JPH085749A - Semiconductor radiation detector and manufacture thereof - Google Patents

Semiconductor radiation detector and manufacture thereof

Info

Publication number
JPH085749A
JPH085749A JP6158264A JP15826494A JPH085749A JP H085749 A JPH085749 A JP H085749A JP 6158264 A JP6158264 A JP 6158264A JP 15826494 A JP15826494 A JP 15826494A JP H085749 A JPH085749 A JP H085749A
Authority
JP
Japan
Prior art keywords
substrate
electrode
cathode electrode
compound semiconductor
insulation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6158264A
Other languages
Japanese (ja)
Inventor
Yoshitomo Iwase
義倫 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6158264A priority Critical patent/JPH085749A/en
Publication of JPH085749A publication Critical patent/JPH085749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To improve an S/N ratio by a method wherein an insulation film with an even thickness comprising cadmium tellurate of a uniform composition is provided on an interface between a cathode electrode and a compound semiconductor and checks the injection of electrons from the cathode electrode evenly to obtain a dark current low sufficiently in a stable manner. CONSTITUTION:A substrate 1 comprising a high resistance CdTe semiconductor crystal doped with chlorine is ground on both sides thereof and a modified layer caused by working is etched away. An In metal layer is formed as anode electrode 2 on one main surface of the substrate 1 by vacuum evaporation film method. The electrode 2 employs a metal element with electric barrier thereof high against holes, for example, Ga or Al. A uniform insulation film 3 comprising CdTeO3 is formed on the surface of the substrate 1 except for the portion where the electrode 2 is formed by thermal oxidation in an atmosphere of oxygen. Then, an Au layer with electric barrier high against electrons is formed on the insulation film 3 of the other main surfaces of the substrate 1 facing the electrode 2 as cathode electrode 4 by vacuum evaporation method. The substrate 1 containing the electrodes 2 and 4 and the insulation film 3 is cut off to complete a radiation detector 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電極間をながれる電流
により放射線を検出する半導体放射線検出器のカソード
電極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a cathode electrode of a semiconductor radiation detector which detects radiation by a current flowing between electrodes.

【0002】[0002]

【従来の技術】半導体放射線検出器は、放射線に起因し
て半導体内に生じる光電流をその表面に設けた電極によ
り測定するものである。CdTe、CdZnTeなどの
CdTeを主成分とする化合物半導体を用いた場合、バ
ンドギャップが広いため室温での動作が可能であり、ま
た構成元素の原子番号が大きいためX線、γ線の吸収係
数が大きく、高い感度が得られる。このような検出器
は、放射線使用施設のモニター、スペクトルサーベイメ
ータなどに用いられている。また、検出器の小型化、ア
レイ化が可能であり、医用診断機器、産業用の非破壊検
査装置などにアレイ化した検出器が応用され始めてい
る。
2. Description of the Related Art A semiconductor radiation detector measures a photocurrent generated in a semiconductor due to radiation by an electrode provided on its surface. When a compound semiconductor containing CdTe as a main component such as CdTe or CdZnTe is used, it can operate at room temperature because of its wide band gap, and the absorption coefficient of X-rays and γ-rays is large because the atomic numbers of constituent elements are large. Large and high sensitivity is obtained. Such detectors are used for monitors of radiation facilities, spectrum survey meters, and the like. Further, the detectors can be downsized and arrayed, and the arrayed detectors are beginning to be applied to medical diagnostic equipment, industrial nondestructive inspection devices, and the like.

【0003】CdTeを用いた半導体放射線検出器の電
極としては、従来、無電解めっきにより形成したPt、
Auなどを主成分とする金属電極が主に用いられてい
た。(B.T.A.Mckee et al.;Nucl. Instr. and Method,
A272, p.825 (1988))さらに、暗電流を低減するために
アノード電極としてInを用いることが提案されてい
る。(特開平3−248578、M.R.Squilantte et a
l.;Nucl. Instr. and Method, A283, p.323 (1989))こ
れにより、アノード電極での正孔に対する電気的障壁を
高めることができるため、暗電流が低減され、検出素子
への印加電圧(バイアス電圧)を高くすることができる
ので高いキャリア収集効率、高速動作が可能となる。
Conventionally, as electrodes of a semiconductor radiation detector using CdTe, Pt formed by electroless plating,
A metal electrode containing Au or the like as a main component has been mainly used. (BTAMckee et al .; Nucl. Instr. And Method,
A272, p.825 (1988)) Further, it has been proposed to use In as an anode electrode in order to reduce dark current. (JP-A-3-248578, MRSquilantte et a
l.; Nucl.Instr. Since the voltage (bias voltage) can be increased, high carrier collection efficiency and high speed operation are possible.

【0004】また、Pt、Auなどを主成分とするカソ
ード電極は、電子に対する電気的障壁を高めることので
き、暗電流を低くできる。このようなカソード電極は、
水溶液中の無電解めっきにより化合物半導体表面に形成
される。この際、化合物半導体とカソード電極との界面
には酸化物層が形成され、電子の注入が抑制されるた
め、暗電流が低減していると考えられる。
Further, the cathode electrode containing Pt, Au or the like as a main component can enhance the electrical barrier against electrons and can reduce the dark current. Such a cathode electrode is
It is formed on the compound semiconductor surface by electroless plating in an aqueous solution. At this time, an oxide layer is formed at the interface between the compound semiconductor and the cathode electrode, and the injection of electrons is suppressed, so it is considered that the dark current is reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
作製方法によると暗電流の値にばらつきが大きい。特に
印加電圧を高くした場合には、検出素子の特性が不安定
となることがあった。本発明の目的は、充分に低い暗電
流の値を安定に得ることのできる電極構造およびその形
成方法を提供するものである。
However, according to the above-described manufacturing method, the value of the dark current varies widely. Especially when the applied voltage is increased, the characteristics of the detection element may become unstable. An object of the present invention is to provide an electrode structure capable of stably obtaining a sufficiently low dark current value and a method for forming the electrode structure.

【0006】[0006]

【課題を解決するための手段及び作用】本発明による半
導体放射線検出器は、CdTeを主成分とする化合物半
導体と、該化合物半導体の表面に設けられCdTeO3
からなる絶縁膜と、該絶縁膜上に設けられ電子に対して
高い障壁となる金属から構成されるカソード電極と、前
記カソード電極に対向する前記化合物半導体の表面に設
けられ正孔に対して高い障壁となる金属から構成される
アノード電極とを含むものである。アノード電極として
はIn、Ga、Alなど、カソード電極としてはPt、
Auなどの金属またはそれを主成分とする合金などを用
いることができる。また、前記絶縁膜の厚さは、50n
m未満とすることが望ましい。
A semiconductor radiation detector according to the present invention comprises a compound semiconductor containing CdTe as a main component and CdTeO 3 provided on the surface of the compound semiconductor.
Made of a metal, a cathode electrode formed on the insulating film and made of a metal that serves as a high barrier against electrons, and a hole provided on the surface of the compound semiconductor facing the cathode electrode and having high holes. It includes an anode electrode made of a metal that serves as a barrier. In, Ga, Al, etc. as the anode electrode, Pt as the cathode electrode,
A metal such as Au or an alloy containing it as a main component can be used. The thickness of the insulating film is 50n.
It is desirable that it is less than m.

【0007】また、本発明による半導体放射線検出器の
製造方法は、CdTeを主成分とする化合物半導体の表
面をエッチングし、該化合物半導体の表面に正孔に対し
て高い障壁となる金属から構成されるアノード電極を形
成し、該化合物半導体の表面を熱酸化することでCdT
eO3からなる絶縁膜を形成し、前記アノード電極に対
向する領域の前記絶縁膜上に電子に対して高い障壁とな
る金属から構成されるカソード電極を形成するものであ
る。前記熱酸化は酸化雰囲気において300℃以上の温
度で行い、カソード電極の形成は真空蒸着法などの絶縁
膜の特性に影響を与えない形成手段より行うことが望ま
しい。
Further, the method for manufacturing a semiconductor radiation detector according to the present invention comprises the step of etching the surface of a compound semiconductor containing CdTe as a main component, and the surface of the compound semiconductor is made of a metal which becomes a high barrier against holes. CdT is formed by forming an anode electrode of the compound semiconductor and thermally oxidizing the surface of the compound semiconductor.
An insulating film made of eO 3 is formed, and a cathode electrode made of a metal that serves as a high barrier against electrons is formed on the insulating film in a region facing the anode electrode. It is preferable that the thermal oxidation is performed at a temperature of 300 ° C. or higher in an oxidizing atmosphere, and the cathode electrode is formed by a forming means such as a vacuum evaporation method that does not affect the characteristics of the insulating film.

【0008】本発明者は、暗電流のメカニズムを詳細に
検討したところ、暗電流においてはカソード電極からの
電子の注入が支配的であり、このカソード電極と半導体
界面の酸化物層が組成、厚さなどにおいて不均一である
ために暗電流がばらついているとの結論に至った。それ
に基づき、カソード電極と化合物半導体の界面の酸化物
層として、均一な組成のCdTeO3の均一な厚さの絶
縁膜を用いることを想着した。これにより、カソード電
極からの電子の注入を均一に抑えることができるため、
少ない暗電流を安定に得ることができる。
The inventor of the present invention has studied the mechanism of dark current in detail. The injection of electrons from the cathode electrode is dominant in the dark current, and the oxide layer at the cathode electrode and the semiconductor interface has a different composition and thickness. We came to the conclusion that the dark current fluctuates due to non-uniformity in the size. Based on this, it was conceived to use an insulating film of CdTeO 3 having a uniform composition and a uniform thickness as the oxide layer at the interface between the cathode electrode and the compound semiconductor. This makes it possible to suppress the injection of electrons from the cathode electrode uniformly,
A small dark current can be stably obtained.

【0009】[0009]

【実施例】本発明の一実施例であるCdTe放射線検出
器の製造工程を図1を用いて以下に説明する。
EXAMPLE A manufacturing process of a CdTe radiation detector which is an example of the present invention will be described below with reference to FIG.

【0010】図1(a)に示すよう、塩素ド−プの高抵
抗CdTe半導体単結晶からなる基板1(15mm角)を
アルミナ砥粒などを用いて両面研磨し、厚さを2mmと
する。研磨による加工変質層をブロム−メタノール溶液
などのエッチング液を用いてエッチング除去する。そし
て、基板1を真空中200℃で20分間の熱処理を抵抗
加熱炉により行う。これにより、基板1の表面が清浄化
される。この熱処理は100℃以上250℃未満で5分
〜60分行ってもよい。この範囲以下では充分に清浄化
されず、この範囲以上では基板化合物成分の分離、分解
を生じるために好ましくない。
As shown in FIG. 1A, a substrate 1 (15 mm square) made of a chlorine-doped high-resistance CdTe semiconductor single crystal is polished on both sides using alumina abrasive grains or the like to have a thickness of 2 mm. The work-affected layer by polishing is removed by etching using an etching solution such as a bromine-methanol solution. Then, the substrate 1 is heat-treated in vacuum at 200 ° C. for 20 minutes in a resistance heating furnace. As a result, the surface of the substrate 1 is cleaned. This heat treatment may be performed at 100 ° C. or higher and lower than 250 ° C. for 5 minutes to 60 minutes. If it is below this range, it is not sufficiently cleaned, and if it is above this range, the components of the substrate compound are separated and decomposed, which is not preferable.

【0011】図1(b)に示すよう、基板1の一方の主
面に真空蒸着法により厚さ150nmのインジウム(I
n)金属層をアノード電極2として形成する。アノード
電極2を構成する金属としては、ガリウム(Ga)、ア
ルミニウム(Al)などの正孔に対する電気的障壁の高
い金属元素を用いることもできる。その形成方法として
は真空蒸着法などの基板1との界面に酸化物を生じにく
い形成方法を用いることが望まく、めっき法などでは界
面に新たに酸化物などが形成されるため望ましくない。
また、アノード電極2を形成後にさらに熱処理(150
℃以上250℃未満、1分〜20分)してもよい。
As shown in FIG. 1B, indium (I) having a thickness of 150 nm is formed on one main surface of the substrate 1 by a vacuum deposition method.
n) A metal layer is formed as the anode electrode 2. As the metal forming the anode electrode 2, a metal element such as gallium (Ga) or aluminum (Al) having a high electric barrier against holes can be used. As the formation method, it is desirable to use a formation method such as a vacuum vapor deposition method in which an oxide is unlikely to be generated at the interface with the substrate 1, and a plating method or the like is not desirable because an oxide or the like is newly formed at the interface.
In addition, after forming the anode electrode 2, heat treatment (150
C. or higher and lower than 250.degree. C., 1 minute to 20 minutes).

【0012】そして、図1(c)に示すよう、アノード
電極2を形成した以外の基板1の表面に厚さ約7nmの
CdTeO3(テルル酸カドミウム)からなる絶縁膜3
を形成する。絶縁膜3の形成は、基板1を酸素ガス雰囲
気中350℃で70時間の熱酸化により行った。熱酸化
は、300℃以上400℃未満、20〜80時間でもよ
いが、絶縁膜3を均一にするためには、370℃以下で
65時間以上の条件が望ましい。絶縁膜3は、CVD法
などにより形成した厚さ5〜50nmのCdTeO3
用いてもよいが、酸化雰囲気での熱処理の方が簡単な工
程で全面を均一に覆うことができる。絶縁膜3の厚さが
5nm未満では暗電流を十分に低減できず、また、その
厚さが50nmを越えるとCdTe半導体部分への電界
印加が十分でなくなる。
Then, as shown in FIG. 1C, an insulating film 3 made of CdTeO 3 (cadmium tellurate) having a thickness of about 7 nm is formed on the surface of the substrate 1 other than the anode electrode 2 formed thereon.
To form. The insulating film 3 was formed by thermal oxidation of the substrate 1 in an oxygen gas atmosphere at 350 ° C. for 70 hours. The thermal oxidation may be performed at 300 ° C. or higher and lower than 400 ° C. for 20 to 80 hours, but in order to make the insulating film 3 uniform, conditions of 370 ° C. or lower and 65 hours or longer are desirable. The insulating film 3 may be made of CdTeO 3 having a thickness of 5 to 50 nm formed by a CVD method or the like, but heat treatment in an oxidizing atmosphere can uniformly cover the entire surface in a simpler process. If the thickness of the insulating film 3 is less than 5 nm, the dark current cannot be sufficiently reduced, and if the thickness exceeds 50 nm, the electric field is not sufficiently applied to the CdTe semiconductor portion.

【0013】図1(d)に示すよう、アノード電極2に
対向する基板1の他の主面の絶縁膜3上に真空蒸着法に
より厚さ200nmの金(Au)層をカソード電極4と
して形成する。カソード電極4を構成する金属として
は、白金(Pt)などの電子に対する電気的障壁の高い
金属元素を用いることもできる。その形成方法としては
真空蒸着法などの絶縁膜3にダメージを与えない形成方
法を用いることが望ましく、めっき法などでは界面の酸
化物が変質、変化するため望ましくない。なお、アノー
ド電極2を先に形成しているが、絶縁膜3を先に形成し
た後、部分的に絶縁膜3を取り除き、アノード電極2お
よびカソード電極4を作製してもよい。
As shown in FIG. 1D, a gold (Au) layer having a thickness of 200 nm is formed as a cathode electrode 4 on the insulating film 3 on the other main surface of the substrate 1 facing the anode electrode 2 by a vacuum deposition method. To do. As the metal forming the cathode electrode 4, a metal element having a high electric barrier against electrons such as platinum (Pt) can be used. As the forming method, it is desirable to use a forming method such as a vacuum vapor deposition method that does not damage the insulating film 3, and a plating method or the like is not desirable because the oxide at the interface is altered or changed. Although the anode electrode 2 is formed first, the insulating film 3 may be formed first and then the insulating film 3 may be partially removed to form the anode electrode 2 and the cathode electrode 4.

【0014】その後、図1(e)に示すよう、アノード
電極2、絶縁膜3およびカソード電極4を含む基板1を
2mm角にダイシングソーで切断することで放射線検出
素子5を完成する。この放射線検出素子5を図2に示す
放射線測定回路により評価した。この評価回路は、バイ
アス電源6により1000Vまでのバイアス電圧を放射
線検出素子5に印加し、入射したX線の線量の比例して
流れる電流を電流計7で測定するものである。なお、入
射したX線の線量に比例して流れる電流をパルスとして
計数することもできる。
Thereafter, as shown in FIG. 1E, the radiation detecting element 5 is completed by cutting the substrate 1 including the anode electrode 2, the insulating film 3 and the cathode electrode 4 into a 2 mm square with a dicing saw. This radiation detecting element 5 was evaluated by the radiation measuring circuit shown in FIG. In this evaluation circuit, a bias voltage of up to 1000 V is applied to the radiation detection element 5 by the bias power supply 6, and the current flowing in proportion to the dose of the incident X-ray is measured by the ammeter 7. The current flowing in proportion to the dose of the incident X-ray can be counted as a pulse.

【0015】放射線検出素子5にX線を照射しない場合
の電流を暗電流として測定した。その結果を実施例とし
て実線を用いて図3に示す。また、基板1にアノード電
極2を形成した後、絶縁膜3を形成せずにカソード電極
4を直接形成し、それ以外は実施例と同様に作製した放
射線検出素子の測定結果を比較例として破線を用いて併
せて示す。この図から明らかなように本実施例の暗電流
は比較例のそれの約半分である。また、実施例、比較例
ともにX線を入射した際には、その線量に比例して電流
が増加した。さらに、実施例と同様に繰返し放射線検出
素子を作製し、評価したが、ほぼ同一の検出特性を毎回
安定に得ることができた。
The current when the radiation detecting element 5 was not irradiated with X-ray was measured as a dark current. The results are shown in FIG. 3 as an example using a solid line. In addition, after forming the anode electrode 2 on the substrate 1, the cathode electrode 4 is directly formed without forming the insulating film 3, and the measurement results of the radiation detecting element manufactured in the same manner as in the other example are shown as a broken line as a comparative example. Are also shown together. As is apparent from this figure, the dark current of this example is about half that of the comparative example. Moreover, when X-rays were incident in both the examples and comparative examples, the current increased in proportion to the dose. Further, a radiation detecting element was repeatedly manufactured and evaluated in the same manner as in the example, but almost the same detection characteristics could be stably obtained every time.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、カソー
ド電極と化合物半導体との界面に均一な絶縁膜としてC
dTeO3を用いているので、暗電流を低く抑えること
ができ、放射線を高いS/N比で測定できる半導体放射
線検出器を再現性よく得ることができる。
As described above, according to the present invention, C is formed as a uniform insulating film at the interface between the cathode electrode and the compound semiconductor.
Since dTeO 3 is used, the dark current can be suppressed to a low level, and a semiconductor radiation detector capable of measuring radiation with a high S / N ratio can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例によるCdTe放射線検出器の作製工
程を説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a manufacturing process of a CdTe radiation detector according to this example.

【図2】CdTe放射線検出器を用いた放射線測定回路
である。
FIG. 2 is a radiation measuring circuit using a CdTe radiation detector.

【図3】実施例および比較例による暗電流を示す特性図
である。
FIG. 3 is a characteristic diagram showing dark current according to an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 基板(化合物半導体) 2 アノード電極 3 絶縁膜 4 カソード電極 5 放射線検出素子 6 バイアス電源 7 電流計 1 substrate (compound semiconductor) 2 anode electrode 3 insulating film 4 cathode electrode 5 radiation detection element 6 bias power supply 7 ammeter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CdTeを主成分とする化合物半導体
と、 該化合物半導体の表面に設けられCdTeO3からなる
絶縁膜と、 該絶縁膜上に設けられ電子に対して高い障壁となる金属
から構成されるカソード電極と、 前記カソード電極に対向する前記化合物半導体の表面に
設けられ正孔に対して高い障壁となる金属から構成され
るアノード電極とを含むことを特徴とする半導体放射線
検出器。
1. A compound semiconductor containing CdTe as a main component, an insulating film made of CdTeO 3 provided on the surface of the compound semiconductor, and a metal provided on the insulating film as a high barrier against electrons. A semiconductor radiation detector, comprising: a cathode electrode, and an anode electrode made of a metal, which is provided on the surface of the compound semiconductor facing the cathode electrode and serves as a high barrier against holes.
【請求項2】 CdTeを主成分とする化合物半導体の
表面をエッチングし、 該化合物半導体の表面に正孔に対して高い障壁となる金
属から構成されるアノード電極を形成し、 該化合物半導体の表面を熱酸化することでCdTeO3
からなる絶縁膜を形成し、 前記アノード電極に対向する領域の前記絶縁膜上に電子
に対して高い障壁となる金属から構成されるカソード電
極を形成することを特徴とする半導体放射線検出器の製
造方法。
2. A surface of a compound semiconductor containing CdTe as a main component is etched to form an anode electrode made of a metal that serves as a high barrier against holes on the surface of the compound semiconductor. By thermal oxidation of CdTeO 3
And a cathode electrode made of a metal that is a high barrier against electrons is formed on the insulating film in a region facing the anode electrode. Method.
JP6158264A 1994-06-17 1994-06-17 Semiconductor radiation detector and manufacture thereof Pending JPH085749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6158264A JPH085749A (en) 1994-06-17 1994-06-17 Semiconductor radiation detector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6158264A JPH085749A (en) 1994-06-17 1994-06-17 Semiconductor radiation detector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH085749A true JPH085749A (en) 1996-01-12

Family

ID=15667822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6158264A Pending JPH085749A (en) 1994-06-17 1994-06-17 Semiconductor radiation detector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH085749A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486476B1 (en) 1998-12-22 2002-11-26 Hitachi, Ltd. Semiconductor radiation detector and manufacture thereof
JP2008083037A (en) * 2006-08-30 2008-04-10 Seiko Eg & G Co Ltd Radiation detection apparatus and method for calibrating efficiency therefor
JP2008546177A (en) * 2005-05-16 2008-12-18 Ii−Vi インコーポレイテッド High-performance CdxZn1-xTe (0 ≦ x ≦ 1) X-ray and γ-ray radiation detector and method for manufacturing the same
US9029463B2 (en) 2008-05-21 2015-05-12 Bayer Materialsciene Ag Polycarbonate blends having low-temperature impact strength
WO2019187217A1 (en) * 2018-03-29 2019-10-03 Jx金属株式会社 Radiation detection element, and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486476B1 (en) 1998-12-22 2002-11-26 Hitachi, Ltd. Semiconductor radiation detector and manufacture thereof
JP2008546177A (en) * 2005-05-16 2008-12-18 Ii−Vi インコーポレイテッド High-performance CdxZn1-xTe (0 ≦ x ≦ 1) X-ray and γ-ray radiation detector and method for manufacturing the same
JP2008083037A (en) * 2006-08-30 2008-04-10 Seiko Eg & G Co Ltd Radiation detection apparatus and method for calibrating efficiency therefor
US9029463B2 (en) 2008-05-21 2015-05-12 Bayer Materialsciene Ag Polycarbonate blends having low-temperature impact strength
WO2019187217A1 (en) * 2018-03-29 2019-10-03 Jx金属株式会社 Radiation detection element, and method for manufacturing same
US11391852B2 (en) 2018-03-29 2022-07-19 Jx Nippon Mining & Metals Corporation Radiation detection element, and method for manufacturing same

Similar Documents

Publication Publication Date Title
Nava et al. Minimum ionizing and alpha particles detectors based on epitaxial semiconductor silicon carbide
Oliveira et al. Purification and preparation of TlBr crystals for room temperature radiation detector applications
US6524966B1 (en) Surface treatment and protection method for cadmium zinc telluride crystals
JPS59227168A (en) Semiconductor radioactive ray detector
US6649915B2 (en) Ionizing radiation detector
US5933706A (en) Method for surface treatment of a cadmium zinc telluride crystal
Chaudhuri et al. High-resolution radiation detection using Ni/SiO2/n-4H-SiC vertical metal-oxide-semiconductor capacitor
Rouse et al. Interfacial chemistry and the performance of bromine-etched CdZnTe radiation detector devices
Bennett et al. Characterization of polycrystalline TlBr films for radiographic detectors
Mescher et al. Development of dry processing techniques for CdZnTe surface passivation
JPH085749A (en) Semiconductor radiation detector and manufacture thereof
WO2010013748A1 (en) Ultraviolet light receiving element and method for measuring amount of ultraviolet light
JP2981712B2 (en) Manufacturing method of semiconductor radiation detector
US20100090226A1 (en) Diamond uv-ray sensor
Han New developments in photoconductive detectors
CA2447403C (en) Semiconductor radiation detecting element
JPH03248578A (en) Manufacture of semiconductor radioactive ray detecting element
Chattopadhyay et al. Thermal treatments of CdTe and CdZnTe detectors
Bao et al. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements
JPH08236799A (en) Semiconductor radiation detector and rectifier
JPH05335613A (en) Ultraviolet-ray receiving device and its manufacture
JP2001177141A (en) Semiconductor device and method of manufacturing the same, and radioactive detector
Wada et al. Cadmium telluride β-ray detector
JPH09148615A (en) Semiconductor radiation detector and its manufacture
Kosyachenko et al. Electrical properties of surface-barrier diodes based on CdZnTe