JPH06112515A - Semiconductor radiation detector and its manufacture - Google Patents

Semiconductor radiation detector and its manufacture

Info

Publication number
JPH06112515A
JPH06112515A JP4282282A JP28228292A JPH06112515A JP H06112515 A JPH06112515 A JP H06112515A JP 4282282 A JP4282282 A JP 4282282A JP 28228292 A JP28228292 A JP 28228292A JP H06112515 A JPH06112515 A JP H06112515A
Authority
JP
Japan
Prior art keywords
electrode
anode electrode
main surface
semiconductor
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4282282A
Other languages
Japanese (ja)
Inventor
Yoshitomo Iwase
義倫 岩瀬
Hideto Takamura
秀人 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP4282282A priority Critical patent/JPH06112515A/en
Publication of JPH06112515A publication Critical patent/JPH06112515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain such a structure that can connect the surface of an anode electrode without deteriorating the characteristics of a detecting element by constituting a conductive part which connects the anode electrode to external wiring of such a material that does not lower the height of the electric barrier of the anode electrode against holes. CONSTITUTION:The title detector has a compound semiconductor 1 which is sensitive to radiation, cathode electrode 2 formed on one main surface of the semiconductor 1, anode electrode 3 formed on the other main surface of the semiconductor 1 facing the main surface on which the electrode 2 is formed, and conductive part 6 which connects the electrode 3 to external wiring 5. The part 6 is constituted of such a material that does not lower the height of the electric barrier of the electrode 3 against holes. For example, a cathode electrode 2 made of Pt and anode electrode 3 made of In are formed on a substrate 1 made of a CdTe semiconductor single crystal and the electrode 3 is connected to wiring 5 made of an Ag/Pd film through an In-Sn alloy 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体放射線検出器の
アノード電極を接続するための構造およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for connecting an anode electrode of a semiconductor radiation detector and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体放射線検出器は、放射線に起因し
て半導体内に生じる光電流をその表面に設けた電極によ
り測定するものである。CdTe、HgI2などの化合
物半導体を用いた場合、バンドギャップが広いため室温
での動作が可能であり、また構成元素の原子番号が大き
いためX線、γ線の吸収係数が大きく、高い感度が得ら
れる。このような検出器は、放射線使用施設のモニタ
ー、スペクトルサーベイメータなどに用いられている。
また、検出器の小型化、アレイ化が可能であり、医用診
断機器、産業用の非破壊検査装置などにアレイ化した検
出器が応用され始めている。
2. Description of the Related Art A semiconductor radiation detector measures a photocurrent generated in a semiconductor due to radiation by an electrode provided on its surface. When a compound semiconductor such as CdTe or HgI 2 is used, it can operate at room temperature because of its wide bandgap, and has a large absorption coefficient for X-rays and γ-rays because of its large atomic number of constituent elements, resulting in high sensitivity. can get. Such detectors are used for monitors of radiation facilities, spectrum survey meters, and the like.
Further, the detectors can be downsized and arrayed, and the arrayed detectors are beginning to be applied to medical diagnostic equipment, industrial nondestructive inspection devices, and the like.

【0003】CdTeを用いた半導体放射線検出器の電
極としては、従来、無電解めっきにより形成したPt、
Auなどを主成分とする金属電極が主に用いられてい
た。最近、本発明者は、検出素子の耐電圧を高め、応答
速度、検出効率、エネルギー分解能を向上するために、
アノード電極に正孔に対し高い電気的障壁を示す金属を
用いることを提案している。このようなアノード電極
は、0.5eVを超える障壁の高さを示し、In、G
a、Alなどの金属から構成される。従来用いられてい
た無電解めっきによるPt、Auなどの金属電極の障壁
の高さは、0.5eV以下である。
Conventionally, as electrodes of a semiconductor radiation detector using CdTe, Pt formed by electroless plating,
A metal electrode containing Au or the like as a main component has been mainly used. Recently, the present inventor has increased the withstand voltage of a detection element, and in order to improve response speed, detection efficiency, and energy resolution
It has been proposed to use a metal that has a high electric barrier against holes for the anode electrode. Such an anode electrode exhibits a barrier height of more than 0.5 eV, and the In, G
It is composed of a metal such as a and Al. The height of the barrier of the metal electrode of Pt, Au, or the like, which has been conventionally used by electroless plating, is 0.5 eV or less.

【0004】CdTeを用いた半導体放射線検出器で
は、半導体部分を250℃以上の高温状態とする結晶構
造が変質して検出特性が悪化するため、固定および電極
の電気的接続には室温で扱うことができる銀エポキシと
よばれる導電性接着剤を用いていた。このような導電性
接着剤は、エポキシ樹脂などの絶縁性の接着剤中に微細
な銀粒子などの導電性粒子を分散することで導電性を得
ている。
In a semiconductor radiation detector using CdTe, the crystal structure that causes the semiconductor portion to be in a high temperature state of 250 ° C. or higher is deteriorated and the detection characteristics are deteriorated. It used a conductive adhesive called silver epoxy that can be used. Such a conductive adhesive obtains conductivity by dispersing conductive particles such as fine silver particles in an insulating adhesive such as an epoxy resin.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、正孔に
対し高い電気的障壁を示す金属をアノード電極に用い、
その電極面を介して配線基板などの基体に銀エポキシな
どの導電性接着剤を用いて固定した場合、暗電流が増加
して検出効率、エネルギー分解能などの特性が劣化する
ことがわかった。
However, when a metal showing a high electric barrier against holes is used for the anode electrode,
It has been found that when a conductive adhesive such as silver epoxy is used for fixing to a substrate such as a wiring board via the electrode surface, dark current increases and characteristics such as detection efficiency and energy resolution deteriorate.

【0006】本発明の目的は、検出素子の特性を劣化さ
せることなく、アノード電極面を接続することのできる
構造および接続方法を提供するものである。
An object of the present invention is to provide a structure and a connecting method capable of connecting the anode electrode surface without deteriorating the characteristics of the detecting element.

【0007】[0007]

【課題を解決するための手段】本発明の発明者は、この
ような検出素子の特性を劣化を詳細に検討したところ、
銀エポキシなどの導電性接着剤に含まれる金属成分がア
ノード電極を構成する金属層に拡散し、そのために正孔
に対する電気的障壁が低下するために劣化を生じること
を見出した。
The inventor of the present invention has studied in detail the deterioration of the characteristics of such a detecting element.
It has been found that the metal component contained in the conductive adhesive such as silver epoxy diffuses into the metal layer forming the anode electrode, which lowers the electrical barrier against holes and deteriorates.

【0008】本発明はこのような知見に基づいたもので
あり、本発明による半導体放射線検出器の構造は、(a)
放射線に有感な化合物半導体と、(b)該化合物半導体の
一主面に設けられたカソード電極と、(c)該一主面に対
向する前記化合物半導体の他の主面に設けられたアノー
ド電極と、(d)該アノード電極を外部配線に接続する導
電部分とを含み、(e)該導電部分が前記アノード電極に
おいて正孔に対する電気的障壁の高さを低下させない材
料からなるものである。なお、化合物半導体として、C
dTeまたはCdTeを主成分とする結晶材料(例え
ば、CdZnTe)を用いることが望ましい。導電部分
は、金属層、絶縁物中に金属粒子を分散することで導電
性を持った材料でもよい。アノード電極において正孔に
対する電気的障壁の高さを低下させる材料として、A
g、Au、Cu、P、Sbなどの元素が挙げられる。
The present invention is based on such knowledge, and the structure of the semiconductor radiation detector according to the present invention is (a)
A compound semiconductor sensitive to radiation, (b) a cathode electrode provided on one main surface of the compound semiconductor, and (c) an anode provided on another main surface of the compound semiconductor facing the one main surface. An electrode; and (d) a conductive portion that connects the anode electrode to an external wiring, and (e) the conductive portion is made of a material that does not lower the height of an electrical barrier against holes in the anode electrode. . As a compound semiconductor, C
It is desirable to use a crystalline material containing dTe or CdTe as a main component (for example, CdZnTe). The conductive portion may be a material having conductivity by dispersing metal particles in a metal layer or an insulator. As a material that lowers the height of the electrical barrier against holes in the anode electrode, A
Elements such as g, Au, Cu, P and Sb may be mentioned.

【0009】また、本発明による半導体放射線検出器の
製造方法は、(a)放射線に有感な化合物半導体の一主面
にカソード電極を形成する工程と、(b)アノード電極と
して正孔に対し高い電気的障壁が得られる材料を軟化し
前記一主面に対向する前記化合物半導体の他の主面とを
接続する工程とを含むものである。なお、接続する工程
以前にアノード電極を予め形成しておいてもよい。軟化
させる際に、融解させてもよいが、化合物半導体が変質
する温度以下に加熱することが望ましい。
The method of manufacturing a semiconductor radiation detector according to the present invention comprises (a) a step of forming a cathode electrode on one main surface of a compound semiconductor sensitive to radiation, and (b) an anode electrode for holes. Softening a material capable of obtaining a high electric barrier, and connecting it to the other main surface of the compound semiconductor facing the one main surface. The anode electrode may be formed in advance before the step of connecting. Although it may be melted when it is softened, it is preferably heated to a temperature below the temperature at which the compound semiconductor deteriorates.

【0010】[0010]

【作用及び効果】本発明によれば、アノード電極におい
て正孔に対する電気的障壁の高さを低下させない材料か
らなる金属によりアノード電極を外部配線に接続するも
のであるので、アノード電極の正孔に対する高い電気的
障壁を保ったまま接続することができ、キャリアの注入
を防止することができる。また、アノード電極において
正孔に対する電気的障壁の高さを低下させない材料を軟
化させ、アノード電極を接続するので、アノード電極の
正孔に対する高い電気的障壁を保ったまま、確実に接続
することができる。
According to the present invention, since the anode electrode is connected to the external wiring by the metal made of the material that does not lower the height of the electric barrier against holes in the anode electrode, Connection can be performed while maintaining a high electrical barrier, and carrier injection can be prevented. In addition, since the anode electrode is connected by softening the material that does not lower the height of the electric barrier against holes in the anode electrode, the anode electrode can be surely connected while maintaining a high electric barrier against holes. it can.

【0011】したがって、半導体放射線検出器の特性を
劣化させることなく電極面を接続することができ、環境
変化に対する特性の悪化を低減することが可能となる。
Therefore, the electrode surfaces can be connected without deteriorating the characteristics of the semiconductor radiation detector, and the deterioration of the characteristics due to environmental changes can be reduced.

【0012】[0012]

【実施例】本発明の一実施例であるCdTe放射線検出
器の製造工程を図1および図2を用いて以下に説明す
る。
EXAMPLE A manufacturing process of a CdTe radiation detector which is an example of the present invention will be described below with reference to FIGS.

【0013】図1に示すように、塩素ド−プの高抵抗C
dTe半導体単結晶からなる基板1(厚さ:2mm、幅:
2mmの立方体)の対向する両主面を研磨・エッチングし
た後、無電解めっき法によりその一方の主面に白金(P
t、厚さ:100nm)からなるカソード電極2を形成す
る。カソード電極2に対向する基板1の他の主面に、真
空蒸着法によりインジウム(In、厚さ:150nm)か
らなるアノード電極3を形成する。
As shown in FIG. 1, the chlorine doped high resistance C
Substrate 1 made of dTe semiconductor single crystal (thickness: 2 mm, width:
After polishing and etching both facing main surfaces of a 2 mm cube, platinum (P
t, thickness: 100 nm) to form the cathode electrode 2. An anode electrode 3 made of indium (In, thickness: 150 nm) is formed on the other main surface of the substrate 1 facing the cathode electrode 2 by a vacuum vapor deposition method.

【0014】図2に示すように、厚さ2mmのアルミナ基
板4(基体)上にAg/Pd膜からなる配線5が形成さ
れている。この配線5上でIn−Sn合金6(原子組成
比1:1)をその融点である125℃以上に加熱し、ア
ノード電極3を密着させながら室温まで冷却することで
電気的接続を行うと同時に機械的な固定を行う(ダイア
タッチ)。カソード電極2は、導電性接着剤(銀エポキ
シ)で金線7と接続し、アノード電極3とともに測定回
路(図示せず)につながっている。なお、放射線の入射
面をカソード電極2側として用いるためにアノード電極
3側を配線5に接続している。この理由は、CdTe半
導体における電子の移動度は正孔のそれに比べて約10
倍大きく、カソード電極2側を入射面に用いることでキ
ャリアの収集効率を(特に、200KeV以下の放射線
に対して)高めることができるためである。
As shown in FIG. 2, a wiring 5 made of an Ag / Pd film is formed on an alumina substrate 4 (base) having a thickness of 2 mm. On this wiring 5, the In—Sn alloy 6 (atomic composition ratio 1: 1) is heated to its melting point of 125 ° C. or higher, and the anode electrode 3 is brought into close contact and cooled to room temperature for electrical connection. Mechanically fix (die attach). The cathode electrode 2 is connected to the gold wire 7 with a conductive adhesive (silver epoxy) and is connected to the measurement circuit (not shown) together with the anode electrode 3. The anode electrode 3 side is connected to the wiring 5 in order to use the radiation incident surface as the cathode electrode 2 side. This is because the mobility of electrons in CdTe semiconductors is about 10 times that of holes.
This is because the efficiency of collecting carriers can be increased (especially for radiation of 200 KeV or less) by using the cathode electrode 2 side as the incident surface.

【0015】測定回路からアノード電極3側に正電位、
カソード電極2側に負電位のバイアスを印加した場合の
バイアス電圧による暗電流の変化を図3に示す。図から
明らかなように、バイアス電圧が500Vにおいても暗
電流は5nA程度と充分低い値が得られた。
A positive potential from the measuring circuit to the anode electrode 3 side,
FIG. 3 shows a change in dark current due to a bias voltage when a negative potential bias is applied to the cathode electrode 2 side. As is clear from the figure, even when the bias voltage was 500 V, the dark current was about 5 nA, which was a sufficiently low value.

【0016】以上の実施例では、In−Sn合金6を用
いて接続しているが、アノード電極において正孔に対す
る電気的障壁の高さを低下させず、かつ、CdTe半導
体単結晶が変質する温度である250℃以下の軟化温度
を有する金属または合金(例えば、In、In−Ga、
In−Cd)を用いてもよい。また、その接続は電気的
接続が行われればよく、機械的固定はエポキシ樹脂等の
絶縁性の接着剤を用いてもよい。エポキシ樹脂等の絶縁
性の接着剤中にIn,Alなどのアノード電極において
正孔に対する電気的障壁の高さを低下させない金属粒子
を分散させた導電性接着剤を用いることもできる。
In the above embodiments, the In--Sn alloy 6 is used for connection, but the temperature at which the height of the electrical barrier against holes is not lowered at the anode electrode and the temperature at which the CdTe semiconductor single crystal deteriorates is maintained. Or a metal or alloy having a softening temperature of 250 ° C. or less (for example, In, In—Ga,
In-Cd) may be used. In addition, the connection may be performed by electrical connection, and an insulating adhesive such as an epoxy resin may be used for mechanical fixing. It is also possible to use a conductive adhesive in which metal particles that do not reduce the height of the electrical barrier against holes in the anode electrode such as In and Al are dispersed in an insulating adhesive such as an epoxy resin.

【0017】[0017]

【比較例】実施例と同様に、基板1にカソード電極2お
よびアノード電極3を形成した後、アルミナ基板4上の
配線5への電気的な接続および機械的な固定を導電性接
着剤(銀エポキシ)で行う。また、カソード電極2は、
銀粒子を分散した導電性接着剤(銀エポキシ)で金線7
と接続し、アノード電極3とともに測定回路(図示せ
ず)に接続している。この場合の暗電流を図3に実施例
の場合と併せて示す。図から明らかなように、比較例の
場合はバイアス電圧が500Vにおいて暗電流は10n
A程度であり、比較例と比べてはるかに大きな値である
ことがわかる。
[Comparative Example] Similar to the example, after forming the cathode electrode 2 and the anode electrode 3 on the substrate 1, electrical connection and mechanical fixing to the wiring 5 on the alumina substrate 4 were performed by using a conductive adhesive (silver). Epoxy). Further, the cathode electrode 2 is
Gold wire 7 with a conductive adhesive (silver epoxy) in which silver particles are dispersed.
And the anode electrode 3 as well as a measuring circuit (not shown). The dark current in this case is shown in FIG. 3 together with the case of the embodiment. As is clear from the figure, in the case of the comparative example, the bias current is 500 V and the dark current is 10 n.
It is about A, which is much larger than that of the comparative example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるCdTe放射線検出器の電極形成
工程を説明するための断面図である。
FIG. 1 is a sectional view for explaining an electrode forming process of a CdTe radiation detector according to the present invention.

【図2】本発明によるCdTe放射線検出器の基板への
固定工程を説明するための断面図である。
FIG. 2 is a cross-sectional view illustrating a step of fixing a CdTe radiation detector according to the present invention to a substrate.

【図3】本発明による実施例および比較例によるCdT
e放射線検出器のバイアス電圧による暗電流の変化を示
す特性図である。
FIG. 3 is a CdT according to an example of the present invention and a comparative example.
It is a characteristic view which shows the change of the dark current by the bias voltage of e radiation detector.

【符号の説明】[Explanation of symbols]

1 基板(半導体) 2 カソード電極 3 アノード電極 4 アルミナ基板(基体) 5 配線 6 In−Sn合金 7 金線 1 Substrate (Semiconductor) 2 Cathode Electrode 3 Anode Electrode 4 Alumina Substrate (Base) 5 Wiring 6 In-Sn Alloy 7 Gold Wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a)放射線に有感な化合物半導体と、 (b)該化合物半導体の一主面に設けられたカソード電極
と、 (c)該一主面に対向する前記化合物半導体の他の主面に
設けられたアノード電極と、 (d)該アノード電極を外部配線に接続する導電部分とを
含み、 (e)該導電部分が前記アノード電極において正孔に対す
る電気的障壁の高さを低下させない材料からなることを
特徴とする半導体放射線検出器。
1. A compound semiconductor sensitive to radiation, (b) a cathode electrode provided on one main surface of the compound semiconductor, and (c) another compound semiconductor facing the one main surface. And (d) a conductive portion connecting the anode electrode to an external wiring, and (e) the conductive portion increases a height of an electric barrier against holes in the anode electrode. A semiconductor radiation detector characterized by being made of a material that does not degrade.
【請求項2】 前記アノード電極は正孔に対し高い電気
的障壁を示す材料から構成され、かつ、前記カソード電
極は正孔に対し低い電気的障壁を示す材料から構成され
ることを特徴とする請求項1記載の半導体放射線検出
器。
2. The anode electrode is made of a material showing a high electric barrier against holes, and the cathode electrode is made of a material showing a low electric barrier against holes. The semiconductor radiation detector according to claim 1.
【請求項3】 (a)放射線に有感な化合物半導体の一主
面にカソード電極を形成する工程と、 (b)アノード電極として正孔に対し高い電気的障壁が得
られる材料を軟化し前記一主面に対向する前記化合物半
導体の他の主面とを接続する工程とを含むことを特徴と
する半導体放射線検出器の製造方法。
3. A step of (a) forming a cathode electrode on one main surface of a compound semiconductor sensitive to radiation, and (b) softening a material capable of obtaining a high electric barrier against holes as an anode electrode, Connecting the other main surface of the compound semiconductor facing the one main surface.
JP4282282A 1992-09-29 1992-09-29 Semiconductor radiation detector and its manufacture Pending JPH06112515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4282282A JPH06112515A (en) 1992-09-29 1992-09-29 Semiconductor radiation detector and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4282282A JPH06112515A (en) 1992-09-29 1992-09-29 Semiconductor radiation detector and its manufacture

Publications (1)

Publication Number Publication Date
JPH06112515A true JPH06112515A (en) 1994-04-22

Family

ID=17650404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4282282A Pending JPH06112515A (en) 1992-09-29 1992-09-29 Semiconductor radiation detector and its manufacture

Country Status (1)

Country Link
JP (1) JPH06112515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663242B2 (en) * 2001-05-24 2010-02-16 Lewis Brian G Thermal interface material and solder preforms
WO2010088066A3 (en) * 2009-02-02 2010-10-28 Redlen Technologies Inc. Solid-state radiation detector with improved sensitivity
JP2011501149A (en) * 2007-11-01 2011-01-06 オイ アジャト, リミテッド CdTe / CdZnTe radiation imaging detector and high / bias voltage means
US9202961B2 (en) 2009-02-02 2015-12-01 Redlen Technologies Imaging devices with solid-state radiation detector with improved sensitivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663242B2 (en) * 2001-05-24 2010-02-16 Lewis Brian G Thermal interface material and solder preforms
JP2011501149A (en) * 2007-11-01 2011-01-06 オイ アジャト, リミテッド CdTe / CdZnTe radiation imaging detector and high / bias voltage means
WO2010088066A3 (en) * 2009-02-02 2010-10-28 Redlen Technologies Inc. Solid-state radiation detector with improved sensitivity
US8614423B2 (en) 2009-02-02 2013-12-24 Redlen Technologies, Inc. Solid-state radiation detector with improved sensitivity
US9202961B2 (en) 2009-02-02 2015-12-01 Redlen Technologies Imaging devices with solid-state radiation detector with improved sensitivity

Similar Documents

Publication Publication Date Title
US5729021A (en) X-ray image sensor
KR0143915B1 (en) Stable ohmic contacts to thin films of p-type tellurium-containing ñœ-ñá semiconductors
US20070194243A1 (en) Method of making segmented contacts for radiation detectors using direct photolithography
JP6775097B2 (en) Radiation detection element and its manufacturing method
US6649915B2 (en) Ionizing radiation detector
US7767487B2 (en) Formation of contacts on semiconductor substrates
CN101546780A (en) Radiation detector
US10502842B2 (en) Radiation detector
US4005468A (en) Semiconductor photoelectric device with plural tin oxide heterojunctions and common electrical connection
US20050184320A1 (en) Photoconductor having an embedded contact electrode
JPH06112515A (en) Semiconductor radiation detector and its manufacture
EP0567111B1 (en) Electrode of a photovoltaic element and method for forming the same
WO2017079937A1 (en) Linear array detector, linear array sensor and method for forming linear array sensor
US6975012B2 (en) Semiconductor radiation detector having voltage application means comprises InxCdyTez on CdTe semiconductor substrate
US7034311B2 (en) Device for photoelectric detection and in particular of x or y radiation
JPH038375A (en) Electric element
CA1060568A (en) Photoelectric device
JPH07335927A (en) Fabrication of semiconductor radiation detector
JPH07169989A (en) Semiconductor radioactive rays detector and its manufacture
JPH085749A (en) Semiconductor radiation detector and manufacture thereof
JPS6070774A (en) Detector for radiation
JPH0363228B2 (en)
JP2022521969A (en) Radiation sensor elements and methods
JPH01253971A (en) Semiconductor radiation detector and its manufacture
You et al. Synchrotron X-Ray photoconductor detector arrays made on MBE grown CdTe