JPH0734480B2 - CdTe radiation detection element - Google Patents

CdTe radiation detection element

Info

Publication number
JPH0734480B2
JPH0734480B2 JP61158015A JP15801586A JPH0734480B2 JP H0734480 B2 JPH0734480 B2 JP H0734480B2 JP 61158015 A JP61158015 A JP 61158015A JP 15801586 A JP15801586 A JP 15801586A JP H0734480 B2 JPH0734480 B2 JP H0734480B2
Authority
JP
Japan
Prior art keywords
plane
cdte
radiation detection
single crystal
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61158015A
Other languages
Japanese (ja)
Other versions
JPS6314479A (en
Inventor
義倫 岩瀬
新 小野塚
太郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP61158015A priority Critical patent/JPH0734480B2/en
Publication of JPS6314479A publication Critical patent/JPS6314479A/en
Publication of JPH0734480B2 publication Critical patent/JPH0734480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、CdTe放射線検出素子に関するものであり、特
には特定結晶面方位に電極形成を行うことにより放射線
のエネルギー分解能を向上したCdTe放射線検出素子に関
する。本発明の放射線検出素子は、高分解能を必要とす
る計測分野、例えばX線CT用検出器、γ線スペクトルメ
ータ、X線計測器用検出器のような各種放射線検出デバ
イスに好適に応用しうる。
Description: TECHNICAL FIELD The present invention relates to a CdTe radiation detecting element, and more particularly to a CdTe radiation detecting element having an improved energy resolution of radiation by forming electrodes in a specific crystal plane orientation. . INDUSTRIAL APPLICABILITY The radiation detection element of the present invention can be suitably applied to various radiation detection devices such as a measurement field requiring high resolution, such as a detector for X-ray CT, a γ-ray spectrum meter, and a detector for X-ray measuring instrument.

発明の背景 放射線検出器としては、古くは、気体中の電離作用を利
用する電離箱、比例計数管及びGM管の3種が用いられ、
更には放射線の入射により発光する物質を用いるシンチ
レータや熱ルミネサンス現象を利用する熱ルミネサンス
線量計が用いられたが、価格、感度等の点で必ずしも満
足のいくものでなかつた。このため、1960年代からSiや
Ge等の半導体放射線検出器が注目され、今日ではSi及び
Ge放射線検出器が巾広い分野において使用されている。
しかし、これらSi及びGe放射線検出器は、それまでのも
のに較べて分解能が良い反面、Si及びGeはいずれもバン
ドギヤツプが小さいので室温では熱励起によるノイズが
大きく、低温に冷却しなければ使用できないという重大
な欠点を有している。
Background of the Invention As a radiation detector, three types of an ionization chamber utilizing an ionization action in a gas, a proportional counter and a GM tube were used in the past.
Further, a scintillator using a substance that emits light upon incidence of radiation and a thermoluminescence dosimeter using a thermoluminescence phenomenon were used, but they were not always satisfactory in terms of price and sensitivity. Therefore, since the 1960s Si and
Semiconductor radiation detectors such as Ge have attracted attention, and today Si and
Ge radiation detectors are used in a wide range of fields.
However, while these Si and Ge radiation detectors have better resolution than previous ones, both Si and Ge have small bandgap, so noise due to thermal excitation is large at room temperature and cannot be used unless cooled to a low temperature. It has a serious drawback.

そうした中で、II−VI族化合物半導体であるCdTeに注目
が払われ、実用化の段階に入つている。CdTeの特徴の1
つはバンドギヤツプが1.53eVと大きいことであり、この
ため常温での使用が可能である。更に、CdTeの平均原子
番号は50と大きく、このため放射線の吸収係数が大き
く、薄い層で高い感度を得ることが出来る。このように
CdTe単結晶を用いた放射線検出素子は放射線の検出効率
が高く、しかも検出器の小型化が可能であるという利点
を有するため大きな注目をあびているのである。
Under such circumstances, attention has been paid to CdTe, which is a II-VI group compound semiconductor, and it has entered the stage of practical application. One of the characteristics of CdTe
One is that the bandgear is as large as 1.53 eV, which allows it to be used at room temperature. Furthermore, the average atomic number of CdTe is as large as 50, which results in a large absorption coefficient of radiation and high sensitivity in a thin layer. in this way
Radiation detection elements using CdTe single crystals are attracting great attention because they have the advantages of high radiation detection efficiency and the possibility of downsizing the detector.

従来技術と問題点 従来からのCdTe放射線検出素子は、ブリツジマン法等に
より調製された単結晶インゴツトを例えば単結晶成長方
向や大面積の取出し可能面のように主に切出しに都合の
良いよう任意に切断し、その表面を研摩またはエツチン
グ処理した後電極形成を行うことにより作製されてい
る。
Conventional technology and problems Conventional CdTe radiation detection elements are used to arbitrarily cut out a single crystal ingot prepared by the Britzmann method or the like, mainly for convenience of cutting, such as a single crystal growth direction or a removable surface of a large area. It is manufactured by cutting, grinding or etching the surface, and then forming electrodes.

こうしたCdTe放射線検出素子に対して、その性能面で改
善すべき課題はまだまだ多いが、その重要な一つは放射
線検出時のエネルギー分解能の向上である。
There are still many issues that need to be improved in terms of performance for such CdTe radiation detection elements, but one of the important issues is the improvement of energy resolution during radiation detection.

発明の概要 こうした状況において、本発明者等は、CdTe放射線検出
素子のエネルギー分解能の向上という問題に取組んだ。
放射線検出におけるエネルギー分解能は、キヤリアの平
均自由行程λに大きく依存する。λは次の通り表わされ
る: λ=μτE ここでμ=結晶中のキヤリアの移動度 τ=キヤリアの平均寿命 E=結晶にかかる電界強度 μ及びτは結晶の種類で決る定数なので、λ値を大きく
するには電界強度Eを大きくすればよい。ところが電界
強度Eを大きくすると電圧負荷時のリーク電流が大きく
なるため、従来電界強度Eを上げることが出来なかつ
た。
SUMMARY OF THE INVENTION In such a situation, the present inventors have addressed the problem of improving the energy resolution of a CdTe radiation detection element.
The energy resolution in radiation detection largely depends on the mean free path λ of the carrier. λ is expressed as follows: λ = μτE where μ = mobility of the carrier in the crystal τ = average life of the carrier E = electric field strength applied to the crystal μ and τ are constants determined by the type of crystal, so the λ value is To increase it, the electric field strength E may be increased. However, if the electric field strength E is increased, the leak current at the time of voltage load increases, so that the electric field strength E cannot be increased conventionally.

従つて、電圧負荷時のリーク電流の低減化を図ることが
できれば、電圧負荷を大きくすることができ、その結果
として放射線検出時のエネルギー分解能の向上を図るこ
とが出来るはずである。
Therefore, if the leak current at the time of voltage load can be reduced, the voltage load can be increased, and as a result, the energy resolution at the time of radiation detection can be improved.

こうした考察の下で、本発明者等は、電圧負荷時のリー
ク電流の低減方法について研究を重ねた。研究を重ねる
うちに、CdTe結晶の面方位とリーク電流との間には相関
があり、電極形成面を{111}面とすることによつてリ
ーク電流の低減化が図りうるとの新たな知見を得た。現
在まで、特に結晶における面方位に注目して電極形成を
行い、放射線特性との相関を調べた研究はほとんどな
く、この知見は斯界においてきわめて意義あるものであ
る。
Under such consideration, the inventors of the present invention have conducted extensive research on a method of reducing the leak current when a voltage is applied. Through repeated research, there is a correlation between the plane orientation of the CdTe crystal and the leakage current, and a new finding that the leakage current can be reduced by using the {111} plane as the electrode formation surface Got Until now, there have been almost no studies in which electrodes are formed paying particular attention to the plane orientation in the crystal and the correlation with the radiation characteristics is examined, and this finding is extremely significant in this field.

上記知見に基いて、本発明は、CdTe単結晶体の対向する
面に電極を形成したCdTe放射線検出素子において、該Cd
Te単結晶体の{111}面に電極形成を行うことを特徴と
するCdTe放射線検出素子を提供する。
Based on the above findings, the present invention provides a CdTe radiation detection element in which electrodes are formed on opposite surfaces of a CdTe single crystal body.
Provided is a CdTe radiation detection element characterized by forming an electrode on the {111} plane of a Te single crystal.

発明の具体的説明 第1図は本発明に従うCdTe放射線検出素子の動作原理図
である。半導体物質に放射線が照射されると、光電効果
などの作用で価電子帯の束縛電子がエネルギーギヤツプ
を超えて伝導帯に放出され、電子−正孔対を形成する。
CdTeの場合、電子−正孔対の生成エネルギーが4.65eVと
ガスの場合(〜30eV)と比較して1桁小さい。生成キヤ
リアのうち、一部は再結合効果で中和して消滅するが、
電圧負荷が存在する場合、多くは加速され電極に達して
電離電流となる。
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 is a diagram showing the operating principle of a CdTe radiation detecting element according to the present invention. When a semiconductor material is irradiated with radiation, bound electrons in the valence band pass through the energy gap and are released into the conduction band by the action of photoelectric effect or the like to form an electron-hole pair.
In the case of CdTe, the electron-hole pair production energy is 4.65 eV, which is an order of magnitude smaller than that in the case of gas (up to 30 eV). Some of the generated carriers neutralize and disappear by the recombination effect,
In the presence of a voltage load, many are accelerated and reach the electrodes for ionizing current.

CdTeの{111}面には、A面とB面とがあり、A面にはC
dの原子のみが存在し、逆にB面にはTe原子のみが存在
する。なお、CdTe単結晶を{111}面に沿つて切断した
場合には結晶学的に切断面はA面及びB面とが現われ、
A面かB面かの特定は、例えばフツ化水素系エツチヤン
トでエツチングした際にA面にのみビツトができること
から行なう。即ち、CdTeの{111}面はA−B−A−B
−A−BとA面及びB面が交互に配列する。従つて、
{111}面は他の面に比べ極性の強い面であると考えら
れる。
The {111} plane of CdTe has an A plane and a B plane, and the A plane has a C plane.
Only d atom exists, and conversely, only Te atom exists on B plane. When a CdTe single crystal is cut along the {111} plane, crystallographically the cut surfaces appear as the A plane and the B plane,
The identification of the A surface or the B surface is made because, for example, when etching is performed with a hydrogen fluoride based etchant, only the A surface can be bitten. That is, the {111} plane of CdTe is ABAB
-A-B and planes A and B are arranged alternately. Therefore,
The {111} plane is considered to have a stronger polarity than the other planes.

CdTe単結晶体1の{111}A面2へ{111}B面3に対し
て正の電位をかけ、A面2及びB面3に電極4を形成す
ることにより、電子−正孔対が空乏層5にできると、こ
れはバイアス電圧により加速され、電離電流となり、コ
ンデンサCを経て直流分を除いた後増巾されて出力信号
として取出される。電荷収集特性を決める大きな要因は
キヤリアの平均自由行程λが空乏層の厚さよりも大きい
ことであり、本発明においては、CdTeの物性とバイアス
電圧を大きくとれることがこの要因をかなえる。
By applying a positive potential to the {111} A plane 2 of the CdTe single crystal body 1 with respect to the {111} B plane 3 and forming an electrode 4 on the A plane 2 and the B plane 3, an electron-hole pair is formed. When the depletion layer 5 is formed, this is accelerated by the bias voltage to become an ionization current, which is amplified after removing the direct current component through the capacitor C and then taken out as an output signal. A major factor that determines the charge collection characteristic is that the mean free path λ of the carrier is larger than the thickness of the depletion layer. In the present invention, the fact that the physical properties of CdTe and the bias voltage can be made large can satisfy this factor.

{111}面に電極を形成した場合と{111}面以外の代表
としてここでは{110}面に電極を形成した場合のI−
V特性を第2図に示す。この結果から{111}面に電極
を形成した場合にはリーク電流が低減することがわか
る。このため、{111}面は{110}面に比べ高電圧の負
荷が可能となる。前述したように、放射線検出における
エネルギー分解能はキヤリアの平均自由行程λ(λ=μ
τE)に大きく依存し、λ値の増加に対応してエネルギ
ー分解能は向上する。リーク電流の低減化に伴ない、電
界強度Eを大きくすることが可能となる結果としてλ値
を大きくすることができ、エネルギー分解能の向上が図
れるわけである。
In the case where an electrode is formed on the {111} plane and as a representative other than the {111} plane, here, I-
The V characteristic is shown in FIG. From this result, it is found that the leakage current is reduced when the electrode is formed on the {111} plane. Therefore, the {111} plane can be loaded with a higher voltage than the {110} plane. As described above, the energy resolution in radiation detection is the mean free path λ (λ = μ) of the carrier.
It greatly depends on τE), and the energy resolution improves as the λ value increases. As the leak current is reduced, the electric field strength E can be increased, and as a result, the λ value can be increased and the energy resolution can be improved.

前記のように、B面(Te面)に対してA面(Cd面)が高
電位となるように電圧をかけた場合にリーク電流を低減
することが出来るが、この極性が反対の場合にはリーク
電流は低減出来ない。バイアス負荷時のリーク電流は、
用いた結晶の抵抗率が同じである場合には、電極金属と
半導体の接合状態によつて左右される。A面を正電位に
した場合に、リーク電流が低減されるのは、B面と金属
との間に結合状態の違いによる障壁が形成されたことに
よると考えられる。
As described above, the leakage current can be reduced when a voltage is applied so that the A surface (Cd surface) has a higher potential than the B surface (Te surface), but when the polarities are opposite, Can not reduce the leakage current. Leakage current under bias load is
When the resistivity of the crystals used is the same, it depends on the bonding state of the electrode metal and the semiconductor. It is considered that the reason why the leakage current is reduced when the A surface is set to a positive potential is that a barrier is formed between the B surface and the metal due to the difference in the bonding state.

CdTe単結晶は、垂直ブリツジマン法等の方法で成長させ
ることが出来る。例えば、{111}方向に成長させた単
結晶を成長方向に薄く切断することにより{111}面を
対向面とするウエーハが切出される。ウエーハは、所定
の素子寸法に加工した後、ラツピング及びポリシングの
工程を経由して研磨される。ラツピングは、例えば粒径
が5〜12μmのアルミナ粒子を用いることにより行わ
れ、そしてポリシングは、粒径が1μm以下のアルミナ
粒子を用いることにより行われる。しかし、研磨法はこ
れに限定されるものでなく{111}A面(Cd面)と{11
1}B面(Te面)を研磨仕上げすることが出来るものな
ら任意の方法の採用が可能である。
The CdTe single crystal can be grown by a method such as the vertical Britzmann method. For example, by cutting a single crystal grown in the {111} direction into thin pieces in the growth direction, a wafer having the {111} plane as an opposing surface is cut out. After the wafer is processed into a predetermined element size, it is polished through a lapping and polishing process. Lapping is performed, for example, by using alumina particles having a particle size of 5 to 12 μm, and polishing is performed by using alumina particles having a particle size of 1 μm or less. However, the polishing method is not limited to this, and the {111} A plane (Cd plane) and the {11} A plane (Cd plane)
1} Any method can be adopted as long as it can polish the B surface (Te surface).

臭素‐メタノール混合液のようなエツチヤントを使用し
てのエツチングを行つてもよいが、エツチングは{11
1}A面及び{111}B面の原子配列を崩しやすく、注意
を要する。通常はエツチングを行う必要はなく、上記理
由のためかえつて有害である。理由は定かではないが、
エツチングを行うとCdのみが配列した{111}A面がCd
とTeとが混合した面となりやすくまたTeのみが配列した
{111}B面も同じくTeとCdとが混合した面となるもの
と思われ、{111}面方位を利用するという本発明の概
念を崩す結果を招きやすい。
Etching may be carried out using an etchant such as a bromine-methanol mixture, but
Caution is required because the atomic arrangements on the 1} A and {111} B planes are easily destroyed. Etching is usually not necessary and is rather harmful for the above reasons. I'm not sure why,
When etching is performed, the {111} A plane where only Cd is arranged is Cd
And Te are likely to be a mixed surface, and the {111} B surface in which only Te is arranged is also likely to be a mixed surface of Te and Cd, and the concept of the present invention that the {111} plane orientation is used. It is easy to cause the result of breaking.

CdTe単結晶は、Cd:Te比、育成法、熱処理、ドープ剤添
加等によりp型ともn型ともなり、また高抵抗のものも
低抵抗のものも得られ、本発明においてはいずれをも対
象とする。
CdTe single crystals can be either p-type or n-type depending on the Cd: Te ratio, growth method, heat treatment, addition of a dopant, etc., and both high resistance and low resistance can be obtained. And

{111}面方位は、一般に±10°以内、好ましくは±3
°以内の許容誤差範囲を持つものとする。この範囲内で
は特性的変化は実質上生じない。
{111} plane orientation is generally within ± 10 °, preferably ± 3
The allowable error range is within °. In this range, the characteristic change does not substantially occur.

電極形成は、研磨仕上げしたCdTe単結晶体の{111}面
にAu、Pt、Al、In等の金属を真空蒸着またはメツキによ
つて付着することにより行われる。
The electrodes are formed by depositing a metal such as Au, Pt, Al or In on the {111} surface of the polished CdTe single crystal by vacuum vapor deposition or plating.

発明の効果 本発明によれば、CdTe単結晶の{111}面に電極を形成
することにより、電圧負荷時のリーク電流を低減するこ
とが可能となり、エネルギー分解能を向上させることが
できる。
EFFECTS OF THE INVENTION According to the present invention, by forming an electrode on the {111} plane of a CdTe single crystal, it is possible to reduce the leak current under voltage load and improve the energy resolution.

実施例 垂直ブリツジマン法により{111}方向に育成した2イ
ンチ径のCdTe単結晶を{111}方向に垂直に切断し、{1
11}面が10mm×10mmの大きさを有しそして厚さが1mmのC
dTe単結晶体を作製した。これをラツピング及びポリシ
ングした後、{111}面に金を真空蒸着した。比較の目
的で{111}面のものも同様にして作製した。
Example A 2-inch diameter CdTe single crystal grown in the {111} direction by the vertical Britzmann method was cut perpendicularly to the {111} direction to obtain {1}.
11} surface has a size of 10 mm x 10 mm and has a thickness of 1 mm C
A dTe single crystal was prepared. After lapping and polishing this, gold was vacuum-deposited on the {111} plane. For the purpose of comparison, a {111} plane was also prepared in the same manner.

第3図は、137Cs:662KeVに対する放射線検出スペクトル
を示す。半値巾は{111}面に電極形成を行つた場合80K
eVであり、他方{110}面に電極形成を行つた場合には1
20KeVである。{111}面に電極形成を行うことによりエ
ネルギー分解能が向上していることがわかる。これは、
先に第2図に示したように、{111}面に電極形成をし
た場合、最高負荷電圧が300Vまで可能となるため、λ値
が大きくなることによる。
FIG. 3 shows the radiation detection spectrum for 137 Cs: 662 KeV. Full width at half maximum is 80K when electrodes are formed on the {111} plane
eV, on the other hand, 1 if the electrode is formed on the {110} plane
It is 20 KeV. It can be seen that the energy resolution is improved by forming the electrode on the {111} plane. this is,
As shown in FIG. 2, when the electrode is formed on the {111} plane, the maximum load voltage can be up to 300V, so that the λ value becomes large.

{110}面での最高負荷電圧は50Vである。リーク電流が
10-7Aで雑音が発生し、これ以上増加することは出来な
い。
The maximum load voltage on the {110} plane is 50V. Leakage current
Noise is generated at 10 -7 A and cannot be further increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は放射線検出素子の動作原理を示す説明図であ
り、第2図は電圧負荷時の電圧とリーク電流との関係を
示すグラフであり、そして第3図はエネルギー分解能の
測定結果を示すグラフである。 1:CdTe単結晶体 2:{111}A面 3:{111}B面 4:電極 5:空乏層
FIG. 1 is an explanatory diagram showing the operation principle of the radiation detecting element, FIG. 2 is a graph showing the relationship between the voltage and the leak current under voltage load, and FIG. 3 shows the measurement result of energy resolution. It is a graph. 1: CdTe single crystal body 2: {111} A plane 3: {111} B plane 4: Electrode 5: Depletion layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】CdTe単結晶体の対向する面に電極を形成し
たCdTe放射線検出素子において、該CdTe単結晶体の{11
1}面に電極形成を行うことを特徴とするCdTe放射線検
出素子。
1. A CdTe radiation detecting element in which electrodes are formed on opposite surfaces of a CdTe single crystal, wherein the CdTe single crystal {11
A CdTe radiation detection element characterized in that electrodes are formed on the 1} plane.
【請求項2】{111}A面(Cd面)が{111}B面(Te
面)に対して高電位とされる特許請求の範囲第1項記載
のCdTe放射線検出素子。
2. The {111} A plane (Cd plane) is the {111} B plane (Te
The CdTe radiation detecting element according to claim 1, wherein the CdTe radiation detecting element has a high potential with respect to the surface.
【請求項3】電極形成がAu、Pt、Al、In等の金属の真空
蒸着またはめつきにより行われる特許請求の範囲第1項
或いは第2項記載のCdTe放射線検出素子。
3. The CdTe radiation detecting element according to claim 1 or 2, wherein the electrodes are formed by vacuum vapor deposition or plating of a metal such as Au, Pt, Al, In or the like.
JP61158015A 1986-07-07 1986-07-07 CdTe radiation detection element Expired - Lifetime JPH0734480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158015A JPH0734480B2 (en) 1986-07-07 1986-07-07 CdTe radiation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158015A JPH0734480B2 (en) 1986-07-07 1986-07-07 CdTe radiation detection element

Publications (2)

Publication Number Publication Date
JPS6314479A JPS6314479A (en) 1988-01-21
JPH0734480B2 true JPH0734480B2 (en) 1995-04-12

Family

ID=15662407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158015A Expired - Lifetime JPH0734480B2 (en) 1986-07-07 1986-07-07 CdTe radiation detection element

Country Status (1)

Country Link
JP (1) JPH0734480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9416149D0 (en) * 1994-08-10 1994-09-28 Univ Strathclyde Vesicle formulation
US6011264A (en) * 1994-08-11 2000-01-04 Urigal Technologies, Ltd. Apparatus, system and method for gamma ray and x-ray detection

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592577A (en) * 1978-12-29 1980-07-14 Toshiba Electric Equip Corp Inverter device
JPS57149983A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Radiation detector
JPS57154083A (en) * 1981-03-19 1982-09-22 Yokogawa Hokushin Electric Corp Ct scanner
JPS59132382A (en) * 1983-01-19 1984-07-30 Yokogawa Hokushin Electric Corp Multichannel type radiation detector
US4465545A (en) * 1982-07-30 1984-08-14 The Board Of Trustees Of The Leland Stanford Junior University Method of growing single crystal cadmium telluride
US4490441A (en) * 1982-07-06 1984-12-25 Honeywell Inc. Encapsulated CDTe boules for multiblade wafering
JPS6070774A (en) * 1983-09-27 1985-04-22 Yokogawa Hokushin Electric Corp Detector for radiation
JPS60215600A (en) * 1984-04-09 1985-10-28 Nec Corp Production of hg1-xcdxte crystal
JPS60260877A (en) * 1984-06-07 1985-12-24 Yokogawa Hokushin Electric Corp Radiation detector
JPS61132588A (en) * 1984-11-30 1986-06-20 Fujitsu Ltd Production of compound single crystal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592577A (en) * 1978-12-29 1980-07-14 Toshiba Electric Equip Corp Inverter device
JPS57149983A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Radiation detector
JPS57154083A (en) * 1981-03-19 1982-09-22 Yokogawa Hokushin Electric Corp Ct scanner
US4490441A (en) * 1982-07-06 1984-12-25 Honeywell Inc. Encapsulated CDTe boules for multiblade wafering
US4465545A (en) * 1982-07-30 1984-08-14 The Board Of Trustees Of The Leland Stanford Junior University Method of growing single crystal cadmium telluride
JPS59132382A (en) * 1983-01-19 1984-07-30 Yokogawa Hokushin Electric Corp Multichannel type radiation detector
JPS6070774A (en) * 1983-09-27 1985-04-22 Yokogawa Hokushin Electric Corp Detector for radiation
JPS60215600A (en) * 1984-04-09 1985-10-28 Nec Corp Production of hg1-xcdxte crystal
JPS60260877A (en) * 1984-06-07 1985-12-24 Yokogawa Hokushin Electric Corp Radiation detector
JPS61132588A (en) * 1984-11-30 1986-06-20 Fujitsu Ltd Production of compound single crystal

Also Published As

Publication number Publication date
JPS6314479A (en) 1988-01-21

Similar Documents

Publication Publication Date Title
Matsumoto et al. Performance of a new Schottky CdTe detector for hard X-ray spectroscopy
US7372009B1 (en) Solid-state thermal neutron detector
Liu et al. Electrical properties of x-ray detector based on bismuth tri-iodide single crystal with electrode configuration considering
Kobayashi et al. Performance of GaAs surface-barrier detectors made from high-purity gallium arsenide
Bennett et al. Characterization of polycrystalline TlBr films for radiographic detectors
JP2687122B2 (en) Multilayer CdTe radiation detection element
Seitz et al. Electronic drift mobilities and space-charge-limited currents in lithium-doped zinc oxide
JPH0734480B2 (en) CdTe radiation detection element
Kozlov et al. Diamond nuclear radiation detectors
US6975012B2 (en) Semiconductor radiation detector having voltage application means comprises InxCdyTez on CdTe semiconductor substrate
Beyerle et al. Gamma-ray spectrometry with thick mercuric iodide detectors
Bao et al. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements
Goldie et al. Tunnel junction arrays on InSb: A high resolution cryogenic detector for X-and γ-rays
Rossington et al. Si (Li) detectors with thin dead layers for low energy x-ray detection
Nakatani et al. GaSe nuclear particle detectors
Squillante et al. Other materials: Status and prospects
Squillante et al. New compound semiconductor materials for nuclear detectors
Mann et al. Preparation of large volume planar germanium detectors and results of their use in nuclear physics experiments
JPS6315477A (en) Cdte radiation detecting element
JP2591533B2 (en) Radiation detecting element and method of manufacturing the same
JP2981712B2 (en) Manufacturing method of semiconductor radiation detector
Haller Nuclear radiation detectors
McGinnis Film implementation of a neutron detector (find): proof of concept device
Egarievwe et al. Comparative studies of CdZnTe, CdMnTe, and CdZnTeSe materials for room-temperature nuclear detection applications
Darken et al. High-purity germanium detectors