JPS6135385A - Neutron detector - Google Patents

Neutron detector

Info

Publication number
JPS6135385A
JPS6135385A JP59158415A JP15841584A JPS6135385A JP S6135385 A JPS6135385 A JP S6135385A JP 59158415 A JP59158415 A JP 59158415A JP 15841584 A JP15841584 A JP 15841584A JP S6135385 A JPS6135385 A JP S6135385A
Authority
JP
Japan
Prior art keywords
neutron
rays
semiconductor
single crystal
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59158415A
Other languages
Japanese (ja)
Other versions
JPH053551B2 (en
Inventor
Yasukazu Seki
康和 関
Noritada Sato
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59158415A priority Critical patent/JPS6135385A/en
Publication of JPS6135385A publication Critical patent/JPS6135385A/en
Publication of JPH053551B2 publication Critical patent/JPH053551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure a neutron ray energy spectral image in real time by imposing a moderator around a detector formed by combining a hetero junction deposited with an amorphous semiconductor on the surface of a single crystal semiconductor and a thin boron film. CONSTITUTION:The amorphous silicon film 2 is deposited by a plasma CVD method on the substrate surface of P type single crystal silicon. The thin boron film 3 contg. <10>B at a high concn. is formed on the rear thereof by a plasma CVD method. A metal is thereafter deposited by evaporation thereon as electrodes 5, 6. A reverse bias voltage is impressed to the electrodes 5 and 6 to form a depletion layer in the single crystal silicon substrate. Neutron rays 6 come into said layer and generate <10>B reaction in the film 3 thus generating alpha rays 7. The alpha rays 7 are detected as electric current pulses in the depletion layer. The detecting element 10 is covered by the modulator 11 by which the devie capable of measuring the fast neutron rays is obtd. When the neutron rays 6 come in, the rays arrive at the element 10 by the locus shown in the figure with the moderator 11. The measurement of the neutron ray energy spectral image in real time is thus made possible.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ボロン薄膜を用いた中性子検出装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a neutron detection device using a boron thin film.

〔従来技術とその問題点〕[Prior art and its problems]

半導体放射線検出器の原理は、PN接合や半導体−金属
ショットキー接合または結晶半導体−非晶質半導体へテ
ロ接合等、いずれかの方法でダイオード構造を形成し、
該ダイオードに逆バイアス電圧を印加し、これにより前
記半導体中に空乏層を拡げ、該空乏層中に飛来した放射
線により発生する電子−正孔対を電流パルスとしてカウ
ントし検出するものである。
The principle of a semiconductor radiation detector is to form a diode structure using any method such as a PN junction, a semiconductor-metal Schottky junction, or a crystalline semiconductor-amorphous semiconductor heterojunction.
A reverse bias voltage is applied to the diode, thereby expanding a depletion layer in the semiconductor, and electron-hole pairs generated by radiation flying into the depletion layer are counted and detected as current pulses.

半導体素材には、ゲルマニウム(Ge )やシリコン(
Si)等が用いられており、工業的に放射線線量計とし
て用いられているのは、現在は素材の入手が容易なこと
からシリコン(Si)が圧倒的に多°い。また最近では
、低電圧動作の要求から高純度高比抵抗のシリコンが用
いられるようになって来ている。
Semiconductor materials include germanium (Ge) and silicon (
Currently, silicon (Si) is overwhelmingly used in industrial radiation dosimeters because the material is easily available. Recently, high-purity, high-resistivity silicon has come to be used due to the demand for low-voltage operation.

放射線でも、X線、α線、β線及びγ線は、半導体空乏
層内で直接電子−正孔対を生じさせ、従来方法で放射線
検出が可能であるが、それ等に対して中性子線は電荷を
もっていないので、核反応以外には軌道電子や原子核の
クーロン場になんらの作用も及ぼさず、従って半導体空
乏層内で電子−正孔対は生じず、中性子線の検出は従来
方法では不可能である。このため中性子線検知方法とし
て、中性子の吸収断面積の大きな物質に中性子線を透過
させ、中性子核変換反応ζこよりα線を発生させ%該α
線が牛導体空乏j−内で電子−正孔対を生成し、これを
検知し中性子線を検知する方法がある。
Regarding radiation, X-rays, α-rays, β-rays, and γ-rays directly generate electron-hole pairs within the semiconductor depletion layer, and can be detected using conventional methods. Since it has no electric charge, it does not have any effect on the orbital electrons or the Coulomb field of the atomic nucleus other than nuclear reactions, and therefore no electron-hole pairs are generated within the semiconductor depletion layer, making it impossible to detect neutron beams using conventional methods. It is. Therefore, as a neutron beam detection method, neutron beams are transmitted through a material with a large neutron absorption cross section, and α rays are generated from the neutron transmutation reaction ζ.
There is a method in which the ray generates electron-hole pairs in the conductor depletion j-, and this is detected to detect the neutron beam.

具体的な実例として中性子線に対して散乱断面積の大き
なボロンの同位元素10Bを用いたJOB(n。
As a specific example, JOB (n.

α)反応を用い、次式で示す反応に従って、中性子線が
入射した際ボロンから発生するα線を検知する方法があ
る。
There is a method using the α) reaction to detect α rays generated from boron when a neutron beam is incident, according to the reaction shown in the following equation.

′。B(n、α)反応: ’%B+ %n−+;L+ 
+ :Heしかし、ボロンは2000℃以上の極めて高
い融点をもち容易にボロン単体層を形成することは困難
である。たとえボロン層を形成しえたとしても、該α線
を検知すべき基体自身が高温のため破壊或は劣化してし
まうと云う問題があった。
'. B(n,α) reaction: '%B+ %n-+;L+
+: He However, boron has an extremely high melting point of 2000° C. or higher, and it is difficult to easily form a single layer of boron. Even if a boron layer could be formed, there was a problem in that the substrate itself, which should detect the alpha rays, would be destroyed or deteriorated due to the high temperature.

特に半導体放射線検出器ζこおいては高温では熱的歪を
生じ素子特性の劣化を生じてしまう問題がある。なかで
も、放射線検出器に使用する半導体は、高純度、高比抵
抗であるため、更に作製プロセスにおいては低温プロセ
スが要求される。高純度高比抵抗シリコンにおいては、
400℃以上で熱的歪が生じ始めると云われている。従
って、半導体プロセスで一般的に用いられている800
℃以上の高温プロセスは、半導体放射線検出器には適さ
ない。
Particularly in semiconductor radiation detectors ζ, there is a problem that thermal distortion occurs at high temperatures, resulting in deterioration of device characteristics. In particular, since semiconductors used in radiation detectors have high purity and high specific resistance, a low-temperature process is required in the manufacturing process. In high-purity high-resistivity silicon,
It is said that thermal strain begins to occur at temperatures above 400°C. Therefore, the 800
High temperature processes above °C are not suitable for semiconductor radiation detectors.

たとえば、リン化ホウ素層と半導体PN接合とを組み合
わせた中性子検出器が公知になっているが、これは次に
示す点番こおいて問題がある。
For example, a neutron detector combining a boron phosphide layer and a semiconductor PN junction is known, but this has problems in the following points.

■ リン化ホウ素層形成には熱分解法を使用するため9
00℃の高温に半導体基体を晒すことになり前述した理
由により半導体特性劣化は避けられない。
■ Because a pyrolysis method is used to form the boron phosphide layer 9
Since the semiconductor substrate is exposed to a high temperature of 00° C., deterioration of semiconductor characteristics is unavoidable for the reasons mentioned above.

(2)  ボロンの同位元素10Bは、自然界に(IO
B : IIBζ1:4)の割合で存在するが、これに
加えIOBをさらに高濃度としてもフォスフイン(PH
1)を用いてリンがリン化ホウ素層に含まれるため。
(2) Boron isotope 10B is found in nature (IO
B: IIBζ1:4), but even if IOB is added to a higher concentration, phosphine (PH
1) because phosphorus is included in the boron phosphide layer.

JOBの濃度は減少する。そのため中性子検出感度は減
少する。
The concentration of JOB decreases. Therefore, neutron detection sensitivity decreases.

■ 作製したリン化ホウ素層厚みが、20μmもあるた
め、発生α線が自己吸収により減少し、そのため中性子
検出感度は減少する。
(2) Since the thickness of the prepared boron phosphide layer is as much as 20 μm, the generated α rays are reduced by self-absorption, and therefore the neutron detection sensitivity is reduced.

以上のようにり、ン化ホウ素層と半導体とを組み合わせ
た中性子検出装置は問題がある。
As described above, a neutron detection device that combines a boron oxide layer and a semiconductor has problems.

また半導体を用いない中性子検出器は、構造が複雑で安
定性に乏しく、また検出感度が低く計数特性が悪いと云
う問題があった二さらに半導体以外の中性子検出器は形
状が極めて大きくて重いと云う欠点も有している。
In addition, neutron detectors that do not use semiconductors have complex structures, lack stability, and have low detection sensitivity and poor counting characteristics.Furthermore, neutron detectors that do not use semiconductors are extremely large and heavy. It also has the following drawbacks.

中性子検出素子に関しては、上記のような欠点を有して
いるため、速中性子線等の検出に減速材を用いようとす
ると、半導体検出器を用いる以外では検出部が大型のた
めその周囲に載置する減速材も、極めて大きくかっまた
重くなるため、実用化は困難である。
Neutron detection elements have the above-mentioned drawbacks, so if you try to use a moderator to detect fast neutron beams, etc., unless you use a semiconductor detector, the detection part is large and cannot be mounted around it. The moderator installed there is also extremely large and heavy, making it difficult to put it into practical use.

減速材を用いて各エネルギーの速中性子を測定するため
には、それぞれのエネルギーに対応すべき厚みをもった
減速材を載置する必要があるが、検出素子部が半導体の
ように小型化しなければ減速材も膨大なものとなる。
In order to measure fast neutrons of each energy using a moderator, it is necessary to place a moderator with a thickness corresponding to each energy, but the detection element must be miniaturized like a semiconductor. In this case, the amount of moderator will be enormous.

最近では、原子炉や加速器等の中性子発生源の増加によ
り、どのような中性子線、すなわち、どのようなエネル
ギーの中性子線が発生しているのかを調べ中性子線の人
体への影響等に対して適切な対策を施す必要に迫られて
いる。
Recently, with the increase in neutron sources such as nuclear reactors and accelerators, we are investigating what kind of neutron beams are being generated, that is, what kind of energy neutron beams are being generated, and are investigating the effects of neutron beams on the human body. There is an urgent need to take appropriate measures.

しかしながら、現状ではリアルタイムで速中性子線を正
確に検出するのは前述したように困難であるため、実際
にはボナーボールと呼ばれる装置が、速中性子エネギー
スペクトル像を検出するのに用いられている。
However, as mentioned above, it is currently difficult to accurately detect fast neutron beams in real time, so a device called a Bonner ball is actually used to detect fast neutron energy spectrum images.

これは中性子検出部分に金(”7Au )を用い、その
周囲に各エネルギーに対応すべくポリエチレン等の減速
材の厚みを変えたものを数個用いて、中性子線照射後、
金の放射化(19’Au→”’Au)を用いて、中性子
線スペクトル像を検出するものである。
This uses gold (7Au) for the neutron detection part, and surrounding it are several moderators such as polyethylene with different thicknesses to correspond to each energy.
A neutron beam spectrum image is detected using gold activation (19'Au→'''Au).

これはある程度小型化されるが、−炭中性子線を照射し
た後にはじめて判明すると云うもので。
This will be miniaturized to some extent, but it will only become clear after being irradiated with carbon neutron beams.

リアルタイムで測定するものではない。It is not measured in real time.

〔発明の目的〕[Purpose of the invention]

本発明は、ボロンの同位元素JOBのl0B(n、α)
反応を用いた半導体中性子検出器である。これは10B
を高濃度に含有させたボロン薄膜を用いて、中性子検出
効率の高い半導体素子を中心薯こ載置し減速材の厚みを
変化させた検出器を作製し、速中性子線のエネルギース
ペクトル像がリアルタイムで得られる装置を提供するこ
とを目的とする。
The present invention is based on the boron isotope JOB l0B(n, α)
This is a semiconductor neutron detector that uses reactions. This is 10B
Using a boron thin film containing a high concentration of The purpose is to provide a device that can be obtained.

〔発明の要点〕[Key points of the invention]

本発明は従来困難とされていたボロンの同位元素10B
を高濃度に含むボロン薄膜を200℃以下の低温で半導
体基体表面に形成し、また高比抵抗シリコン表面に非晶
質シリコン膜を200℃以下の低温で付着せしめたヘテ
ロ接合ダイオード構造を形成することですべて低温プロ
セスで検出素子を作製した。これにより半導体基体に熱
的な歪を与えることなく特性劣化を与えることなく高感
度の中性子線検出素子を作製し、これを中心に各種属み
を変化させた減速材を周囲に載置した形状の装置を数個
或はそれ以上用いて速中性子線のエネルギースペクトル
像をリアルタイムで得られるようにしたものである。
The present invention has developed the boron isotope 10B, which was previously considered difficult.
A thin boron film containing a high concentration of is formed on the surface of a semiconductor substrate at a low temperature of 200°C or lower, and an amorphous silicon film is deposited on a high resistivity silicon surface at a low temperature of 200°C or lower to form a heterojunction diode structure. In this way, all detection elements were fabricated using a low-temperature process. As a result, a high-sensitivity neutron beam detection element was fabricated without thermally straining the semiconductor substrate or deteriorating its characteristics, and a shape in which moderators of various types with different properties were placed around this element was created. This system uses several or more devices to obtain energy spectrum images of fast neutron beams in real time.

これは、中性子線検出部分が、高感度、小型。This neutron beam detection part is highly sensitive and small.

軽量とすることが可能となったため減速材も、小型、軽
量とすることが可能となった。
Since it has become possible to make it lightweight, it has also become possible to make the moderator smaller and lighter.

〔発明の実施例〕[Embodiments of the invention]

第1図は、中性子線検出素子部分の断面図である。P型
巣結晶シリコンlの基板表面!(次に示す条件のプラズ
マCVD法により非晶質シリコン膜2を付着させた。
FIG. 1 is a cross-sectional view of a neutron beam detection element portion. P-type nest crystal silicon substrate surface! (Amorphous silicon film 2 was deposited by plasma CVD under the following conditions.

・プラズマCVD法件 使用ガス:モノシラン(SiH2(10チH2ベース)
〕基板温度:200℃ 圧   カニ  10.0Torr 印加を圧: 700V(D、C,) また裏面には、t(IBを高濃度に含むボロン薄膜3を
プラズマCVD法により形成した。その条件を次に示す
・Plasma CVD method gas used: Monosilane (SiH2 (10-H2 base)
[Substrate temperature: 200°C Pressure: 10.0 Torr Applied pressure: 700 V (D, C,) Also, on the back side, a boron thin film 3 containing a high concentration of t(IB) was formed by plasma CVD method.The conditions were as follows. Shown below.

使用カスニジホラ7 (”BzHs(1000ppmH
2ベース)〕 基板温度:200℃ 圧   カニ  2. OTorr 印加電圧: 560V(D、C,) この後、電極5,6として金属を蒸着する。電極5及び
6に逆バイアス電圧を印加し単結晶シリコン基板中に空
乏層を形成する。ここえ中性子線6が飛来し、ボロン薄
膜3において B(n1α)反応を生じ、α線7を発生
させ、該α線を空乏層内で、電流パルスとして検知する
ものである。
Used Kasunijihora 7 (”BzHs (1000ppmH
2 base)] Substrate temperature: 200℃ Pressure Crab 2. OTorr Applied voltage: 560V (D, C,) After this, metal is deposited as electrodes 5 and 6. A reverse bias voltage is applied to electrodes 5 and 6 to form a depletion layer in the single crystal silicon substrate. Here, the neutron beam 6 enters, causing a B(n1α) reaction in the boron thin film 3, generating α rays 7, which are detected as current pulses within the depletion layer.

第2図は、第1図の検出素子10を減速材11でおおい
、速中性子線の測定しうる装置としたものである。中性
子線6が飛来すると減速材11を第2図に示すような軌
跡で検出素子10まで到達する。
In FIG. 2, the detection element 10 of FIG. 1 is covered with a moderator 11 to form a device capable of measuring fast neutron beams. When the neutron beam 6 comes, it causes the moderator 11 to reach the detection element 10 along a trajectory as shown in FIG.

本実施例では測定中性子線エネルギー範囲として0.0
25eV〜14MeVまでが可能であることが判明した
In this example, the measurement neutron beam energy range is 0.0
It was found that 25 eV to 14 MeV is possible.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、中性子線エネルギースペクトル像が
リアルタイムで測定出来る。また人体への中性子線の影
響度を示したICRP勧告に合わせて減速材厚みを数種
類変化させて対応させて1人体への影響指示モニターと
しても勿論使用しつる。
According to this invention, a neutron beam energy spectrum image can be measured in real time. In addition, it can be used as a monitor to indicate the influence of neutron beams on the human body by changing the thickness of the moderator in several types in accordance with the ICRP recommendations indicating the degree of influence of neutron beams on the human body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は中性子線検出素子の断面図、第2図は第1図の
素子を用いた検出装置の断面図である。 1・・・P型巣結晶シリコン、2・・・非晶質シリコン
。 3・・・ボロン薄膜、4,5・・・電極、6・・・中性
子線、7・・・α線、10・・・検出素子、11・・・
減速材。 ′f1 閃 才21
FIG. 1 is a sectional view of a neutron beam detection element, and FIG. 2 is a sectional view of a detection device using the element of FIG. 1. 1...P-type nest crystal silicon, 2...Amorphous silicon. 3... Boron thin film, 4, 5... Electrode, 6... Neutron beam, 7... α ray, 10... Detection element, 11...
moderator. 'f1 genius 21

Claims (1)

【特許請求の範囲】[Claims] 1)単結晶半導体表面に非晶質半導体を被着せしめたヘ
テロ接合と、ボロン薄膜とを組み合わせた検出器と、そ
の周囲に減速材を載置することを特徴とする中性子検出
装置。
1) A neutron detection device characterized by a detector combining a heterojunction in which an amorphous semiconductor is deposited on the surface of a single crystal semiconductor and a thin boron film, and a moderator placed around the detector.
JP59158415A 1984-07-28 1984-07-28 Neutron detector Granted JPS6135385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59158415A JPS6135385A (en) 1984-07-28 1984-07-28 Neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59158415A JPS6135385A (en) 1984-07-28 1984-07-28 Neutron detector

Publications (2)

Publication Number Publication Date
JPS6135385A true JPS6135385A (en) 1986-02-19
JPH053551B2 JPH053551B2 (en) 1993-01-18

Family

ID=15671254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59158415A Granted JPS6135385A (en) 1984-07-28 1984-07-28 Neutron detector

Country Status (1)

Country Link
JP (1) JPS6135385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector
US6771730B1 (en) * 1998-11-25 2004-08-03 Board Of Regents Of University Of Nebraska Boron-carbide solid state neutron detector and method of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector
US6771730B1 (en) * 1998-11-25 2004-08-03 Board Of Regents Of University Of Nebraska Boron-carbide solid state neutron detector and method of using the same

Also Published As

Publication number Publication date
JPH053551B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US6771730B1 (en) Boron-carbide solid state neutron detector and method of using the same
Ruddy et al. The fast neutron response of 4H silicon carbide semiconductor radiation detectors
Shimaoka et al. Recent progress in diamond radiation detectors
US7687780B2 (en) Semiconductor radiation detector
Angelone et al. Development of single crystal diamond neutron detectors and test at JET tokamak
US9632190B2 (en) Neutron imaging systems utilizing lithium-containing semiconductor crystals
US9831375B2 (en) Solid state radiation detector with enhanced gamma radiation sensitivity
Obraztsova et al. Comparing the response of a SiC and a sCVD diamond detectors to 14-MeV neutron radiation
US9638813B2 (en) Thermal neutron detector and gamma-ray spectrometer utilizing a single material
US20160041273A1 (en) Handheld dual thermal neutron detector and gamma-ray spectrometer
RU2565829C1 (en) Slow neutron diamond detector
Bell et al. Neutron detection with LiInSe2
JPS6135384A (en) Neutron detector
JPS6135385A (en) Neutron detector
Gädda et al. Cadmium Telluride X-ray pad detectors with different passivation dielectrics
JPS61152084A (en) Semiconductor element for neutron detector
Zaletin Development of semiconductor detectors based on wide-gap materials
WO2000033106A1 (en) Boron-carbide solid state neutron detector and method of using same
Jiménez-Ramos et al. Spectrometric performance of SiC radiation detectors at high temperature
Rodionov et al. Diamond photovoltaic cell development
JPH01253683A (en) Neutron detector and neutron detector array
Hassard et al. CVD diamond film for neutron counting
Kasiwattanawut et al. Ti: Pt: Au: Ni thin-film CVD diamond sensor ability for charged particle detection
Hutton et al. Diamond-based radiation detectors for very high dose rate environments–
Hamm Development and Characterization of Lithium Indium Diselenide for Neutron Detection and Imaging Applications