solid-state detectors for high-energy particle detection
Yang et al. Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN: Fe template
Bensaoula et al. Solid-State Neutron Detector Device
KR20210069980A (en) Radioactivity detector, manufacturing method of the same, and use of the same
JPS63239868A (en) Manufacture of semiconductor radiation detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term