JPS6314479A - Cdte radiation detecting element - Google Patents
Cdte radiation detecting elementInfo
- Publication number
- JPS6314479A JPS6314479A JP61158015A JP15801586A JPS6314479A JP S6314479 A JPS6314479 A JP S6314479A JP 61158015 A JP61158015 A JP 61158015A JP 15801586 A JP15801586 A JP 15801586A JP S6314479 A JPS6314479 A JP S6314479A
- Authority
- JP
- Japan
- Prior art keywords
- plane
- electrodes
- case
- planes
- cdte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 33
- 239000013078 crystal Substances 0.000 claims abstract description 25
- 229910004613 CdTe Inorganic materials 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 238000007738 vacuum evaporation Methods 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000904 thermoluminescence Methods 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、CdTe放射線検出素子に関するものであり
、特には特定結晶面方位に電極形成を行うことにより放
射線のエネルギー分解能を向上したCdTe放射線検出
素子に関する。本発明の放射線検出素子は、高分解能を
必要とする計測分野、例えばX1jICT用検出器、γ
線スペクトルメータ、X線計測器用検出器のような各種
放射線検出デバイスに好適に応用しうる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a CdTe radiation detection element, and more particularly to a CdTe radiation detection element in which the energy resolution of radiation is improved by forming electrodes in specific crystal plane orientations. The radiation detection element of the present invention is suitable for measurement fields that require high resolution, such as X1j ICT detector, γ
It can be suitably applied to various radiation detection devices such as a line spectrometer and a detector for an X-ray measuring instrument.
発明の背景
放射線検出器としては、古くは、気体中の電離作用を利
用する電離箱、比例計数管及びGM管の3種が用いられ
、更には放射線の入射により発光する物質を用いるシン
チレータや熱ルミネサンス現象を利用する熱ルミネサン
ス重量計が用いられたが、価格、感度等の点で必ずしも
満足のいくものでなかった。このため、1960年代か
ら81やGe等の半導体放射線検出器が注目され、今日
ではsi及びG・放射線検出器が巾広い分野において使
用されている。しかし、これらSt及びGe放射線検出
器は、それまでのものに較べて分解能が良い反面、Sl
及びGoはいずれもバンドギャツブが小さいので室温で
は熱励起によるノイズが大きく、低温に冷却しなければ
使用できないという重大な欠点を有している。Background of the Invention In the past, three types of radiation detectors were used: ionization chambers that utilize the ionization effect in gas, proportional counter tubes, and GM tubes, and scintillators that use substances that emit light when radiation is incident, and thermal detectors. Thermoluminescence gravimeters that utilize the luminescence phenomenon have been used, but they have not always been satisfactory in terms of cost, sensitivity, etc. For this reason, semiconductor radiation detectors such as 81 and Ge have attracted attention since the 1960s, and today Si and G radiation detectors are used in a wide range of fields. However, although these St and Ge radiation detectors have better resolution than previous ones,
Both of these materials have a small bandgap, so they generate large noise due to thermal excitation at room temperature, and have the serious drawback that they cannot be used unless they are cooled to a low temperature.
そうした中で、II−Vl族化合物半導体であるCdT
eに注目が払われ、実用化の段階に入っている。CdT
eの特徴の1つはバンドギャップが155・Vと大きい
ことであり、このため常温での使用が可能である。更に
、CdTeの平均原子番号は50と大きく、このため放
射線の吸収係数が大きく、薄い層で高い感度を得ること
が出来る。このようにCdTe単結晶を用いた放射線検
出素子は放射線の検出効率が高く、シかも検出器の小型
化が可能であるという利点を有するため大きな注目をあ
びているのである。Under these circumstances, CdT, a II-Vl group compound semiconductor,
Attention has been paid to e, and it has entered the stage of practical application. CdT
One of the characteristics of e is that it has a large bandgap of 155·V, which allows it to be used at room temperature. Furthermore, the average atomic number of CdTe is as large as 50, and therefore the radiation absorption coefficient is large, making it possible to obtain high sensitivity with a thin layer. As described above, radiation detection elements using CdTe single crystals are attracting a lot of attention because they have the advantages of high radiation detection efficiency and the possibility of miniaturizing the detector.
従来技術と問題点
従来からのCdTe放射線検出素子は、ブリッジマン法
等により調製された単結晶インゴットを例えば単結晶成
長方向や大面積の取出し可能面のように主に切出しに都
合の良いよう任意に切断し、その表面を研摩またはエツ
チング処理した後電極形成を行うことにより作製されて
いる。Conventional Technology and Problems Conventional CdTe radiation detection elements have been developed by cutting a single crystal ingot prepared by the Bridgman method or the like into arbitrary directions that are convenient for cutting out, such as the single crystal growth direction or a large-area removable surface. It is manufactured by cutting the electrode into pieces, polishing or etching its surface, and then forming electrodes.
こうしたCdTe放射線検出素子に対して、その性能面
で改善すべき課題はまだまだ多いが、その重要な一つは
放射線検出時のエネルギー分解能の向上である◇
発明の概要
こうした状況において、本発明者等は、cdT。There are still many issues that need to be improved in terms of the performance of these CdTe radiation detection elements, but one of the important ones is improving the energy resolution during radiation detection ◇ Summary of the Invention Under these circumstances, the present inventors is cdT.
放射線検出素子のエネルギー分解能の向上という問題に
取組んだ。放射線検出におけるエネルギー分解能は、キ
ャリアの平均自白行程λ、に大きく依存する。λは次の
通り表わされる;
λ=μτE
ここでμ=結晶中のキャリアの移動度
τ=キャリアの平均寿命
E=結晶にかかる電界強度
μ及びτは結晶・の種類で決る定数なので、λ値を大き
くするには電界強度Eを大きくすればよい。We worked on the problem of improving the energy resolution of radiation detection elements. The energy resolution in radiation detection is highly dependent on the average confession path λ of the carrier. λ is expressed as follows; λ = μτE where μ = mobility of carriers in the crystal τ = average lifetime of carriers E = electric field strength applied to the crystal μ and τ are constants determined by the type of crystal, so the λ value In order to increase the electric field strength E, the electric field strength E can be increased.
ところが電界強度Eを大きくすると電圧負荷時のリーク
電流が大きくなるため、従来電界強度Eを上げることが
出来なかった。However, if the electric field strength E is increased, the leakage current increases when the voltage is loaded, so it has not been possible to increase the electric field strength E in the past.
従って、電圧負荷時のリーク電流の低減化を図ることが
できれば、電圧負荷を大きくすることができ、その結果
として放射線検出時のエネルギー分解能の向上を図るこ
とが出来るはずである。Therefore, if it is possible to reduce the leakage current during voltage load, the voltage load can be increased, and as a result, it should be possible to improve the energy resolution during radiation detection.
こうした考察の下で、本発明者等は、電圧負荷時のリー
ク電流の低減方法について研究を重ねた。Based on these considerations, the present inventors have conducted repeated research on methods for reducing leakage current during voltage loads.
研究を重ねるうちに、CdTe結晶の面方位とリーク電
流との間には相関があり、′rL極形成面を(1111
面とすることによってリーク電流の低減化が図りうると
の新たな知見を得た。現在まで、特に結晶における面方
位に注目して1を極形成を行い、放射線特性との相関を
調べた研究はほとんどなく、この知見は斯界においてき
わめて意義あるものである。Through repeated research, it was discovered that there is a correlation between the plane orientation of CdTe crystal and the leakage current, and that the 'rL pole formation plane is (1111
We have obtained new knowledge that leakage current can be reduced by making it a flat surface. To date, there have been few studies in which the polar formation of 1 was performed with particular attention to the plane orientation in the crystal, and the correlation with radiation characteristics was investigated, and this knowledge is extremely significant in this field.
上記知見に基いて、本発明は、CdTe単結晶体の対向
する面に電極を形成したCdTe放射線検出素子におい
て、該CdTs単結晶体の(111)面に電極形成を行
うことを特徴とするCdTe放射線検出素子を提供する
。Based on the above findings, the present invention provides a CdTe radiation detection element in which electrodes are formed on opposing surfaces of a CdTe single crystal, in which electrodes are formed on the (111) plane of the CdTs single crystal. A radiation detection element is provided.
第4図は本発明に従うCdTe放射線検出素子の動作原
理図である。半導体物質に放射線が照射されると、光電
効果などの作用で価電子帯の束縛電子がエネルギーギャ
ップを超えて伝導帯に放出され、電子−正孔対を形成す
る。CdTeの場合、電子−正孔対の生成エネルギーが
4.65・Vとガスの場合(〜S Oe V )と比較
して1桁小ざい。生成キャリアのうち、一部は再結合効
果で中和して消滅するが、電圧負荷が存在する場合、多
くは加速され電極に達して′wL離電流となる。FIG. 4 is a diagram showing the operating principle of the CdTe radiation detection element according to the present invention. When a semiconductor material is irradiated with radiation, bound electrons in the valence band are emitted across the energy gap into the conduction band due to effects such as the photoelectric effect, forming electron-hole pairs. In the case of CdTe, the generation energy of electron-hole pairs is 4.65·V, which is one order of magnitude smaller than that in the case of gas (~S Oe V ). Some of the generated carriers are neutralized and disappear due to the recombination effect, but when a voltage load is present, most of them are accelerated and reach the electrodes, resulting in a 'wL separation current.
CdTeの(111)面には、A面とB面とがあり、A
面にはCdの原子のみが存在し、逆にB面にはTe原子
のみが存在する。なお、CdTe単結晶を(’1’ 1
1 )面に沿って切断した場合には結晶学的に切断面は
A面及びB面とが現われ、A面かB面かの特定は、例え
ばフッ化水素系エッチャントでエツチングした際にA面
にのみピットができることから行なう。即ち、cdT’
@の(111) ff1lはA−B−人−B−A−B、
!:A面及びB面が交互に配列する。従って、(111
)面は他の面に比ペ極性の強い面であると考えられる。The (111) plane of CdTe has an A plane and a B plane.
Only Cd atoms exist on the surface, and only Te atoms exist on the B surface. Note that CdTe single crystal ('1' 1
1) When cutting along a plane, plane A and plane B appear crystallographically, and identification of plane A or plane B can be determined by, for example, plane A when etching with a hydrogen fluoride etchant. This is done because a pit can only be formed in the area. That is, cdT'
@(111) ff1l is A-B-person-B-A-B,
! : Side A and side B are arranged alternately. Therefore, (111
) surface is considered to be a surface with strong comparative polarity compared to other surfaces.
CdTe単結晶体1の(111}A面2へ(111)3
面3に対して正の電位をかけ、A面2及び3面3にit
、8ii4を形成することにより、電子−正孔対が空乏
層5にできると、これはバイアス電圧により加速され、
電離電流となり、コンデンサCTr:経て直流分を除い
た後増巾されて出力信号として取出される。電荷収集特
性を決める大きな要因はキャリアの平均自由行程λが空
乏層の厚さよりも大きいことであり、本発明においては
、CdTeの物性とバイアス電圧を大きくとれることが
この要因をかなえる。(111)3 to (111}A-plane 2 of CdTe single crystal 1
Apply a positive potential to surface 3, and apply it to A surface 2 and 3 surface 3.
, 8ii4, electron-hole pairs are created in the depletion layer 5, which are accelerated by the bias voltage,
This becomes an ionizing current, which is passed through a capacitor CTr to remove the DC component, amplified, and taken out as an output signal. A major factor determining charge collection characteristics is that the mean free path λ of carriers is larger than the thickness of the depletion layer, and in the present invention, this factor is achieved by the physical properties of CdTe and the ability to increase the bias voltage.
(111)面に電極を形成した場合と(111)面以外
の代表としてここでは(110)面に1!極を形成した
場合のt−V特性を第2図に示す。この結果から<11
11面に電極を形成した場合にはリーク電流が低減する
ことがわかる。このため、(111)面は(110)面
に比べ高電圧の負荷が可能となる。前述したように、放
射線検出におけるエネルギー分解能はキャリアの平均自
由行程λ(λ=μτE)に大きく依存し、λ値の増加に
対応してエネルギー分解能は向上する。リーク電流の低
減化に伴ない、電界強度Eを大きくすることが可能とな
る結果としてλ値を大きくすることができ、エネルギー
分解能の向上が図れるわけである。Here, as a representative example of cases where electrodes are formed on the (111) plane and planes other than the (111) plane, 1! on the (110) plane! FIG. 2 shows the t-V characteristics when a pole is formed. From this result <11
It can be seen that when the electrodes are formed on the 11th surface, the leakage current is reduced. Therefore, the (111) plane can be loaded with a higher voltage than the (110) plane. As described above, the energy resolution in radiation detection largely depends on the carrier mean free path λ (λ=μτE), and the energy resolution improves as the λ value increases. As the leakage current is reduced, the electric field strength E can be increased, and as a result, the λ value can be increased, and the energy resolution can be improved.
前記のように、B面(Te面)に対してA面(Cd面)
が高電位となるように電圧をかけた場合にリーク電流を
低減することが出来るが、この極性が反対の場合にはリ
ーク電流は低減出来ない。As mentioned above, the A plane (Cd plane) is different from the B plane (Te plane).
The leakage current can be reduced if a voltage is applied so that the potential is high, but the leakage current cannot be reduced if the polarity is reversed.
バイアス負荷時のリーク電流は、用いた結晶の′抵抗率
が同じである場合には、電極金属と半導体の接合状態に
よって左右される。A面を正電位にした場合に、リーク
電流が低減されるのは、B面と金属との間に結合状態の
違いによる障壁が形成されたことによると考えられる。When the resistivity of the crystal used is the same, the leakage current during a bias load depends on the junction state between the electrode metal and the semiconductor. The reason why the leakage current is reduced when the A-plane is set to a positive potential is considered to be because a barrier is formed between the B-plane and the metal due to the difference in bonding state.
CdT−e単結晶は、垂直ブリッジマン法等の方法で成
長させることが出来る。例えば、(111)方向に成長
させた単結晶を成長方向に薄く切断することにより(1
11)面を対向面とするウェーハが切出される。ウェー
ハは、所定の素子寸法に加工した後、ラッピング及びボ
リシングの工程を経由して研磨される。ラッピングは、
例えば粒径が5〜12μmのアルミナ粒子を用いること
により行われ、そしてボリシングは、粒径が1μm以下
のアルミナ粒子を用いることにより行われる。A CdT-e single crystal can be grown by a method such as the vertical Bridgman method. For example, by cutting a single crystal grown in the (111) direction thinly in the growth direction,
11) A wafer is cut out with the faces facing each other. After the wafer is processed into a predetermined device size, it is polished through lapping and boring steps. The wrapping is
For example, it is carried out using alumina particles having a particle size of 5 to 12 μm, and the bolling is carried out using alumina particles having a particle size of 1 μm or less.
しかし、研磨法はこれに限定されるものでなく(111
}A面(Cd面)と(111)B面(Te面)を研磨仕
上げすることが出来るものなら任意の方法の採用が可能
である。However, the polishing method is not limited to this (111
}Any method can be used as long as it is capable of polishing the A surface (Cd surface) and the (111)B surface (Te surface).
臭素−メタノール混合液のようなエッチャントを使用し
てのエツチングを行ってもよいが、エツチングは(11
1}A面及び(111)B面の原子配列を崩しやすく、
注意を要する。通常はエツチングを行う必要はなく、上
記理由のためかえって有害である。理由は定かではない
が、エツチングを行うとCdのみが配列した(111}
A面がCdとT・とが混合した面となりやすくまたTa
のみが配列した(111)B面も同じくT・とCdとが
混合した面となるものと思われ、(111’)面方位を
利用するという本発明の概念を崩す結果を招きやすい。Etching may be performed using an etchant such as a bromine-methanol mixture;
1} Easily disrupts the atomic arrangement of the A-plane and (111)B-plane,
Caution is required. Etching is usually not necessary and can be harmful for the reasons mentioned above. Although the reason is not clear, when etching was performed, only Cd was aligned (111}
The A side tends to be a mixed surface of Cd and T.
It is thought that the (111) B plane in which only T. and Cd are arranged is also a mixed plane of T. and Cd, which tends to lead to a result that destroys the concept of the present invention of utilizing the (111') plane orientation.
CdTs単結晶は、Cd : T @比、育成法、熱処
理、ドープ剤添加等によりp型ともn型ともなり、また
高抵抗のものも低抵抗のものも得られ、本発明において
はいずれをも対象とする。CdTs single crystals can be either p-type or n-type depending on the Cd:T ratio, growth method, heat treatment, addition of dopant, etc., and can also be of high resistance or low resistance. set to target.
(111)面方位は、一般に±10°以内、好ましくは
±3°以内の許容誤差範囲を持つものとする。この範囲
内では特性的変化は実質出生じない0
電極形成は、研磨仕上げしたCdT*単結晶体の(11
1)面にAu5PtXAl、In等の金属を真空蒸着ま
たはメッキによって付着することにより行われる。The (111) plane orientation generally has a tolerance range of within ±10°, preferably within ±3°. Within this range, virtually no characteristic changes occur.0 Electrodes are formed using a polished CdT* single crystal (11
1) This is done by attaching a metal such as Au5PtXAl or In to the surface by vacuum evaporation or plating.
発明の効果
本発明によれば、CdT@単結晶の(111)面に電極
を形成することにより、電圧負荷時のIJ +り電流を
低減することが可能となり、エネルギー分解能を向上さ
せることができる。Effects of the Invention According to the present invention, by forming an electrode on the (111) plane of CdT@single crystal, it is possible to reduce IJ + current during voltage load, and it is possible to improve energy resolution. .
実施例
垂直ブリッジマン法により(111)方向に育成した2
インチ径のCdTe単結晶を(111)方向に垂直に切
断し、(111)面が101111X10鰭の大きさを
有しそして厚さが1wのCdTe単結晶体を作製した。Example 2 grown in the (111) direction by the vertical Bridgman method
A CdTe single crystal with an inch diameter was cut perpendicularly to the (111) direction to produce a CdTe single crystal with a (111) plane having a size of 101111×10 fins and a thickness of 1w.
これをラッピング及びボリシングした後、(111)面
に金を真空蒸着した。比較の目的で(110)面のもの
も同様にして作製した。After lapping and bollising, gold was vacuum-deposited on the (111) plane. For comparison purposes, a (110) plane was also produced in the same manner.
第3図は、”’Ca: 662に@VC対する放射線検
出スペクトルを示す。半値巾は(−、,111)面に電
極形成を行った場合80に@Vであり、他方(110)
面に電極形成を行った場合には120にのVである。Figure 3 shows the radiation detection spectrum for @VC at ``Ca: 662.The half width is @V at 80 when the electrode is formed on the (-,,111) plane, and on the other side (110).
When electrodes are formed on the surface, the voltage is 120 V.
(111)面に電極形成を行うことによりエネルギー分
解能が向上していることがわかる。これは、先に第2図
に示したように、(111)面に電極形成をした場合、
最高負荷電圧が5oovまで可能となるため、λ値が大
きくなることによる。It can be seen that the energy resolution is improved by forming electrodes on the (111) plane. This is because, as shown in Fig. 2, when electrodes are formed on the (111) plane,
This is because the maximum load voltage can be up to 5oov, so the λ value becomes large.
(110)面での最高負荷電圧はSOVである。The highest load voltage on the (110) plane is SOV.
リーク電流が10−’ Aで雑音が発生し、これ以上増
加することは出来ない。Noise occurs when the leakage current reaches 10-'A, and it cannot be increased any further.
@1図は放射線検出素子の動作原理を示す説明図であり
、第2図は電圧負荷時の電圧とリーク電流との関係を示
すグラフであり、そして第3図はエネルギー分解能の測
定結果を示すグラフである。
1 : CdTe単結晶体
2:(111}A面
3:(111)B面
4:[極
5:空乏層
第4図
、マイ了λ1い1
第2図
−i ! (V)@Figure 1 is an explanatory diagram showing the operating principle of the radiation detection element, Figure 2 is a graph showing the relationship between voltage and leakage current under voltage load, and Figure 3 shows the measurement results of energy resolution. It is a graph. 1: CdTe single crystal 2: (111} A-plane 3: (111) B-plane 4: [Pole 5: Depletion layer Fig. 4, 1 Fig. 2-i! (V)
Claims (1)
dTe放射線検出素子において、該CdTe単結晶体の
{111}面に電極形成を行うことを特徴とするCdT
e放射線検出素子。 2){111}A面(Cd面)が{111}B面(Te
面)に対して高電位とされる特許請求の範囲第4項記載
のCdTe放射線検出素子。 3)電極形成がAu、Pt、Al、In等の金属の真空
蒸着またはめつきにより行われる特許請求の範囲1項或
いは第2項記載のCdTe放射線検出素子。[Claims] 1) C in which electrodes are formed on opposing surfaces of a CdTe single crystal
In a dTe radiation detection element, an electrode is formed on the {111} plane of the CdTe single crystal.
e-radiation detection element. 2) {111}A plane (Cd plane) is {111}B plane (Te
5. The CdTe radiation detection element according to claim 4, which has a high potential with respect to the CdTe radiation detection element. 3) The CdTe radiation detection element according to claim 1 or 2, wherein the electrodes are formed by vacuum evaporation or plating of a metal such as Au, Pt, Al, In or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61158015A JPH0734480B2 (en) | 1986-07-07 | 1986-07-07 | CdTe radiation detection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61158015A JPH0734480B2 (en) | 1986-07-07 | 1986-07-07 | CdTe radiation detection element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6314479A true JPS6314479A (en) | 1988-01-21 |
JPH0734480B2 JPH0734480B2 (en) | 1995-04-12 |
Family
ID=15662407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61158015A Expired - Lifetime JPH0734480B2 (en) | 1986-07-07 | 1986-07-07 | CdTe radiation detection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0734480B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869091A (en) * | 1994-08-10 | 1999-02-09 | University Of Strathclyde | Vesicle formulation |
US6011264A (en) * | 1994-08-11 | 2000-01-04 | Urigal Technologies, Ltd. | Apparatus, system and method for gamma ray and x-ray detection |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5592577A (en) * | 1978-12-29 | 1980-07-14 | Toshiba Electric Equip Corp | Inverter device |
JPS57149983A (en) * | 1981-03-12 | 1982-09-16 | Yokogawa Hokushin Electric Corp | Radiation detector |
JPS57154083A (en) * | 1981-03-19 | 1982-09-22 | Yokogawa Hokushin Electric Corp | Ct scanner |
JPS59132382A (en) * | 1983-01-19 | 1984-07-30 | Yokogawa Hokushin Electric Corp | Multichannel type radiation detector |
US4465545A (en) * | 1982-07-30 | 1984-08-14 | The Board Of Trustees Of The Leland Stanford Junior University | Method of growing single crystal cadmium telluride |
US4490441A (en) * | 1982-07-06 | 1984-12-25 | Honeywell Inc. | Encapsulated CDTe boules for multiblade wafering |
JPS6070774A (en) * | 1983-09-27 | 1985-04-22 | Yokogawa Hokushin Electric Corp | Detector for radiation |
JPS60215600A (en) * | 1984-04-09 | 1985-10-28 | Nec Corp | Production of hg1-xcdxte crystal |
JPS60260877A (en) * | 1984-06-07 | 1985-12-24 | Yokogawa Hokushin Electric Corp | Radiation detector |
JPS61132588A (en) * | 1984-11-30 | 1986-06-20 | Fujitsu Ltd | Production of compound single crystal |
-
1986
- 1986-07-07 JP JP61158015A patent/JPH0734480B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5592577A (en) * | 1978-12-29 | 1980-07-14 | Toshiba Electric Equip Corp | Inverter device |
JPS57149983A (en) * | 1981-03-12 | 1982-09-16 | Yokogawa Hokushin Electric Corp | Radiation detector |
JPS57154083A (en) * | 1981-03-19 | 1982-09-22 | Yokogawa Hokushin Electric Corp | Ct scanner |
US4490441A (en) * | 1982-07-06 | 1984-12-25 | Honeywell Inc. | Encapsulated CDTe boules for multiblade wafering |
US4465545A (en) * | 1982-07-30 | 1984-08-14 | The Board Of Trustees Of The Leland Stanford Junior University | Method of growing single crystal cadmium telluride |
JPS59132382A (en) * | 1983-01-19 | 1984-07-30 | Yokogawa Hokushin Electric Corp | Multichannel type radiation detector |
JPS6070774A (en) * | 1983-09-27 | 1985-04-22 | Yokogawa Hokushin Electric Corp | Detector for radiation |
JPS60215600A (en) * | 1984-04-09 | 1985-10-28 | Nec Corp | Production of hg1-xcdxte crystal |
JPS60260877A (en) * | 1984-06-07 | 1985-12-24 | Yokogawa Hokushin Electric Corp | Radiation detector |
JPS61132588A (en) * | 1984-11-30 | 1986-06-20 | Fujitsu Ltd | Production of compound single crystal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869091A (en) * | 1994-08-10 | 1999-02-09 | University Of Strathclyde | Vesicle formulation |
US6011264A (en) * | 1994-08-11 | 2000-01-04 | Urigal Technologies, Ltd. | Apparatus, system and method for gamma ray and x-ray detection |
Also Published As
Publication number | Publication date |
---|---|
JPH0734480B2 (en) | 1995-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Matsumoto et al. | Performance of a new Schottky CdTe detector for hard X-ray spectroscopy | |
Szeles | CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications | |
Shah et al. | Lead iodide X-ray detection systems | |
Burnham et al. | Electron mobility and scattering processes in AgBr at low temperatures | |
US7372009B1 (en) | Solid-state thermal neutron detector | |
Kobayashi et al. | Performance of GaAs surface-barrier detectors made from high-purity gallium arsenide | |
Bennett et al. | Characterization of polycrystalline TlBr films for radiographic detectors | |
JP2687122B2 (en) | Multilayer CdTe radiation detection element | |
Castellano | GaSe detectors for x‐ray beams | |
Butler et al. | Sub-keV resolution detection with Cd1-xZnxTe detectors | |
JPS6314479A (en) | Cdte radiation detecting element | |
JP2003344548A (en) | Radiation detector | |
Haller | Detector materials: germanium and silicon | |
Goldie et al. | Tunnel junction arrays on InSb: A high resolution cryogenic detector for X-and γ-rays | |
Amirav et al. | Electron‐hole pair creation at a Ge (100) surface by ground‐state neutral Xe atoms | |
US6975012B2 (en) | Semiconductor radiation detector having voltage application means comprises InxCdyTez on CdTe semiconductor substrate | |
Dearnaley et al. | A lithium-drifted silicon surface-barrier detector for nuclear radiations | |
Zaletin | Development of semiconductor detectors based on wide-gap materials | |
Vénos et al. | Performance of HPGe detectors in the temperature region 2–77 K | |
Bao et al. | Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements | |
JPS6315477A (en) | Cdte radiation detecting element | |
Elshazly et al. | Charge trapping in detector grade thallium bromide and cadmium zinc telluride: Measurement and theory | |
Ivanov et al. | The influence of the M-/spl pi/-n structure on CdTe X-ray detector performance | |
Lebedev et al. | Amplification of the signal in triode structures of ion detectors based on 6H-SIC epitaxial films | |
Wada et al. | Cadmium telluride β-ray detector |