JP2981712B2 - Manufacturing method of semiconductor radiation detector - Google Patents

Manufacturing method of semiconductor radiation detector

Info

Publication number
JP2981712B2
JP2981712B2 JP6144122A JP14412294A JP2981712B2 JP 2981712 B2 JP2981712 B2 JP 2981712B2 JP 6144122 A JP6144122 A JP 6144122A JP 14412294 A JP14412294 A JP 14412294A JP 2981712 B2 JP2981712 B2 JP 2981712B2
Authority
JP
Japan
Prior art keywords
electrode
radiation detector
manufacturing
semiconductor
semiconductor radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6144122A
Other languages
Japanese (ja)
Other versions
JPH07335927A (en
Inventor
義倫 岩瀬
秀人 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6144122A priority Critical patent/JP2981712B2/en
Publication of JPH07335927A publication Critical patent/JPH07335927A/en
Application granted granted Critical
Publication of JP2981712B2 publication Critical patent/JP2981712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電極間をながれる電流
に基づき放射線を検出する半導体放射線検出器の電極形
成方法に関するものである。特には、医療用、産業用の
非破壊検査装置、環境放射線の測定に利用しうる半導体
放射線検出器に用いられるアノード電極の形成に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an electrode of a semiconductor radiation detector for detecting radiation based on a current flowing between electrodes. In particular, the present invention relates to the formation of an anode electrode used in medical and industrial nondestructive inspection devices and semiconductor radiation detectors that can be used for measuring environmental radiation.

【0002】[0002]

【従来の技術】半導体放射線検出器は、放射線に起因し
て半導体内に生じる光電流をその表面に設けた電極によ
り測定するものである。II-VI族化合物半導体、特には
CdTe、CdZnTeなどのCdTeを主成分とする
化合物半導体を用いた場合、バンドギャップが広いため
室温での動作が可能であり、また構成元素の原子番号が
大きいためX線、γ線の吸収係数が大きく、高い感度が
得られる。このような検出器は、放射線使用施設のモニ
ター、スペクトルサーベイメータなどに用いられてい
る。また、検出器の小型化、アレイ化が可能であり、医
用診断機器、産業用の非破壊検査装置などにアレイ化し
た検出器が応用され始めている。
2. Description of the Related Art A semiconductor radiation detector measures a photocurrent generated in a semiconductor due to radiation with an electrode provided on the surface thereof. When a group II-VI compound semiconductor, particularly a compound semiconductor containing CdTe as a main component such as CdTe or CdZnTe, is used, it can operate at room temperature due to a wide band gap, and has a large atomic number of a constituent element. The absorption coefficient of X-ray and γ-ray is large, and high sensitivity can be obtained. Such a detector is used for a monitor of a radiation use facility, a spectrum survey meter, and the like. In addition, detectors can be miniaturized and arrayed, and arrayed detectors have begun to be applied to medical diagnostic equipment, industrial nondestructive inspection devices, and the like.

【0003】CdTeを用いた半導体放射線検出器の電
極としては、従来、無電解めっきにより形成したPt、
Auなどを主成分とする金属電極が主に用いられてい
た。(B.T.A.Mckee et al.;Nucl. Instr. and Method,
A272, p.825 (1988))さらに、暗電流を低減するために
アノード電極としてInを用いることが提案されてい
る。(特開平3−248578、M.R.Squilantte et a
l.;Nucl. Instr. and Method, A283, p.323 (1989))こ
れにより、アノード電極での正孔に対する電気的障壁を
高めて暗電流を低減することができ、検出素子への印加
電圧(バイアス電圧)を高くすることができるので高い
キャリア収集効率、高速動作が可能となる。
Conventionally, electrodes of a semiconductor radiation detector using CdTe include Pt formed by electroless plating,
Metal electrodes mainly containing Au or the like have been mainly used. (BTAMckee et al .; Nucl. Instr. And Method,
A272, p.825 (1988)) Further, it has been proposed to use In as an anode electrode in order to reduce dark current. (JP-A-3-248578, MRSquilantte et a
l.; Nucl. Instr. and Method, A283, p.323 (1989)) This makes it possible to increase the electric barrier to holes at the anode electrode and reduce the dark current, and to reduce the voltage applied to the detection element. (Bias voltage) can be increased, so that high carrier collection efficiency and high-speed operation can be achieved.

【0004】このような、アノード電極での正孔に対す
る電気的障壁を高めることのできるIn電極は、CdT
eなどの化合物半導体表面を研磨し、研磨により生じた
加工変質層をエッチングにより除去した表面に真空蒸着
法により形成される。その後、In電極を熱処理するこ
とにより、低い印加電圧においても高いエネルギー分解
能が得られることが知られている。これは、熱処理する
ことによりInが化合物半導体中に拡散し、界面の酸化
膜の影響を受け難くなるためであると考えられる。
[0004] Such an In electrode capable of increasing the electrical barrier to holes at the anode electrode is composed of CdT.
The surface of a compound semiconductor such as e is polished, and a work-affected layer generated by the polishing is removed by etching to form a surface by a vacuum evaporation method. Thereafter, it is known that high energy resolution can be obtained even at a low applied voltage by heat-treating the In electrode. This is presumably because In is diffused into the compound semiconductor by the heat treatment and is less affected by the oxide film at the interface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
作製方法によるとアノード電極形成後の熱処理により暗
電流を低くすることができるが、その暗電流値にはばら
つきが大きい。特に印加電圧を高くした場合には、検出
素子の特性が不安定であった。本発明の目的は、電極を
形成する前に熱処理して酸化物層を均一化し、アノード
電極での正孔に対する電気的障壁を高めることによる低
い暗電流を安定して得られる半導体放射線検出器の製造
方法を提供するものである。
However, according to the above-described manufacturing method, the dark current can be reduced by the heat treatment after the formation of the anode electrode, but the dark current value varies widely. In particular, when the applied voltage was increased, the characteristics of the detection element were unstable. An object of the present invention is to provide an electrode
Heat treated before forming homogenized oxide layer, production of semiconductor radiation detectors obtained a low dark current by increasing an electrical barrier for holes at the anode electrode stable
It provides a method .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、II-VI族化合物半導体の表面に電極を設
ける半導体放射線検出器の製造方法において、前記電極
を形成する前に前記II-VI族化合物半導体の表面をエッ
チングにより浄化しその後、上記表面に100〜25
0℃で5〜60分の熱処理を施して上記エッチングによ
り生じた表面酸化物を均一化し、該表面にその他の処理
を加えることなく電極を形成するものである。 また、上
記電極の形成工程において、まずアノード電極を形成
し、該アノード電極に150℃〜250℃で1分〜20
分の熱処理を施した後、カソード電極を熱処理を伴わず
に形成するようにしてもよい。 また、前記II-VI族化合
物半導体がCdTeを主成分とすること(例えばCdT
e、CdZnTeなど)ようにしてもよい。さらにま
た、前記電極の形成が、前記表面を酸化しない方法によ
り行われるようにしてもよい。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
Further, the present invention provides a method for manufacturing a semiconductor radiation detector in which an electrode is provided on a surface of a II-VI compound semiconductor, wherein the surface of the II-VI compound semiconductor is purified by etching before forming the electrode, and thereafter, , 100 to 25 on the surface
Heat treatment at 0 ° C. for 5 to 60 minutes
The generated surface oxide is homogenized, and the surface is treated in another way.
The electrode is formed without adding any. Also on
In the electrode forming process, first, the anode electrode is formed
Then, the anode electrode is heated at 150 ° C. to 250 ° C. for 1 minute to 20 minutes.
After the heat treatment for minutes, the cathode electrode is
May be formed. Further, the II-VI group compound
That the material semiconductor contains CdTe as a main component (for example, CdT
e, CdZnTe, etc.). Even better
Further, the formation of the electrode is performed by a method that does not oxidize the surface.
May be performed.

【0007】[0007]

【作用及び効果】本発明者は、アノード電極形成後の熱
処理による暗電流値のばらつきを検討した結果、化合物
半導体と電極との界面の酸化物層の厚さ、組成などが均
一でないため、アノード電極を構成する元素を化合物半
導体中へ拡散するために必要な熱処理温度も同一となら
ないためであると考えた。つまり、化合物半導体表面の
エッチングにより形成される酸化物層にばらつきがあ
り、電極を形成した後に熱処理をしても、この酸化物層
のばらつきにより、暗電流などの検出特性が均一になら
ない。特に、電極間への印加電圧が高い場合にこのよう
な暗電流のばらつきが顕著となる。
The present inventor has studied the variation of the dark current value due to the heat treatment after the formation of the anode electrode. As a result, the thickness and composition of the oxide layer at the interface between the compound semiconductor and the electrode are not uniform. This is considered to be because the heat treatment temperature required for diffusing the elements constituting the electrode into the compound semiconductor is not the same. That is, there is variation in the oxide layer formed by etching the surface of the compound semiconductor, and even when heat treatment is performed after the electrodes are formed, detection characteristics such as dark current are not uniform due to the variation in the oxide layer. In particular, when the voltage applied between the electrodes is high, such a dark current variation becomes remarkable.

【0008】そこで、電極を形成する前に熱処理するこ
とで、この酸化物層を均一にし、暗電流などの検出特性
のばらつきを低くできることを見出した。熱処理の作用
は明確ではないが、熱処理により、酸化物層のうち不安
定な酸化物成分が除去されることにより均一性が向上し
ていると考えられる。したがって、本発明によれば、暗
電流などの検出特性が均一でばらつきのない半導体放射
線検出器の作製が容易となり、高い歩留まりでの製造が
可能となる。
Therefore, it has been found that by performing a heat treatment before forming the electrode, the oxide layer can be made uniform and the variation in detection characteristics such as dark current can be reduced. Although the effect of the heat treatment is not clear, it is considered that the heat treatment removes an unstable oxide component in the oxide layer, thereby improving the uniformity. Therefore, according to the present invention, it is easy to manufacture a semiconductor radiation detector with uniform detection characteristics such as dark current and the like, and it is possible to manufacture at a high yield.

【0009】[0009]

【実施例】本発明の一実施例であるCdTe放射線検出
器の製造工程を図1を用いて以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A manufacturing process of a CdTe radiation detector according to one embodiment of the present invention will be described below with reference to FIG.

【0010】図1(a)に示すよう、塩素ド−プの高抵
抗CdTe半導体単結晶からなる基板1(15mm角)を
アルミナ砥粒などを用いて両面研磨して、厚さ2mmと
する。研磨による加工変質層をブロム−メタノール溶液
などのエッチング液を用いてエッチング除去する。エッ
チングする厚さは、通常の加工変質層の厚さである5〜
50μmであり、表面に凹凸ができず、できるだけ均一
な表面酸化層のできるエッチング液を選ぶとよい。
As shown in FIG. 1A, a substrate 1 (15 mm square) made of a chlorine-doped high-resistance CdTe semiconductor single crystal is polished on both sides using alumina abrasive grains to a thickness of 2 mm. The affected layer by polishing is removed by etching using an etching solution such as a bromo-methanol solution. The thickness to be etched is 5 to 5
It is preferable to select an etchant that has a thickness of 50 μm, has no unevenness on the surface, and can form a surface oxide layer as uniform as possible.

【0011】基板1を真空中200℃で20分間の熱処
理を抵抗加熱炉により行う。これにより、エッチングに
より生じた表面酸化層が均一となる。この熱処理は10
0℃〜250℃で5分〜60分行ってもよい。この範囲
以下では均一化の効果がなく、この範囲以上では基板化
合物成分の分離、分解を生じるために好ましくない。ま
た、熱処理の雰囲気は、大気中、N2などの不活性雰囲
気でもよく、赤外線ランプなどにより基板1の一方の面
のみを熱処理することもできる。
The substrate 1 is heat-treated in a vacuum at 200 ° C. for 20 minutes in a resistance heating furnace. Thereby, the surface oxide layer generated by the etching becomes uniform. This heat treatment is 10
The reaction may be performed at 0 ° C. to 250 ° C. for 5 minutes to 60 minutes. Below this range, there is no homogenizing effect, and above this range, the separation and decomposition of the substrate compound components are undesirable. The atmosphere for the heat treatment may be air or an inert atmosphere such as N 2, and only one surface of the substrate 1 may be heat-treated by an infrared lamp or the like.

【0012】図1(b)に示すよう、基板1の一方の面
に真空蒸着法により厚さ150nmのインジウム(I
n)金属層をアノード電極2として形成する。アノード
電極2を構成する金属としては、ガリウム(Ga)、ア
ルミニウム(Al)などの正孔に対する電気的障壁の高
い金属元素を用いることもできる。その形成方法として
は真空蒸着法などの基板1との界面に酸化物を生じにく
い形成方法を用いることが望まく、めっき法などでは界
面に新たに酸化物などが形成されるため望ましくない。
また、アノード電極2形成後にさらに熱処理(150℃
〜250℃、1分〜20分)してもよい。
As shown in FIG. 1B, indium (I) having a thickness of 150 nm is formed on one surface of the substrate 1 by a vacuum evaporation method.
n) A metal layer is formed as the anode electrode 2. As a metal constituting the anode electrode 2, a metal element having a high electric barrier to holes, such as gallium (Ga) or aluminum (Al), can be used. As a forming method, it is preferable to use a forming method such as a vacuum evaporation method that hardly generates an oxide at the interface with the substrate 1, and a plating method or the like is not preferable because an oxide or the like is newly formed at the interface.
After the formation of the anode electrode 2, a heat treatment (150 ° C.
250250 ° C., 1 minute to 20 minutes).

【0013】そして、図1(c)に示すよう、アノード
電極2に対向する基板1の他の主面を塩化第2白金酸
(ヘキサクロロ白金(IV)酸、2g/l)水溶液に浸漬す
ることにより無電解めっき法により厚さ100nmの白金
(Pt)からなるカソード電極3を形成する。カソード
電極3としては、金(Au)などを用いることもでき、
形成方法としてはリーク電流を低くできるので置換めっ
き法などの無電解めっき法を用いることが望ましい。な
お、カソード電極3を熱処理すると電子に対する電気的
障壁が低くなることがあるため、アノード電極2を先に
形成している。
Then, as shown in FIG. 1C, the other main surface of the substrate 1 facing the anode electrode 2 is immersed in an aqueous solution of chloroplatinic acid (hexachloroplatinic (IV) acid, 2 g / l). The cathode electrode 3 made of platinum (Pt) having a thickness of 100 nm is formed by an electroless plating method. As the cathode electrode 3, gold (Au) or the like can be used.
As a forming method, it is desirable to use an electroless plating method such as a displacement plating method since a leak current can be reduced. Note that when the cathode electrode 3 is heat-treated, the electrical barrier against electrons may be reduced, so the anode electrode 2 is formed first.

【0014】その後、図1(d)に示すよう、アノード
電極2およびカソード電極3を含む基板1を2mm角に
ダイシングソーで切断することで放射線検出素子4を完
成する。この放射線検出素子4を図2に示す放射線測定
回路により評価した。この評価回路は、バイアス電源5
により1000Vまでのバイアス電圧を放射線検出素子
4に印加し、入射したX線の線量の比例して流れる電流
を電流計6で測定するものである。
Thereafter, as shown in FIG. 1D, the substrate 1 including the anode electrode 2 and the cathode electrode 3 is cut into a 2 mm square by a dicing saw to complete the radiation detecting element 4. This radiation detecting element 4 was evaluated by the radiation measuring circuit shown in FIG. This evaluation circuit includes a bias power supply 5
, A bias voltage up to 1000 V is applied to the radiation detecting element 4, and a current flowing in proportion to the incident X-ray dose is measured by the ammeter 6.

【0015】放射線検出素子4にX線を照射しない場合
の電流を暗電流として測定した。その結果を実施例とし
て○を用いて図3に示す。また、基板1のエッチング後
アノード電極形成前の熱処理を行わず、それ以外は実施
例と同様に作製した放射線検出素子の測定結果を比較例
として●を用いて併せて示す。この図から明らかなよう
に比較例よりも本実施の方が暗電流が少なく、印加電圧
が100V以上(半導体内の電界が50V/mm以上)
では特に暗電流が低下している。また、実施例、比較例
ともにX線を入射した際には、その線量に比例して電流
が増加した。さらに、実施例と同様に繰返し放射線検出
素子を作製し、評価したが、ほぼ同一の検出特性を安定
に得ることができた。以上のように、本実施例によれ
ば、暗電流を低くすることができ、放射線を高いS/N
比で測定できるCdTe放射線検出器を再現性よく作製
できることが分かる。
The current when the radiation detecting element 4 was not irradiated with X-rays was measured as a dark current. The results are shown in FIG. Also, the results of measurement of the radiation detecting element manufactured in the same manner as in the example except that the heat treatment before the formation of the anode electrode after the etching of the substrate 1 is not performed are also shown by using ● as a comparative example. As is clear from this figure, the dark current is smaller in this embodiment than in the comparative example, and the applied voltage is 100 V or more (the electric field in the semiconductor is 50 V / mm or more).
In particular, the dark current has decreased. In addition, when X-rays were incident on both the examples and comparative examples, the current increased in proportion to the dose. Further, a radiation detection element was repeatedly manufactured and evaluated in the same manner as in the example, and almost the same detection characteristics were stably obtained. As described above, according to this embodiment, the dark current can be reduced and the radiation can be increased to a high S / N ratio.
It can be seen that a CdTe radiation detector that can be measured by the ratio can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例によるCdTe放射線検出器の作製工
程を説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a manufacturing process of a CdTe radiation detector according to the present embodiment.

【図2】CdTe放射線検出器を用いた放射線測定回路
である。
FIG. 2 is a radiation measurement circuit using a CdTe radiation detector.

【図3】実施例および比較例による暗電流を示す特性図
である。
FIG. 3 is a characteristic diagram showing dark current according to an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 基板(半導体) 2 アノード電極 3 カソード電極 4 放射線検出素子 5 バイアス電源 6 電流計 DESCRIPTION OF SYMBOLS 1 Substrate (semiconductor) 2 Anode electrode 3 Cathode electrode 4 Radiation detection element 5 Bias power supply 6 Ammeter

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 II-VI族化合物半導体の表面に電極を設
ける半導体放射線検出器の製造方法において、 前記電極を形成する前に前記II-VI族化合物半導体の表
面をエッチングにより浄化し、 その後、上記表面に100℃〜250℃で5分〜60分
の熱処理を施して上記エッチングにより生じた表面酸化
物を均一化し、該表面にその他の処理を加えることなく
電極を形成する ことを特徴とする半導体放射線検出器の
製造方法。
1. A method of manufacturing a semiconductor radiation detector in which an electrode is provided on a surface of a group II-VI compound semiconductor, wherein the surface of the group II-VI compound semiconductor is purified by etching before forming the electrode , and thereafter, 5 minutes to 60 minutes at 100 ° C to 250 ° C on the surface
Oxidation caused by the above-mentioned etching after heat treatment
Homogenize the material and without any other treatment on the surface
A method for manufacturing a semiconductor radiation detector, comprising forming an electrode .
【請求項2】(2) 上記電極の形成工程において、まずアノーIn the electrode forming process, first,
ド電極を形成し、該アノード電極に150℃〜250℃A cathode electrode is formed on the anode electrode at 150 ° C. to 250 ° C.
で1分〜20分の熱処理を施した後、カソード電極を熱After a heat treatment for 1 to 20 minutes at
処理を伴わずに形成することを特徴とする請求項1記載2. The method according to claim 1, wherein the step is performed without any processing.
の半導体放射線検出器の製造方法。Of manufacturing a semiconductor radiation detector.
【請求項3】 前記II-VI族化合物半導体がCdTeを
主成分とすることを特徴とする請求項1または請求項2
記載の半導体放射線検出器の製造方法。
3. A process according to claim 1 or claim 2 wherein the Group II-VI compound semiconductor is characterized in that a main component CdTe
The method of manufacturing a semiconductor radiation detector according to.
【請求項4】 前記電極の形成が、前記表面を酸化しな
い方法により行われることを特徴とする請求項1〜請求
項3に記載の半導体放射線検出器の製造方法。
Formation of claim 4 wherein said electrodes, claims 1, characterized in that it is performed by a method which does not oxidize the surface
Item 4. A method for manufacturing a semiconductor radiation detector according to Item 3 .
JP6144122A 1994-06-03 1994-06-03 Manufacturing method of semiconductor radiation detector Expired - Lifetime JP2981712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6144122A JP2981712B2 (en) 1994-06-03 1994-06-03 Manufacturing method of semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6144122A JP2981712B2 (en) 1994-06-03 1994-06-03 Manufacturing method of semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JPH07335927A JPH07335927A (en) 1995-12-22
JP2981712B2 true JP2981712B2 (en) 1999-11-22

Family

ID=15354713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6144122A Expired - Lifetime JP2981712B2 (en) 1994-06-03 1994-06-03 Manufacturing method of semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JP2981712B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008136188A1 (en) * 2007-04-26 2010-07-29 パナソニック株式会社 X-ray imaging device and X-ray imaging apparatus
WO2013076756A1 (en) * 2011-11-22 2013-05-30 パイオニア株式会社 Photoconductive antenna element, antenna element material, method for manufacturing antenna element material, and method for manufacturing photoconductive antenna element
JP6163936B2 (en) * 2013-07-22 2017-07-19 株式会社島津製作所 Manufacturing method of two-dimensional radiation detector
JP6270498B2 (en) * 2014-01-21 2018-01-31 Jx金属株式会社 Radiation detection element and method for manufacturing radiation detection element

Also Published As

Publication number Publication date
JPH07335927A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
Oliveira et al. Purification and preparation of TlBr crystals for room temperature radiation detector applications
Ponpon et al. Preliminary characterization of PbI2 polycrystalline layers deposited from solution for nuclear detector applications
US5933706A (en) Method for surface treatment of a cadmium zinc telluride crystal
Maslyanchuk et al. Charge transport features of CdTe-based X-and γ-ray detectors with Ti and TiOx Schottky contacts
US7001849B2 (en) Surface treatment and protection method for cadmium zinc telluride crystals
Thomas et al. Compensation of residual boron impurities in extrinsic indium‐doped silicon by neutron transmutation of silicon
Chaudhuri et al. High-resolution radiation detection using Ni/SiO2/n-4H-SiC vertical metal-oxide-semiconductor capacitor
CN113035999A (en) Al-doped gallium oxide X-ray detector and preparation method thereof
JP2981712B2 (en) Manufacturing method of semiconductor radiation detector
JPH10223713A (en) Heat treatment evaluating wafer and heat treatment evaluating method using the same
US6168967B1 (en) Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms
US20230314636A1 (en) Radiation detectors having perovskite films
JPH085749A (en) Semiconductor radiation detector and manufacture thereof
Han New developments in photoconductive detectors
US6975012B2 (en) Semiconductor radiation detector having voltage application means comprises InxCdyTez on CdTe semiconductor substrate
Härkönen et al. Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detection
Niraula et al. Surface processing of CdTe detectors using hydrogen bromide-based etching solution
Dylewski et al. The dielectric breakdown properties and I–V characteristics of thin SiO2 films formed by high dose oxygen ion implantation into silicon
James et al. Low‐temperature photoluminescence studies of mercuric‐iodide photodetectors
Drabo et al. Analysis of Te and TeO2 on CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions
Bao et al. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements
Da̧browski et al. Advantages and limitations of n-type low resistivity cadmium telluride nuclear radiation detectors
Foulon et al. A new technique for the fabrication of thin silicon radiation detectors
JPH05335613A (en) Ultraviolet-ray receiving device and its manufacture
Eichinger Characterization and analysis of detector materials and processes

Legal Events

Date Code Title Description
S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term